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Abstract: The problem of extracting infrequent patterns from streams and building relations between them is gradually significant to-
day as many events of interest such as network attacks or unusual stories in news data occur rarely. The complexity of the problem is 
multipart when a system is required to deal with data from several streams. To discourse these problems we present an approach that 
combines pyramidal trees with association rule mining to discover infrequent patterns in data streams. This maintains a summary of the 
data without requiring increasing amounts of memory resources. 
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1. Introduction 

Infrequent pattern mining is concerned with extracting “un-
common” or ”scarce” patterns from streams of data. In the 
past, frequent pattern mining has been investigated in detail 
with little research being done in infrequent pattern mining. 
However, infrequent patterns are often more useful than fre-
quent patterns as they provide information about events of 
interest (such as in network intrusion detection). 

We address two major issues in infrequent pattern mining 
scalability in terms of memory requirements and pattern se-
lection over time horizons that vary in span. We have devel-
oped a framework for identifying infrequent patterns in 
stream data which allows the discovery of the patterns at dif-
ferent time resolutions. The framework selects the infrequent 
patterns and stores them into a data structure such that only 
the unique patterns across the stream are stored at the top of 
the structure. An important aspect of our framework is that it 
can handle multiple data streams and thus allows the discov-
ery of patterns that are infrequent across multiple data 
streams. At the core of our approach is the use of an online 
hierarchical structure that allows the concise description of 
the infrequent patterns from the data stream 

2. Infrequent Pattern Mining Algorithm 

A. Infrequent Pattern Processing Challenges 

The problem of mining infrequent patterns and building asso-
ciations from these patterns extracted from a stream poses 
two challenges: (1) the problem of extracting the patterns and 
storing them efficiently and (2) the problem that the infre-
quent patterns and associations discovered may over time 
become frequent. We are only interested in the patterns that 
remain infrequent over the entire stream (or part of) 
processed. 

B. Preliminaries 

There are many techniques that can be used to extract infre-
quent patterns but typically, these techniques produce a large 

amount of infrequent items which require increasing amounts 
of resources both in terms of memory and computations. The 
typical approach [10] to infrequent pattern mining is to first 
identify the frequent patterns and then prune these patterns 
from the dataset. The remaining patterns are considered to be 
infrequent. The main problem is that a large number of infre-
quent items are typically generated by the extraction process 
and hence as more data is observed in the stream, more pat-
terns need to be stored. 

Let S be the data stream [(d1; i1; t1), (d2; i2; t2). . . (dn; in; 
tn)] Where (dk; ik; tk) represents the data instance, its class 
label or item id and its time stamp in the stream respectively. 
Let I represent the set of all class labels and thus ik 2 I. Since 
we are proposing a hierarchical data structure, let h denote the 
height of the hierarchy, where the root node is at the level l=h 
and the leaf node is at the level l=0. The data instances are 
processed at the leaf node level and the summary statistics are 
maintained at higher levels in the hierarchy. Since the stream 
is processed by a moving window of length L, let wli denote 
the ith window at level l and its time span be denoted by tl[si; 
ei], where tl[si; ei] = [tsi : tei ] and tsi and tei are the start and 
end time span of wl. Let x(tl[si; ei]) represent the set of items, 
xk(tl[si; ei]) represent the item with id k, xks(tl[si; ei]) 
represent the support of the item with id k and xa(tl[si; ei]) 
denote the set of mutually dependent infrequent items in wli 
over time span tl[si; ei] respectively. If item ik occurs nik 
times in tl[si; ei]), then the support threshold (_ik ) = nik=n. A 
single processor board (XM2110) can be configured to run 
your sensor application/processing and the network/radio 
communications stack simultaneously. The IRIS 51-pin ex-
pansion connector supports Analog Inputs, Digital I/O, I2C, 
SPI and UART interfaces. These interfaces make it easy to 
connect to a wide variety of external peripherals. 

C. Algorithm Overview 

We process the data in two stages: first we eliminate the fre-
quent items and second we build the associations between the 
infrequent items. Overall, our framework has three stages. 
First, the initial set of infrequent patterns are extracted and 
stored in the pyramid. Second the rest of the stream is 
processed and the infrequent pattern set updated. In the final 
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stage the infrequent pattern set for the entire stream is fina-
lized and compared with the sets extracted from other streams 
in order to determine the pattern set that is infrequent across 
streams.  

3. Infrequent Pattern and Extraction 

Once a candidate window has been identified, we extract all 
infrequent patterns y(tl[si; ei]) for which xks(wli) < _ from 
the window and store them in the infrequent set _infrequent. 
The processing is repeated for all windows in the candidate 
queue thus producing the infrequent sets for the individual 
windows. However, this process only ensures that the patterns 
are infrequent for each window rather than across multiple 
windows or across parts of the entire stream. To ensure that 
the patterns are infrequent across more than one window, it is 
necessary to compare the support of the infrequent items sets 
across windows. This requires that we update the support for 
each infrequent item as more windows are processed and in-
volves the summary of two consecutive candidate windows. 
The summary of two windows consists of the items that are 
”infrequent” in both windows. If there are infrequent items 
similar in both windows and the sum of their support exceeds 
the threshold limit _, then these items would not be included 
in the summary of the windows. 

A. Storing The Sporadic Patterns 

The next step in the processing involves building the Pyra-
midal data structure that stores the infrequent patterns discov-
ered from the stream. The pyramidal data structure is built by 
merging the infrequent patterns sets extracted from increa-
singly larger ordered groupings of candidate windows. 

Figure 1: Pyramidal Tree 

Figure 2: Infrequent Pattern Extraction 

Consider the example in Figure 1. The bottom level contains 
all the infrequent item sets covered by a predefined time span 
(T) which in the case of Figure 1 has 8 candidate windows. 
The nodes at the next level in the pyramid contain the set of 
items that are infrequent for pairings of candidate windows. 
As the item sets are generated at the higher levels in the py-
ramid, the algorithm checks to ensure that items are indeed 

infrequent by checking the item against all the data points 
contained in the windows associated with that branch of the 
pyramid. Consider the following example. Let yk(t0[s1; e1]) 
and yk+4(t0[s1; e1]) be patterns that are infrequent at level 0 
in window w01in the data in window w02 is processed, if the 
support for either yk(t0[s1; e1]) or yk+4(t0[s1; e1]) increases 
to a value that exceeds , then the pattern is no longer propa-
gated to the node at level 1. Therefore, an infrequent item at 
Level2 in the pyramid that was extracted originally from win-
dow w01 would be checked against the data from windows 
w02, w03 and w04. Similarly, infrequent items extracted from 
the windows w03 and w04 at Level 1 would be checked 
against windows w01, w02.This process removes the depen-
dency on the length of the window and for any value of L, we 
will always obtain the same infrequent items at the root of the 
pyramidal tree as outlined below. 

Lemma 1: The infrequent patterns extracted from each 
window are independent of the length of the data window.

Proof: If the length of the moving window (L) = t0[s1; e4] 
(see. Figure 2), then the infrequent items over the time span 
t0[s1; e4] derived using equation 1 are given by y(t0[s1; e4]) 
= Summary(t0[s1; e4]). If we change the length of the win-
dow from L to L/2, then the time span would be covered by 
two equally sized windows L’ and L” where L’ = t0[s1; e2] 
and L”=t0[s3; e4]. Moreover, we can write that t0[s1; e4] = 
t0[s1; e2] + t0[s3; e4] = t1[s1; e1] + t1[s2; e2] = t2[s1; e1]. In 
addition, by using equation 1 we obtain y(t2[s1; e1]) from the 
union of y(t1[s1; e1]) and y(t1[s2; e2]) . Since, y(t2[s1; e1]) 
covers the all infrequent items over the time span t0[s1; e4], 
then y(t2[s1; e1]) = y(t0[s1; e4]). Similarly, if we change the 
length of the window to L/4, then using equation 1 we can 
mine all infrequent items over the same time span. Therefore, 
extracting the infrequent items over a time span is indepen-
dent on the length of the moving window. 

Figure 3: Building the Pyramidal Tree 

Lemma 2: Pruning old data windows does not affect the 
infrequent patterns stored at the root of the pyramidal 
tree.

Proof: Given a sequence of m processed candidate win-
dows,the pyramid derived the windows will at the root level 
(l = h) store the infrequent patterns defined by equation 1 
(i.e.y(t0[sm=2;em=2]) = Summary(t0[s1; em])) that cover the 
time span t0[s1; em] (i.e. th[sm=2; em=2] = t0[s1; em] as 
shown in Figure 3). Because of the properties of the infre-
quent items extracted using equation 1 which tracks the time 
interval and the support for each item, for any node in the 
pyramid at level l, we can prune any of the l-1 or lower 
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nodes/branches from the pyramid without affecting the infre-
quent patterns stored in the nodes at level l. 

4. Experimental Evaluation 

A.  Voltage flow Datasets 

The Voltage intrusion dataset has around 10000 network con-
nection records. Each connection record in the dataset is la-
beled as either normal or as a specific attack (24 types of at-
tacks). We used sampling to divide the original dataset into 8 
streams of roughly 500 records each. The streams covered 
only a subset of the attacks in the original dataset and there-
fore for each stream we recorded the label and the frequency 
of the attacks contained in the stream. In all experiments, we 
used an entropy value of less than 110 and greater than 320 to 
determine whether a data window is used in the infrequent 
pattern extraction stage in the algorithm. 

B. Window Size Analysis 

The aim of the first set of experiments is to determine wheth-
er the same set of infrequent patterns is propagated to the root 
of the pyramidal data structure that covers an entire stream, 
regardless of the window size used to process the data. Please 
note that not all attack patterns were infrequent - specifically, 
attacks 1 to 4 occurred frequently in most streams when com-
pared with attacks 5 to 24. We processed the streams using a 
varying window size w that covered an interval of points 
ranging from as few as 2000 data points to the entire stream. 
Of significance are the columns showing the difference (_) 
between the ground truth and the infrequent patterns stored at 
the root of the pyramid. The results demonstrate that the 
changes made to the window size had no effect on the final 
set of infrequent items. 

C. Infrequent Pattern Frequency Analysis  

The aim of the second type of experiments was to determine 
how the frequency of patterns affects the level to which an 
infrequent pattern is propagated up in the pyramidal tree. 
Items with support < _ for i = 1..4w would be expected to 
reach the midlevel nodes of the pyramidal tree, while items 
with support < _ for i = 1..nw would be found at the top level 
of the pyramid. We used a window size w = 2000 to process 
the data stream and we recorded the infrequent patterns ex-
tracted at all levels in the pyramid along with the window id. 

Items with support < _ for i = 1..4w would be expected to 
reach the midlevel nodes of the pyramidal tree, while items 
with support < _ for i = 1..nw would be found at the top level 
of the pyramid. We used a window size w = 2000 to process 
the data stream and we recorded the infrequent patterns ex-
tracted at all levels in the pyramid along with the window id 

D. Multiple Stream Infrequent Pattern and Association 

Rule Mining: The aim of the last experiment was to derive 
temporal associations from the infrequent item sets discov-
ered in the streams. At the root level streams had multiple 
infrequent items and furthermore, only three of these streams 
contained enough support to generate associations between 
the infrequent items. For example, the rule 5) indicates that 
whenever an attack of type 335 was observed, one can also 
expect an attack of type 329 within 2000 data points. 

5. Conclusion and Future Work 

The framework proposed in this paper can be used effectively 
to extract infrequent items from stream data and generate 
temporally ordered associations (mutually dependent items) 
from these items. The results obtained have demonstrated that 
the algorithm can handle vastly different types of data. The 
major advantages of our work are that it allows incremental 
processing of data streams with limited memory resources 
and it can be applied to multiple streams. 
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