
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 11, November 2015
Licensed Under Creative Commons Attribution CC BY

Neural Network Based Inverse Kinematics Solution

for 6-R Robot Using Levenberg-Marquardt

Algorithm

Prashant Badoni

Mechanical Engineering Department, Graphic Era University, Dehradun - 248002, India

Abstract: The traditional approaches are insufficient to solve the complex kinematics problems of the redundant robotic manipulators.

To overcome such intricacy, ANNs are used nowadays. The performance of the neural network is affected by the training algorithm and

network topology. There are numerous training algorithms which are used in the training of neural networks. In this paper, Levenberg-

Marquardt is used in training algorithm and its effect on the performance of the neural network on the inverse kinematics model

learning of a 6-R robot is studied.

Keywords: Inverse Kinematics Solution, MATLAB Toolbox, Neural Networks, Robot manipulator, Training Algorithm.

1. Introduction

Neural network is one of the prominent artificial intelligent

techniques used in the robotics to accomplish more

intelligence in systems with high degree of autonomy. ANN

incorporates learning ability which provides flexibility to the

robotic systems. Neural network can be implemented using

MATLAB software. Procedure to train the neural network

model is as follows:

 Data collection

 Network creation

 Network configuration

 Initialization of the weights and biases

 Network training

 Network validation

 Use the network

The working principal of a neural network is based on

learning from the formerly obtained data set known as

training set, and then go through the success of system using

test data. The learning algorithm affects the employment of

the neural network greatly. In this study, the effects of

Levenberg-Marquardt learning algorithm have been tested for

the inverse kinematics solution of a six joint robotic

manipulator.

This paper is organized as follows: Section II provides the

kinematics analysis of the 6-R robot. Section III of the paper

deals with the neural network based inverse kinematics

solution. Section IV describes training and testing. Section V

gives results and a discussion, and finally Section VI

concludes the paper.

2. Kinematic Analysis of 6-R Robot

A Robot manipulator is composed of a group of links (rigid

bodies) connected together by revolute or prismatic joints

which allow motion for the desired link. Robot Kinematics

refers to the analytical study of the motion of a robot

manipulator without regard to any factor (like force) which

influence the robot movement. Robot Kinematics can be split

into forward and inverse kinematics. In the forward

kinematics problem, the end effector‟s location in the work

space, that is position and orientation, is determined based on

the joint variables [1] [2] [3]. The forward kinematics

problem may express mathematically as follows:

F (θ1, θ2, θ3....θn) = [px, py, pz, R]

Where, θ1, θ2, θ3....θn are the input variables, [px, py, pz] are

desired position and R is the desired rotation.

The inverse kinematics problem refers to finding the values of

the joint variables that allows the manipulator to reach the

given location. The inverse kinematics problem can be

expressed mathematically as follows:

F [px, py, pz, R] = (θ1, θ2, θ3....θn)

The joint variables are the link extension in the case of

prismatic joints, or the angles between the links in case of

rotational joints.

Figure 1: D-H coordinates of the robot

Figure 1 depicts the structure and coordinates of 6-DOF robot

manipulator which is studied in during the work.

The D‐H parameters of the manipulator are listed in Table1.

Table 1: D-H parameters of the manipulator

Joints ai-1 αi-1 di θi

1 0  0 1

2 0 /4 0 2

3 l2 /4 l1 3

Paper ID: IJSER15586 79 of 83

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 11, November 2015
Licensed Under Creative Commons Attribution CC BY

4 l3 /4 0 4

5 0 0 0 5

6 l5 /4 l4 6

According the Denavit-Hartenberg method, the

transformation can be formulated in the chain product of six

successive homogeneous matrices .

 is the homogeneous transformation matrix relating the

i
th

coordinate frame to the (i-1)
th

coordinate frame [4].

 = ………. (1)

Equation (1) contains a large set of trigonometric functions:

sinθi = Si and cosθi = Ci.

 can be calculated by following:

 (2)

In (2), nx, ny, nz, ox, oy, oz, ax, ay, az show the rotational

elements of the transformation matrix and px, py, pz refer to

the elements of the position vector.

xn = - C1S2C3C45S6 + S1S3C45S6 – C1C2S45S6 – C1S2S3C6 –

S1C3C6

yn = - S1S2C3C45S6 - C1S3C45S6 – S1C2S45S6 – C1S2S3C6 +

C1C3C6

zn = C2C3C45S6 - S2S45S6 +C2S3C6

xo = - C1S2C3C45S6 + S1S3C45C6 – C1C2S45C6 + C1S2S3S6 +

S1C3S6

yo = - S1S2C3C45C6 - C1S3C45C6 – S1C2S45C6 + S1S2S3S6 -

C1C3S6

zo = C2C3C45C6 - S2S45C6 - C2S3S6

xa = - C1S2C3C45 + S1S3C45 + C1C2S45

ya = - S1S2C3C45 - C1S3C45 + S1C2S45

za = C2C3S45 + S2S45

xp = (- C1S2C3S45 + S1S3S45 + C1C2C45) l5 + (– C1S2C3S4 +

S1S3S4 + C1C2C4) l4 + C1C2 l23

yp = (– S1S2C3S45 – C1S3S45 + S1C2C45) l5 + (– S1S2C3S4 –

C1S3S4 + S1C2C4) l4 + S1C2 l23

zp = (C2C3S45 + S2C45) l5 + (C2C3S4 + S2C4) l4 + S2l23+ l1

The inverse kinematics solution for the robot is indicated as

follows:

cosθ4 = - (l23
2
 + l4

2
 – d

2
) / 2 l23 l4 (3)

The equation obtained from (2) as:

(S45 l5 + S4 l4)
2
 + (C45 l5 + C4 l4 + l23)

2
 = px

2
+ py

 2
 + (pz - l1)

2

(4)

Then,

θ5 = arcsin [{px
 2

+ py
 2

 + (pz - l1)
2

- l5
2
- S4

2
 l4

2
 – (C4 l4 + l23)

2
}/

A] - arctan [(C4 l4 + l23) / S4 l4] - θ4 (5)

We could also obtain the following expressions:

θ2 = arcsin [(C45 l5 + C4 l4 + l23) / √ (pz - l1)
2
 + px

 2
] - arctan [px

/ (pz - l1)]

θ1 = arcsin [(S2C3S4 - C2C4 – C2l23) / √ (px

- ax l5)

2
 + (py – ay

l5)
2
] - arctan [(px

- ax l5) / (py - ay l5)]

θ3= arcsin [(C1+ px

- ax l5) / S1S4l4 (az - S2C45)] - arctan [(px

-ax

l5) / (py -ay l5)]

The strategy to solve inverse kinematics problem tend to be

time consuming, so there is usually low interest in applying

this technique for kinematic calculations. The trained neural

network can give the inverse kinematics solution quickly for

any given Cartesian coordinate in a robotic system.

3. Neural Network based Inverse Kinematics

Solution

Neural networks are generally used in the modeling of

nonlinear processes. ANN is a parallel-distributed

information processing system. To form a trainable nonlinear

system, it stores the samples with distributed coding. Training

of a neural network can be expressed as a mapping between

any given input and output data set. Neural networks have

some advantages, such as adoption, learning and

generalization. Implementation of a neural-network model

requires us to decide the structure of the model, the type of

activation function and the learning algorithm.

In Figure 3, the schematic representation of a neural network

based inverse kinematics solution is given. The solution

system is based on training a neural network to solve an

inverse kinematics problem based on the prepared training

data set using direct kinematics equations. In Figure 2, “e”

refers to error – the neural network results will be an

approximation, and there will be an acceptable error in the

solution.

1000

0




















zzzz

yyyy

xxxx

i
paon

paon

paon

T

Paper ID: IJSER15586 80 of 83

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 11, November 2015
Licensed Under Creative Commons Attribution CC BY

Figure 2: ANN based inverse kinematics solution system [5]

The designed neural-network topology is given in Figure 3. A

feed-forward multilayer neural-network structure was

designed including 12 inputs and 6 outputs. Only one hidden

layer was used during the study.

Figure 3: Structure of neural network used in this study

4. Training Method

To train the network we must provide the ANN with the

dataset. ANN is trained with the data which is generated by a

fifth-order polynomial trajectory planning algorithm. The

equation for fifth-order polynomial trajectory planning is

given in following equation:

θi (t)= θio + 10/tf
3
(θif - θio) t

3
+ 15/tf

4
(θif - θio) t

4
+ 6/tf

5
(θif - θio)

t
5
; i = 1, 2, 3…….. n (6)

Where,

 θi (t) = angular position at time t

 θio= initial position of the i
th

 joint

 θif = final position of the i
th

 joint

 n = number of joints

 tf = arrival time from initial position to the target

Initial and final angular positions are defined to produce data

in the workspace of robot. After gathering data from the

whole network is trained in the back propagation mode and

all the weighs are updated according to the new training data.

For the training, 100 data values corresponding to the (θ1, θ2,

θ3....θ6) joint angles according to the different (nx, ox, ax, px,

ny, oy, ay, py, nz, oz, az, pz) Cartesian coordinate parameters

were generated by using (6) based on kinematic equations

given in (2). A sample data set produced for the training of

neural networks is given in Table 2 and 3.

Table 2: A sample input data set for the training of neural networks

Inputs

nx ny nz ox oy oz ax ay az px py pz

-0.9467 -0.0186 -0.3216 -0.3188 -0.0909 0.9435 -0.0468 0.9957 0.0802 10.7388 18.5368 -3.6269

0.4031 -0.4414 -0.8017 -0.8689 -0.4595 -0.1839 -0.2872 0.7707 -0.5688 -15.6523 -7.3269 7.3444

-0.9209 0.3787 -0.0921 -0.3898 -0.8943 0.2199 0.0009 0.2384 0.9712 1.0641 2.808 -13.0244

0.7646 -0.3951 -0.5091 0.6249 0.6478 0.4358 0.1576 -0.6514 0.7422 -9.4243 -0.5505 7.7646

0.2783 0.4263 -0.8607 0.9056 -0.4151 0.0872 -0.32 -0.8037 -0.5016 5.307 -5.8058 -0.9137

0.1042 -0.5075 -0.8553 0.0489 0.8616 -0.5053 0.9934 0.0108 0.1146 -1.071 1.0777 -3.8184

-0.7806 0.5435 0.3086 0.4541 0.1539 0.8775 0.4295 0.8251 -0.367 -2.8101 -1.7129 4.4017

-0.4807 0.2339 -0.8451 0.6899 0.6958 -0.1999 0.5413 -0.6791 -0.4958 2.7343 5.3178 2.8208

-0.7663 -0.6233 -0.1561 -0.4972 0.4213 0.7585 -0.407 0.6588 -0.6327 -8.1384 2.135 0.6667

-0.4693 0.873 -0.1325 0.8665 0.4264 -0.2594 -0.1699 -0.2366 -0.9566 -7.5946 2.9237 3.6417

-0.5937 -0.5062 -0.6255 -0.7906 0.5119 0.3361 0.1501 0.694 -0.7041 -4.8593 -1.8317 8.8997

Paper ID: IJSER15586 81 of 83

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 11, November 2015
Licensed Under Creative Commons Attribution CC BY

Table 3: A sample target data set for the training of neural networks

Targets

     

169.779 74.3217 -79.0853 169.779 -6.3597 169.779

176.5911 78.1062 -73.0301 176.5911 -2.1211 176.5911

183.4089 81.8938 -66.9699 183.4089 2.1211 183.4089

190.221 85.6783 -60.9147 190.221 6.3597 190.221

197.0165 89.4536 -54.8742 197.0165 10.588 197.0165

203.7842 93.2135 -48.8585 203.7842 14.7991 203.7842

210.5132 96.9518 -42.8772 210.5132 18.986 210.5132

217.1925 100.6625 -36.94 217.1925 23.142 217.1925

223.8114 104.3396 -31.0566 223.8114 27.2604 223.8114

230.3591 107.9773 -25.2363 230.3591 31.3346 230.3591

236.8254 111.5696 -19.4886 236.8254 35.358 236.8254

Learning / Training Function

„Trainlm‟ from MATLAB toolbox is a network training

function which updates weight and bias values according to

Levenberg-Marquardt optimization [6]. It is the fastest back

propagation algorithm in the MATLAB toolbox, and is

immensely suggested as a first-choice supervised algorithm.

5. Result and Discussion

In this study, Neural Network Fitting Tool (using command:

nftool) is used to create and train the network. The dataset is

loaded into selected data window [6]. The network is trained

using the input data and the performance plot, training state

and regression plots are observed. In this training, Random

(dividerand) rule divides the data where 70% data are

assigned to training set, 15% to validation and 15% data to

test set. As shown in Figure 4, this time the training continued

for the maximum of 1000 iterations.

Figure 4: Neural Network Training

From the training state plot it is seen that training continued

for iterations before the training stopped. The performance

plot shown in Figure 6 does not indicate any major problems

with the training. The validation and test curves are very

similar.

Figure 5: Training Plot

Figure 6: Performance Plot

6. Conclusion

Mostly mathematical models fail to simulate the complex

nature of inverse kinematics problem. In contrast, ANN is

based on the data input/output data pairs to determine the

structure and parameters of the model. Also, ANN‟s can

always be updated in order to achieve better results by

Paper ID: IJSER15586 82 of 83

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 11, November 2015
Licensed Under Creative Commons Attribution CC BY

presenting new training examples as new data become

available.

References

[1] M.W. Spong, S. Hutchinson and M. Vidyasagar, Robot

Modeling and Control, 1
st
 Edition, Jon Wiley & Sons,

Inc, 2005.

[2] J. Angeles, Fundamentals of Robotic Mechanical

Systems: Theory, Methods, and Algorithms, 2nd Edition,

Springer, 2003.

[3] J. J. Crage, Introduction to Robotics Mechanics and

Control, 3rd Edition, Prentice Hall, 2005.

[4] J. Denavit and R. Hartenberg, “A Kinematic Notation for

Lower‐Pair Mechanisms Based on Matrices” of Applied

Mechanics, pp. 215‐221, 1955.

[5] R. Köker, T. Çakar, Y. Sari, A neural-network committee

machine approach to the inverse kinematics problem

solution of robotic manipulators. Engineering with

Computers, Springer-Verlag London, DOI

10.1007/s00366-013-0313-2, 2013.

[6] The Mathworks Neural Network Toolbox user guide.

Available on line on:

http://www.mathworks.com/access/helpdesk/help/pdf_do

c/nnet/nnet.pdf

Paper ID: IJSER15586 83 of 83

