
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 5, May 2014

FPGA Implementation of Pipelined Architecture of
Floating Point Arithmetic Core and Analysis of

Area and Timing Performances
Hemraj Sharma1, Abhilasha2

1JECRC University, M.Tech VLSI Design, Rajasthan, India
2JECRC University, Rajasthan, India

Abstract: The aim of this paper is FPGA implementation of architecture of floating point arithmetic core and analysis of area and
timing performances of that arithmetic core. The basic concept behind designing such a core is to optimally utilize the algorithms of
floating point arithmetic operations, i.e., addition, subtraction, multiplication and division and to enhance the operational speed of these
calculations in order to determine the better code amongst them in order to use it in future to increase the processor efficiency. The
simulation has been carried out on Modelsim (Student edition) EDA tool 10.0c and synthesis has been carried out on ISE Design Suit
EDA tool 14.4 .

Keywords: Binary Division, Carry Look Ahead Adder, Exponent Subtraction, Floating Point, FPGA, Single Precision technique, Urdhva –
tiryakbhyam

1. Introduction

Real world is full of different types of mathematical
calculations. Today people have shortage of time and they
want calculations to be performed at a very fast speed.
Some of the common applications of mathematical
calculations are in determining the exponential values,
logarithmic calculations, etc. where it is essential to
eliminate the time consumed or in other words, we can call
it as delay in performing high speed calculations.
Therefore, some kind of electronic calculation technique is
highly essential to be used to perform this calculation at a
very fast speed. Mathematical calculations including
addition, subtraction, multiplication and division are very
important fundamental functions in arithmetic calculative
operations. Computational performance of a DSP system
is limited by the performance of these mathematical
operations. So, in order to improve its performance, a
floating point arithmetic core is proposed.

In case of floating point arithmetic calculations, a
significant improvement can be observed in execution
speed using its algorithms because of inherent integer
math hardware support in a large number of processors but
this speed improvement does come at the cost of reduced
range and accuracy of the algorithm variables. So to
increase the range of variables and accuracy of operations,
floating point arithmetic core is being used for addition,
subtraction, multiplication and division.

2. Proposed Design

In floating point arithmetic core based design we use
single precision (or 4 byte) technique. This technique is
commonly known as “float” in the C language family and
“real” or “real*4” in FORTRAN. This binary format
occupies 32 bits, i.e., 4 bytes and its significant and has a
precision of 24 bits (about 7 decimal digits).[1] Format is
as shown below-

Figure 1: Single Precision Format

Using this format, we create codes of mathematical
computations, namely, addition/subtraction, multiplication
and division. After implementing the codes, we execute
them on FPGA and then analyze their area and timing
performances. The proposed floating point design flow is
as drawn in figure below:

Figure 2: Floating Point Design Flow

In the floating point design architecture, codes of 32-bit
addition/subtraction, multiplication and division codes
have been designed and implemented. Complete coding is
implemented using single precision technique.[2] For this
purpose, different modes have been considered as mode
“00” for add/subtract, mode “01” for multiplication and
mode “10” for division. Add/subtract code is being

Paper ID: J2013288 24 of 28

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 5, May 2014

designed using conventional add/subtract methods using
Carry Look Ahead Adder. Multiplication code is designed
using vedic multiplication technique named Urdhva -
tiryakbhyam, i.e., “Vertically and Crosswise”
technique.[3,4] Division code is implemented using binary
division and exponent subtraction techniques.

For addition/subtraction coding, we use Carry Look Ahead
Adder instead of ripple carry adder and any other kind of
adder because this adder is a practical design with reduced
delay. In case of multiplication, we use Vedic multiplier
instead of any other conventional or array multipliers.[5,6]
In Vedic multiplier, there are Nikhilam sutra which
literally means “All from 9 and last from 10” and Urdhva
– tiryakbhyam sutra which literally means “Vertically and
Crosswise” out of which we proceed with Urdhva -
tiryakbhyam sutra [7,8].

3. Timing and Area Analysis

The timing and area analysis of codes are as under:

3.1 Add/Subtract

The timing and area analysis, respectively, of add/subtract
code are as shown under.

Table 1: Add/Subtract Code Timing Parameters
Parameters Floating

Min. i/p arrival time before clock (ns) 7.382
Max. o/p required time after clock (ns) 4.368

Max. combinational path delay (ns) 28.726

Table 2: Add/Subtract Code Area Parameters
Parameters Floating

Total Number of 4-input LUTs 447 out of 7168 (6%)
Number of occupied Slices 234 out of 3584 (6%)

Total Gate Count 3179

3.2 Multiplication

The timing and area analysis, respectively, of
multiplication code are as shown under.

Table 3: Multiplication Code Timing Parameters
Parameters Floating

Min. i/p arrival time before clock (ns) Not Found
Max. o/p required time after clock (ns) Not Found

Max. combinational path delay (ns) 107.379

Table 4: Multiplication Code Area Parameters
Parameters Floating

Total Number of 4-input LUTs 3412 out of 7176 (47%)
Number of occupied Slices 1751 out of 3584 (48%)

Total Gate Count 23,597

3.3 Division

The timing and area analysis, respectively, of division
code are as shown under.

Table 5: Division Code Timing Parameters
Parameters Floating

Min. Period (ns) Not Found
Min. i/p arrival time before clock (ns) Not Found
Max. o/p required time after clock (ns) Not Found

Max. combinational path delay (ns) 177.221

Table 6: Division Code Area Parameters
Parameters Floating

Total Number of 4-input LUTs 1352 out of 7168 (18%)
Number of occupied Slices 700 out of 3584 (19%)

Total Gate Count 11,991

4. Results

The simulation waveforms of add/subtract, multiplication
and division codes of floating point arithmetic core are
shown in Fig.3, Fig.5 and Fig.7, respectively, along with
their respective RTL top level schematics in Fig.4, Fig.6
and Fig.8 below-

4.1 Add/subtract

Inputs-> mantissa_a => 000007
exponent_a => 05
opa => 02800007
mantissa_b => 000038
exponent_b => 05
opb => 02800038
Output-> add_out => 0280003F

Paper ID: J2013288 25 of 28

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 5, May 2014

Figure 3: Simulation Waveform of Add/Subtract Code

RTL Top Level Schematic->

Figure 4: RTL Top Level Schematic of Add/Subtract
Code

4.2 Multiplication

Inputs-> mantissa_a => 00001F
exponent_a => 06
opa => 0300001F
mantissa_b => 000007
exponent_b => 1E
opb => 0F000007
Output-> multiply_out => 120000D9

Figure 5: Simulation Waveform of Multiplication Code

Paper ID: J2013288 26 of 28

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 5, May 2014

RTL Top Level Schematic->

Figure 6: RTL Top Level Schematic of Multiplication Code

4.3 Division

Inputs-> x => 0000000D
y => 00000003
Output-> z => 7F800000

Figure 7: Simulation Waveform of Division Code

RTL Top Level Schematic->

Figure 8: RTL Top Level Schematic of Division Code

5. Conclusion

From the timing and area analysis tables, we find that the
timing and area performances of floating point

add/subtract code are better than the timing and area
performances of floating point multiplication and division
codes. But amongst multiplication and division codes,
multiplication code is having an upper hand over division

Paper ID: J2013288 27 of 28

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 2 Issue 5, May 2014

code in case of less delay, while division code is better
than multiplication code in case of less area consumption.

Hence, we can conclude that for less delay, less area
consumption and high speed computation, floating point
add/subtract code using CLA is the best amongst the three
while floating point division code using binary division
and exponent subtraction techniques is better in area than
multiplication code while in case of timing performance,
multiplication code is better to use than division code.

Acknowledgement

I would like to acknowledge my mentor Gaurav Jindal Sir
and Kanchan Sengar Ma’am who supported me during the
period in calculating my results and verifying codes.

References

[1] Kahan W., “On the Cost of Floating-Point
Computation Without Extra-Precise Arithmetic”,
2012

[2] Serene Jose, Sonali Agarwal, “Single Precision
Floating Point Divider Design”, International Journal
Of Computational Engineering Research, 2(3), 955-
958, 2012

[3] Ganesh Kumar G. and Charishma V., Design of high
Speed Vedic Multiplier using Vedic Mathematic
Techniques, International Journal of Scientific and
Research Publication, 2(3), 2012

[4] Nicholas A.P., Williams K.R. and Pickles J.,
Application of Urdhava Sutra, Spiritual Study Group,
Roorkee, India, 1984.

[5] Hemraj Sharma, Gaurav K. Jindal and Abhilasha
Choudhary, “Comparison Between Array Multiplier
And Vedic Multiplier”, International Journal of
Computer Science information And
Engg.,Technologies, 4(1), 2014

[6] Basavaraj B., Comparison of Vedic Multipliers With
Conventional Hierarchical Array of Multipliers,
International Journal of Engineering Research &
Technology, 2(10), 2013

[7] Sree Nivas A, Kayalvizhi N, Implementation of
Power Efficient Vedic Multiplier, International
Journal of Computer Applications, 43(16), 2012

[8] Verma Pushpalata, Mehta K. K., Implementation of
an Efficient Multiplier based on Vedic Mathematics
Using EDA Tool, International Journal of Engineering
and Advanced Technology (IJEAT), 1(5), 2012

Author Profile

Hemraj Sharma received the B. Tech. degree
in Electronics and Communication Engineering
from Rajasthan Technical University, Kota in
the year 2012 and pursuing M. Tech. degree in
VLSI Design from JECRC University, Jaipur,

Rajasthan, India

Abhilasha received the B.Tech. and M.Tech.
degrees in Electeonics and communication
Engineering and VLSI Design respectively
from Mody Institute of Technology and
science, India in 2010 and 2012, respectively.

Currently she associate with JECRC University, Jaipur,
Rajasthan, India

Paper ID: J2013288 28 of 28

