
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

Issn (Online): 2347-3878
Volume 2 Issue 4, April 2014

Mining Infrequent Patterns across Multiple
Streams of Data

Saleem1, Vanaja Ranjan2

1M.Tech Student, College of Engineering Guindy, Anna University, Chennai-25, Tamil Nadu, India
2Professor, EEE, College Of Engineering Guindy, Anna University, Chennai-25, Tamil Nadu, India

Abstract: The problem of extracting infrequent patterns from streams and building relations between them is gradually significant to-
day as many events of interest such as network attacks or unusual stories in news data occur rarely. The complexity of the problem is
multipart when a system is required to deal with data from several streams. To discourse these problems we present an approach that
combines pyramidal trees with association rule mining to discover infrequent patterns in data streams. This maintains a summary of the
data without requiring increasing amounts of memory resources.

Keywords: Association, Datasets, Extraction, Infrequent, Mutually Dependent, Patterns, Pruning

1. Introduction

Infrequent pattern mining is concerned with extracting “un-
common” or ”scarce” patterns from streams of data. In the
past, frequent pattern mining has been investigated in detail
with little research being done in infrequent pattern mining.
However, infrequent patterns are often more useful than fre-
quent patterns as they provide information about events of
interest (such as in network intrusion detection).

We address two major issues in infrequent pattern mining
scalability in terms of memory requirements and pattern se-
lection over time horizons that vary in span. We have devel-
oped a framework for identifying infrequent patterns in
stream data which allows the discovery of the patterns at dif-
ferent time resolutions. The framework selects the infrequent
patterns and stores them into a data structure such that only
the unique patterns across the stream are stored at the top of
the structure. An important aspect of our framework is that it
can handle multiple data streams and thus allows the discov-
ery of patterns that are infrequent across multiple data
streams. At the core of our approach is the use of an online
hierarchical structure that allows the concise description of
the infrequent patterns from the data stream

2. Infrequent Pattern Mining Algorithm

A. Infrequent Pattern Processing Challenges

The problem of mining infrequent patterns and building asso-
ciations from these patterns extracted from a stream poses
two challenges: (1) the problem of extracting the patterns and
storing them efficiently and (2) the problem that the infre-
quent patterns and associations discovered may over time
become frequent. We are only interested in the patterns that
remain infrequent over the entire stream (or part of)
processed.

B. Preliminaries

There are many techniques that can be used to extract infre-
quent patterns but typically, these techniques produce a large

amount of infrequent items which require increasing amounts
of resources both in terms of memory and computations. The
typical approach [10] to infrequent pattern mining is to first
identify the frequent patterns and then prune these patterns
from the dataset. The remaining patterns are considered to be
infrequent. The main problem is that a large number of infre-
quent items are typically generated by the extraction process
and hence as more data is observed in the stream, more pat-
terns need to be stored.

Let S be the data stream [(d1; i1; t1), (d2; i2; t2). . . (dn; in;
tn)] Where (dk; ik; tk) represents the data instance, its class
label or item id and its time stamp in the stream respectively.
Let I represent the set of all class labels and thus ik 2 I. Since
we are proposing a hierarchical data structure, let h denote the
height of the hierarchy, where the root node is at the level l=h
and the leaf node is at the level l=0. The data instances are
processed at the leaf node level and the summary statistics are
maintained at higher levels in the hierarchy. Since the stream
is processed by a moving window of length L, let wli denote
the ith window at level l and its time span be denoted by tl[si;
ei], where tl[si; ei] = [tsi : tei] and tsi and tei are the start and
end time span of wl. Let x(tl[si; ei]) represent the set of items,
xk(tl[si; ei]) represent the item with id k, xks(tl[si; ei])
represent the support of the item with id k and xa(tl[si; ei])
denote the set of mutually dependent infrequent items in wli
over time span tl[si; ei] respectively. If item ik occurs nik
times in tl[si; ei]), then the support threshold (_ik) = nik=n. A
single processor board (XM2110) can be configured to run
your sensor application/processing and the network/radio
communications stack simultaneously. The IRIS 51-pin ex-
pansion connector supports Analog Inputs, Digital I/O, I2C,
SPI and UART interfaces. These interfaces make it easy to
connect to a wide variety of external peripherals.

C. Algorithm Overview

We process the data in two stages: first we eliminate the fre-
quent items and second we build the associations between the
infrequent items. Overall, our framework has three stages.
First, the initial set of infrequent patterns are extracted and
stored in the pyramid. Second the rest of the stream is
processed and the infrequent pattern set updated. In the final

Paper ID: J2013256 91 of 94

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

Issn (Online): 2347-3878
Volume 2 Issue 4, April 2014

stage the infrequent pattern set for the entire stream is fina-
lized and compared with the sets extracted from other streams
in order to determine the pattern set that is infrequent across
streams.

3. Infrequent Pattern and Extraction

Once a candidate window has been identified, we extract all
infrequent patterns y(tl[si; ei]) for which xks(wli) < _ from
the window and store them in the infrequent set _infrequent.
The processing is repeated for all windows in the candidate
queue thus producing the infrequent sets for the individual
windows. However, this process only ensures that the patterns
are infrequent for each window rather than across multiple
windows or across parts of the entire stream. To ensure that
the patterns are infrequent across more than one window, it is
necessary to compare the support of the infrequent items sets
across windows. This requires that we update the support for
each infrequent item as more windows are processed and in-
volves the summary of two consecutive candidate windows.
The summary of two windows consists of the items that are
”infrequent” in both windows. If there are infrequent items
similar in both windows and the sum of their support exceeds
the threshold limit _, then these items would not be included
in the summary of the windows.

A. Storing The Sporadic Patterns

The next step in the processing involves building the Pyra-
midal data structure that stores the infrequent patterns discov-
ered from the stream. The pyramidal data structure is built by
merging the infrequent patterns sets extracted from increa-
singly larger ordered groupings of candidate windows.

Figure 1: Pyramidal Tree

Figure 2: Infrequent Pattern Extraction

Consider the example in Figure 1. The bottom level contains
all the infrequent item sets covered by a predefined time span
(T) which in the case of Figure 1 has 8 candidate windows.
The nodes at the next level in the pyramid contain the set of
items that are infrequent for pairings of candidate windows.
As the item sets are generated at the higher levels in the py-
ramid, the algorithm checks to ensure that items are indeed

infrequent by checking the item against all the data points
contained in the windows associated with that branch of the
pyramid. Consider the following example. Let yk(t0[s1; e1])
and yk+4(t0[s1; e1]) be patterns that are infrequent at level 0
in window w01in the data in window w02 is processed, if the
support for either yk(t0[s1; e1]) or yk+4(t0[s1; e1]) increases
to a value that exceeds , then the pattern is no longer propa-
gated to the node at level 1. Therefore, an infrequent item at
Level2 in the pyramid that was extracted originally from win-
dow w01 would be checked against the data from windows
w02, w03 and w04. Similarly, infrequent items extracted from
the windows w03 and w04 at Level 1 would be checked
against windows w01, w02.This process removes the depen-
dency on the length of the window and for any value of L, we
will always obtain the same infrequent items at the root of the
pyramidal tree as outlined below.

Lemma 1: The infrequent patterns extracted from each
window are independent of the length of the data window.

Proof: If the length of the moving window (L) = t0[s1; e4]
(see. Figure 2), then the infrequent items over the time span
t0[s1; e4] derived using equation 1 are given by y(t0[s1; e4])
= Summary(t0[s1; e4]). If we change the length of the win-
dow from L to L/2, then the time span would be covered by
two equally sized windows L’ and L” where L’ = t0[s1; e2]
and L”=t0[s3; e4]. Moreover, we can write that t0[s1; e4] =
t0[s1; e2] + t0[s3; e4] = t1[s1; e1] + t1[s2; e2] = t2[s1; e1]. In
addition, by using equation 1 we obtain y(t2[s1; e1]) from the
union of y(t1[s1; e1]) and y(t1[s2; e2]) . Since, y(t2[s1; e1])
covers the all infrequent items over the time span t0[s1; e4],
then y(t2[s1; e1]) = y(t0[s1; e4]). Similarly, if we change the
length of the window to L/4, then using equation 1 we can
mine all infrequent items over the same time span. Therefore,
extracting the infrequent items over a time span is indepen-
dent on the length of the moving window.

Figure 3: Building the Pyramidal Tree

Lemma 2: Pruning old data windows does not affect the
infrequent patterns stored at the root of the pyramidal
tree.

Proof: Given a sequence of m processed candidate win-
dows,the pyramid derived the windows will at the root level
(l = h) store the infrequent patterns defined by equation 1
(i.e.y(t0[sm=2;em=2]) = Summary(t0[s1; em])) that cover the
time span t0[s1; em] (i.e. th[sm=2; em=2] = t0[s1; em] as
shown in Figure 3). Because of the properties of the infre-
quent items extracted using equation 1 which tracks the time
interval and the support for each item, for any node in the
pyramid at level l, we can prune any of the l-1 or lower

Paper ID: J2013256 92 of 94

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

Issn (Online): 2347-3878
Volume 2 Issue 4, April 2014

nodes/branches from the pyramid without affecting the infre-
quent patterns stored in the nodes at level l.

4. Experimental Evaluation

A. Voltage flow Datasets

The Voltage intrusion dataset has around 10000 network con-
nection records. Each connection record in the dataset is la-
beled as either normal or as a specific attack (24 types of at-
tacks). We used sampling to divide the original dataset into 8
streams of roughly 500 records each. The streams covered
only a subset of the attacks in the original dataset and there-
fore for each stream we recorded the label and the frequency
of the attacks contained in the stream. In all experiments, we
used an entropy value of less than 110 and greater than 320 to
determine whether a data window is used in the infrequent
pattern extraction stage in the algorithm.

B. Window Size Analysis

The aim of the first set of experiments is to determine wheth-
er the same set of infrequent patterns is propagated to the root
of the pyramidal data structure that covers an entire stream,
regardless of the window size used to process the data. Please
note that not all attack patterns were infrequent - specifically,
attacks 1 to 4 occurred frequently in most streams when com-
pared with attacks 5 to 24. We processed the streams using a
varying window size w that covered an interval of points
ranging from as few as 2000 data points to the entire stream.
Of significance are the columns showing the difference (_)
between the ground truth and the infrequent patterns stored at
the root of the pyramid. The results demonstrate that the
changes made to the window size had no effect on the final
set of infrequent items.

C. Infrequent Pattern Frequency Analysis

The aim of the second type of experiments was to determine
how the frequency of patterns affects the level to which an
infrequent pattern is propagated up in the pyramidal tree.
Items with support < _ for i = 1..4w would be expected to
reach the midlevel nodes of the pyramidal tree, while items
with support < _ for i = 1..nw would be found at the top level
of the pyramid. We used a window size w = 2000 to process
the data stream and we recorded the infrequent patterns ex-
tracted at all levels in the pyramid along with the window id.

Items with support < _ for i = 1..4w would be expected to
reach the midlevel nodes of the pyramidal tree, while items
with support < _ for i = 1..nw would be found at the top level
of the pyramid. We used a window size w = 2000 to process
the data stream and we recorded the infrequent patterns ex-
tracted at all levels in the pyramid along with the window id

D. Multiple Stream Infrequent Pattern and Association

Rule Mining: The aim of the last experiment was to derive
temporal associations from the infrequent item sets discov-
ered in the streams. At the root level streams had multiple
infrequent items and furthermore, only three of these streams
contained enough support to generate associations between
the infrequent items. For example, the rule 5) indicates that
whenever an attack of type 335 was observed, one can also
expect an attack of type 329 within 2000 data points.

5. Conclusion and Future Work

The framework proposed in this paper can be used effectively
to extract infrequent items from stream data and generate
temporally ordered associations (mutually dependent items)
from these items. The results obtained have demonstrated that
the algorithm can handle vastly different types of data. The
major advantages of our work are that it allows incremental
processing of data streams with limited memory resources
and it can be applied to multiple streams.

Paper ID: J2013256 93 of 94

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

Issn (Online): 2347-3878
Volume 2 Issue 4, April 2014

Acknowledgment

Saleem Azeeskhan thanks the staff members for their full
support and the continuous encouragement in completing the
proposed work and for extending in near future.

References

[1] D. Xin, X. Shen, Q. Mei, and J. Han. Discovering inter-
esting patterns through user’s interactive feedback. In
KDD ’06: Proceedings of the 12th ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining, pages

[2] X. Zhou, S. Y. W. Su, M. P. Papazoglou, M. E. Orlows-
ka,and K. G. Jeffery. Discovering minimal infrequent
structures from xml documents. In WISE 2004, Proceed-
ings 5th International Conference onWeb Information
Systems Engineering,Brisbane, Australia, volume 3306.
Springer, 2004.

[3] A. Manjhi, V. Shkapenyuk, K. Dhamdhere, and C. Ols-
ton.Finding (recently) frequent items in distributed data
streams.In ICDE ’05: Proceedings of the 21st Interna-
tional Conferenceon Data Engineering (ICDE’05), pages
767–778,Washington, DC, USA, 2005. IEEE Computer
Society.

[4] C. Aggarwal, J. Han, J. Wang, and P. Yu. A framework
forclustering evolving data streams. In Proceedings of the
29th VLDB conference, 2003

[5] Q. G. Zhao, M. Ogihara, H. Wang, and J. J. Xu. Finding
global icebergs over distributed data sets. In PODS ’06:
Proceedings of the twenty-fifth ACM SIGMOD-
SIGACTSIGARTsymposium on Principles of database
systems,pages 298–307, New York, NY, USA, 2006.
ACM Press.

[6] S. Muthukrishnan. Data streams: algorithms and applica-
tions.2003

[7] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Wi-
dom.Models and issues in data stream systems. In PODS
’02: Proceedings of the twenty-first ACM SIGMOD-
SIGACTSIGARTsymposium on Principles of database
systems,pages 1–16, New York, NY, USA, 2002. ACM
Press.

[8] C. Gianella, J. Han, J. Pei, X. Yan, and P. Yu. Mining
frequent patterns in data streams at multiple time granu-
larities.In Proceedings of the NFS Workshop on Next
Generation Data Mining, 2002.

[9] B. Babcock and C. Olston. Distributed top-k monitoring.
In Proceedings of the ACM SIGMOD International Con-
ferenceon Management of Data, San Diego, June 2003.

[10] S. Ma and J. L. Hellerstein. Mining mutually dependent
patterns. In ICDM ’01: Proceedings of the 2001 IEEE In-
ternational Conference on Data Mining, pages 409–416,
Washington, DC, USA, 2001. IEEE Computer Society

Author Profile

Saleem Azeeskhan is currently pursuing master’s degree
program in embedded system technologies in College Of
Engineering Guindy, Anna University, Chennai-25, Tamil
Nadu, India

Vanaja Ranjan is currently working as Professor in electric-
al and electronics engineering department, College Of Engi-
neering Guindy, Anna University, Chennai-25, Tamil Nadu,
India

Paper ID: J2013256 94 of 94

