Alarm System of Railway Gate Crossing based on GPS and GSM

Burra. Raju 1, B. Sreenivas2

1M. Tech Student, Jyothishmathi Institute of Technology & Science, Karimnagar, A.P. India
2Associate Professor, Jyothishmathi Institute of Technology & Science, Karimnagar, A.P. India

Abstract: In the rapidly flourishing country like ours, it appears that railway safety, particularly safety at intersections between roads & railway lines is perhaps not accorded the priority it deserves. This is due to lack of manpower needed to fulfill the demand. Since, no one to takes care of the functioning of railway gate when a train approaches the crossing. The objective of this paper is to overcome this problem by assuring railway safety and improves the passing efficiency in railway crossing; here we design a new railway crossing warning system based on GPS & GSM. The performance come together by positioning of GPS and efficient transmission rate of GSM and computer control technology are used in this system, which in turns provide safety in railway system.

Keywords: GPS, GSM, train section, railway crossing, control section.

1. Introduction

India is the country which is having world’s largest railway network. So railway safety is a critical aspect, if anything goes wrong in the rail operation it results loss in terms of human life, injury, damage to railway property. To overcome with this system a variety of alarm systems are proposed, but they are successful only up to some extent. The reasons for their failure are poor system stability & sensors performance. Sensors life cycle is very less they should be replaced for every two years which is cost ineffective and not convenient for work. The main serious problem is alarm failure due to vibration & displacement caused by car. To avoid all these things some automatic & independent system is needed in [3], [6]. This is possible by using satellite communication to locate the position of train and to measure their speeds. By using wireless data communication link will provide the details like train location & speed to train control center and by this it can transmit the train & displays signal. This is achieved by using GPS [2], GSM in [1] and m any other components.

2. Overall Frame work

The fundamental process in our system is obtaining train location using GPS technology and transmitting the data via GSM network [5] to the control section for data processing and information analysis. The train locator unit planted in the train is designed and implemented, considering the cost factor, size of the module, durability and low power consumption. The power supply unit of the module is a main factor which decides the feasibility of the unit, as it should sustain a seamless supply of electric current at a low voltage for the locator module to function properly. The GPS receiver of the unit is capable of identifying the latitude and longitude position and ground speed of the specific train by receiving information from the GPS satellites. The position data is periodically sent to the remote server through the GSM transmitter of the module.

We have chosen GSM as the communication medium between the train locator and the remote server to improve availability of our system by utilizing the existing GSM network which covers the whole country. The central control system includes a server for handling and processing all the position information received from train locators via the GSM network. The server automatically updates the database with latest position, speed and direction information of each train.

Over the years, many road accidents have occurred at railway crossings imposing a critical safety threat to both train commuters and passengers in vehicles. Such accidents are caused mainly by the unreliability of the safety mechanisms such as blocking arms and signal lights used at the crossing point from [3], [7]. Thus our system is to improve the reliability of the safety mechanisms by synchronizing the railway crossing control process with the incoming train’s position. We can provide accurate real-time information on train position, speed and length of the train to synchronize the functions of railway crossing with the train.
movements. The productivity of the service can be significantly improved by providing accurate predictions on approaching train at the rail-road crossing and displaying amount of remaining time to clear the crossing from train traffic. Alarm triggers to alert road vehicles approaching too close to the rail-road crossing at a point of train approaching, can also are incorporated to improve the effectiveness of our solution. Thus the system is instrumental in improving safety of people crossing rail-road cross points.

3. System Structure and Prototype Design

3.1 Analysis of hardware Structure

3.1.1 Microprocessor
The microprocessor ARM7 TDMI performs signal analysis, command execution, and logical judgment. One of the most important logical judgments is determination of a theft event. ARM7 TDMI first records the original manifest and original GPS coordinates and then updates them every preset time. Once an invalid unloaded authorization is detected, the monitoring system raises the alarm. Then the system will report the detailed product description and current location to the monitoring centre.

![Figure 2: Block diagram of Train section](image)

3.1.2 GPS Module
It is used to provide satellite localization in formation to trace, locate and find the speed of the train (latitude, longitude and altitude).

3.1.3 GSM Module
It provides a communication channel to transmit GPS coordinates, like geography location and speed messages or emergency rescue messages, and receives commands from the transport company or the remote monitor centre.

![Figure 3: Block diagram of Control section](image)

3.2 Building the Prototype System

The Train section consists of microcontroller [4] LPC2148, GSM module, GPS module power block. GSM module is connected to the microcontroller using the serial communication using the serial port UART0. GPS module is connected to the microcontroller using the serial communication using UART1. The GPS module in the section reads the area information like longitude and latitude using the tracked satellite information. The position information of the train is displayed on the LCD. The information is passing to the control section using the GSM technology. The parameter value of temperature is monitored and displayed on the LCD.

The Remote monitoring section consists of the GSM module, LEDs and buzzer with the LPC2148 microcontroller. The GSM is connected to the microcontroller using the serial communication using UART0. The information of temperature and train information is displayed on the LCD display. Continuously 5 times GPS values receive from the train section after that it will indicate the green signal the train is arriving at that time buzzer is buzz.
4. Conclusions

From this system we can improve reliability of communication to great extent and also we can know exact position of train even in caves, mountains, high raised areas irrespective of distance, by the control center can monitor the train like controlling speed and displaying signals. This is done by using GPS & GSM technologies.

5. Acknowledgments

I would like to thank Mr. B. Sreenivas Associate professor, ECE Department who had been guiding throughout the work and support in giving technical ideas about the paper and motivating to complete the work effectively and successfully.

References

[7] GPS/GSM based train tracking system – utilizing mobile networks to support public transportation, Dileepa Jayakody, Mananu Gunawardana, Niprana Surendra, Dayan Gayasri Jayasekara, Chanaka Upendra, Supervisor, Rangana De Silva
[8] Implementation of logistics management system based on wireless technologies, Ishfaq Mod, D. Shekar Goud, P. J. Saritha

Author Profile

Mr. Burra Raju is pursuing his M. Tech in Digital Systems & Computer Electronics from Jyothishmathi Institute of Technology & Science, Karimnagar. He completed B. Tech in Electronics & Communication Engineering from JNTUH.

Mr. Banda Sreenivas working as an Associate Professor in Department of Electronics and Communication Engineering in Jyothishmathi Institute of Technology and Science, Karimnagar. A.P. Graduated from KITS, Warangal, completed M. Tech from JNTU-H. Pursuing PhD from JNTU Hyderabad published and presented 4 papers in the International conferences and 2 papers in National conferences. He has published papers in five international journals Having 16 years of experience in teaching and industry together. He is a Reviewer for two International Journals and life member for ISTE, IAENG & IACSIT.