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Abstract: The focus of this paper is to design an algorithm to track an object, moving with an unknown trajectory, within the camera’s 
field of view. To achieve this Kalman Filter (KF) is used for tracking and estimation because of its simplicity, optimality, tractability and 
robustness .It is also known as linear quadratic estimation (LQE). The Kalman filter, defined by simulation was applied to a DVT sensor 
to determine the actual performance. The Single Filter method was implemented. The Single Filter was able to track high speed an error 
of a couple pixels. By using this algorithm a series of measurements observed over time, containing noise (random variations) and other 
inaccuracies, and produces estimates of unknown variables that tend to be more precise than those based on a single measurement
alone. It will helpful to track an object, moving with an unknown trajectory, within the camera’s field of view (FOV). The Kalman filter
uses the measured position of the target’s centroid as well as previous state estimates to determine the position of the centroid in the next 
time step. More formally, the Kalman filter operates recursively on streams of noisy input data to produce a statistically optimal estimate 
of the underlying system state.
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1. Introduction 
 
A design of Kalman Filter and its performance is tested in a 
simulation process. By using Newton’s Second Law, A third 
order discrete model of the target is developed .A sine wave 
is used as the test trajectory to test filter’s performance for 
simulation, using actual trajectory data. The filter was later 
refined, for experimentation. To enhance the performance, a 
new scheme, having two sets of filters, was developed. One 
filter work on the smart sensor and will predict the position 
of the target at the cameras sampling frequency. The second 
filter would work on the controller. It measure values at the 
same rate as the DVT sensor, but a target position predicted 
a higher sampling frequency. The scheme was not used 
however, the result of simulation indicate that this scheme 
gives greater precision at a higher sampling frequency. 
 
2. Object Modeling For Kalman Filter 

 
For creating Kalman filter an appropriate linear model of the 
target must be created. The model describes the x and y 
coordinates of the target centroid and also the orientation of 
the target. Every parameter is independent of each other. 
The x model and y model are same and it is based on 
Newton’s second law. The Orientation is based on a moment 
equation. Now Consider Newton’s second law, since each 
position coordinate is linearly independent then it can be 
partitioned: 

Fx = max                                 (1) 
Fy = may       (2) 
Fz = maz        (3) 

 
The image only moves in two dimensions so the z 
component can be ignored. In an image the masses of an 
object, is the sum of all its pixels. As this model describes 
the centroid then its mass is unity. Therefore, the system 
reduces to: 

Fx = ax       (4) 
Fy = ay      (5) 

It is sufficient to examine only one of these components and 
apply an identical model to each. Let us consider the 
generalized system, F = a. In this, the system appears to be 
second order with respect to position. However, If it is stated 
that the force and acceleration vary with time then the 
system is defined as F(t) = a(t). Take the derivative of this 
equation and the result is a third order equation that 
describes the jerk of the object.  

Where T is nothing but the sampling period of the 
discretized system. Here no known input is applied to the 
target. Instead the object moves solely due to disturbances. 
Figures 1 and 2 show the predictor’s performance at the 
chosen ratio. Figure 3 illustrates the tracking ability of the 
filter. This figure shows near perfect tracking. There is a 
slight phase lag and very little overshoot. Figure 4 shows the 
error between the trackers 
 
and the real signal. The oscillations are due to the phase lag. 
But observe that the error is on the magnitude of fractions of 
a pixel. 
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Figure 1:.Kalman Filter’s Simulated Tracking Performance 

Figure 2:.Error Plot of the Filter Tracking the Sine Wave 
 
For the sake of this example, the other processor will be 
located external to the DVT sensor and it is associated with 
a controller. 

The Dual Filter is having two sets of filters. One set provides 
estimates for the smart sensor and the other set provides 
estimates for the controller. Figure4 shows a schematic of 
the setup. The Single Filter remains on the DVT. Another 
filter is run on a controller at a higher frequency. The DVT 
sensor, once every sample period, sends the measured 
values, which describe the target position, to the controller. 
The filter on the controller will hold this value until it is 
updated by the smart sensor. The process of holding the 
measurement value has the effect of creating another input 
trajectory that operates on the controller’s frequency. Figure 
5 illustrates an example of a new trajectory. In this example, 
the controller operates at frequency that is ten times faster 
than the camera filter. The controller filter will use the new 
input measurement function to determine the incremental 
estimates of the object. These estimates will be computed at 
a higher frequency. The higher frequency will be a multiple 
of the camera frequency. This is done to synchronize the 
transfer of measurement values. Data from actual target 
trajectories were used as test inputs. 

Figure 3:.Illustration of Dual Filter Measurements 

This data included the coordinate positions of the target 
centroid and the orientation of the target. Beginning with a 
third order continuous time state-space model, two discrete 
state-space models were created. One was built with a 
sample time of 33Hz, and the other was designed for 
3.3kHz. Kalman filters were computed for each of these two 
models and then both systems were closed. 
 
The first Kalman filter, which will now be called the camera 
filter, is placed on the sensor. The second filter, labeled as 
the controller filter, is the predictor that will provide 
estimates in between each camera period. Note that the 3¹s 
period is just an example. 

Figure 4: Block Diagram of Dual Filter System 
 
An actual period would be determined by the processor 
speed of the controller and the transportation speed of data 
between the controller and DVT sensor. The simulated 
results of this setup are promising. The controller filter 
operates at a high frequency and with greater accuracy than 
the Single Filter. Since the input is not updated every time 
increment of the controller, it was assumed that the ratio of 
measurement noise to disturbance noise was smaller. Figure 
9 compares the x-coordinate predictors of the camera and 
controller filters with the measured x-coordinate value they 
are tracking. This comparison is done at the camera 
sampling period. This plot gives an assessment of how well 
each predictor follows the measured value and allows for the 
comparison between the two filters. The camera filter 
exhibits a lag as well as overshoot when tracking the target. 
The controller filter, tracks the target with slightly smaller 
lag and a much smaller overshoot. 

Figure 5: Error Comparison of Predictors in the X-
coordinate 

 
The comparison of the predictors in the X-coordinate is still 
needed in order to predict the partial window location of the 
next time step. The camera can communicate with external 
devices, but the timing of these communications is 
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secondary to the routines run on the DVT. So there is no 
guarantee that the signal from the controller will be received 
in time to adjust the field of view. So the camera filter is 
needed to place the sensor in the right region, while the 
controller sensor can be used to track the object. The 
controller filter is providing estimates in between sensor 
measurements.  
 
 Kalman gains, a disturbance to noise ratio was determined 
for the continuous model to compute the continuous Kalman 
gains. The system was then discretized. Consider the 
controller predictor of the proposed Dual Filter algorithm. 
Suppose this predictor operates at n times the sampling 
frequency of the DVT sensor. Let us restate the controller 
predictor: 

xk+1 = [G ¡ KC] xk + Kuk    (6) 
xk+1 = G¯ xk + H¯ uk          (7) 

where G¯ = G ¡ KC and H¯ = K. From now on the bars will 
be ignored so that G corresponds to G¯ . Let us compute 

xk+2: 
xk+2 = Gxk+1 + Huk+1               (8) 

                    = G [Gxk + Huk] + Huk+1          (9) 
= G2xk + GHuk + Huk+1                       (10) 

Recall that for the controller predictor, the measurement is 
constant until the camera’s next time step. So uk = uk + 1 = 

uk + 2 = : : : = uk+n¡1 Therefore xk+2 = G2xk + [G + I] 
Huk (11) 

Now consider xk+3 
xk+3 = Gxk+2 + Huk+2                     (12) 

= G2xk + [G [G + I]] Huk + Huk               (13) 
= G3xk +£G2 + G + I¤Huk                        (14) 

And so a pattern emerges where: 
xk+n = Gnxk +"nX¡1i=0Gi#Huk                 (15) 

xk+n = G˜ xk + H˜ uk                           (16) 
where G˜ = Gn and H˜ =hPn¡1i=0 GiiH. 
 
Consider the linear continuous model of the target: 

x˙(t) = Ax(t) + Bw(t)                        (17) 
y(t) = Cx(t) + v(t)                            (18) 

Using equation 11, predictor type Kalman filter can be 
determined. This filter can then be discretized. In this case 
the zero-order hold method was used to discretize the 
continuous filter to a discrete filter with the sampling time of 
the DVT sensor Figure 6 shows the performance of a 
predictor that is built in continuous time.  
 

Figure 6:.Comparison of the Discretized Kalman Filter to a 
Discrete Kalman Filter 

3. Methodology

 
Figure 7:.Method for Determining the Target Alignment 

 
If the measured length is lower than the defined value the 
angle is set to zero. If this happens it is attributed to noise in 
the measurement. The sensor then loads the previous state 
predictions, which are now the current state estimates. The 
estimates and the measurements are applied to the state 
equations to determine the new prediction. The future 
estimates are loaded into the specified registers and 
overwrite the old estimates.  

Figure 8:.An Example Trajectory of a Target 
 

Figure 8.shows the ability of the filter to predict the x 
coordinate of the target’s centroid. There is an overshoot 
when tracking fast changes in the x direction. An illustration 
of the performance can be seen in an error comparison. The 
objective is to track the measured signal, so it is assumed 
that the measure is the true coordinate position. So the error 
is the difference between the prediction and measured value. 
The error values are very low and within a band of §2 pixels. 
Part of the reason for this very low number is that the x 
coordinate was experienced medium velocities. The y 
coordinate, on the contrary, was exposed to higher speed  

 
Figure 9:.X-Coordinate Tracking of the Single Filter 
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Figure 10:.shows the X-Coordinate Tracking Error of the 

Single Filter. 
 
 y coordinate position as a function of time, and it shows the 
predictor’s ability to track this trajectory. Figure 11 
illustrates the y coordinate tracing performance. The error is 
relatively small. There is one overshoot of 12 pixels for the 
large motion, but all other measurements lie within §2 
pixels. 

 
Figure 11:.Y-Coordinate Tracking of the Single Filter 

 

 
Figure 12:.Y-Coordinate Tracking Error of the Single Filter 

 
The angle tracking was also good.Figure13 shows the 
predictors capability to predict the orientation. This 
trajectory does not undergo large angle changes. This was 
done since the angle measurement method was not designed 
for large angle changes. Observe the large oscillations in the 
angle. Some of the oscillations are due to actual orientation 
changes but another factor is the noise in the angle 
measurement itself. To compute the angle the process 
described in Image Processing Section is used. This was 
done for both the vertical and horizontal measurements. The 

two angles computed were then averaged. However the 
noise in the vertical direction was too high. So for all 
subsequent implementations only the horizontal distance 
measurement was used to compute the measured angle.. The 
error was between §2o . 

. 

 
Figure 13:.Angle Tracking of the Single Filter 

 
 Figure 14:.Angle Tracking Error of the Single Filter 
 
4. Conclusion
 
Neither processing method was able to increase the sampling 
frequency to be sufficient for control applications. Since the 
actual frequency of vision measurements could not be 
improved further, another algorithm was created to provide 
accurate estimates in between vision measurements. The 
Dual Filter was designed to have a higher frequency Kalman 
filter run on the controller’s processor. This design was 
simulated and yielded high accuracy estimates. In this case, 
the estimate frequency is limited only by the speed of the 
controller’s processor itself. The Single Filter which 
provides one estimation per time period provided accurate 
predictions, usually between §10 pixels for large velocities. 
 
5. Analysis of Performance Result
 
For each tracking method and each performance measure, 48 
values could in principle be computed, corresponding to the 
48 data cases (different combinations of particle dynamics, 
densities and signal levels). However, not all teams 
submitted tracking results for all cases, which ruled out the 
possibility to perform an overall comparison and ranking of 
the different methods based on all cases. We observed that 
teams who did not apply their method to all 48 cases 
generally focused on one or more of the four dynamics 
scenarios representing different biological applications, but 
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even per scenario not all teams applied their method to all 
pertaining cases. Therefore, we decided to rank the methods 
according to best performance per measure and per data 
case.  
 
6. Verification of Tracking Results 
 
Minor differences between the originally submitted tracking 
results and the verified results were to be expected because 
some of the software tools were converted to another 
platform to allow execution on the single evaluation system, 
and some methods were probabilistic in nature. Therefore, 
for each method, differences were considered acceptable 
(reproducible) if their means for each of α, β, JSC and JSCθ 
were within 3% and the RMSE was within 0.5 pixel. In the 
vast majority of cases, the differences were acceptable, and 
the larger differences in some cases could be traced back to 
bug fixes and minor improvements in the software or 
parameter settings used for verification as compared to the 
original versions. In very few instances the results could not 
be verified owing to hardware or software limitations 
(Supplementary Table 3). For the analysis, the performance 
values computed from the originally submitted tracking 
results, not the verified results, were used. 
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