International Journal of Scientific Engineering and Research (IJSER)

WWW.ijser.in
ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Neural Network Based Inverse Kinematics Solution
for 6-R Robot Using Levenberg-Marquardt
Algorithm

Prashant Badoni

Mechanical Engineering Department, Graphic Era University, Dehradun - 248002, India

Abstract: The traditional approaches are insufficient to solve the complex kinematics problems of the redundant robotic manipulators.
To overcome such intricacy, ANNs are used nowadays. The performance of the neural network is affected by the training algorithm and
network topology. There are numerous training algorithms which are used in the training of neural networks. In this paper, Levenberg-
Marquardt is used in training algorithm and its effect on the performance of the neural network on the inverse kinematics model

learning of a 6-R robot is studied.

Keywords: Inverse Kinematics Solution, MATLAB Toolbox, Neural Networks, Robot manipulator, Training Algorithm.

1. Introduction

Neural network is one of the prominent artificial intelligent
techniques used in the robotics to accomplish more
intelligence in systems with high degree of autonomy. ANN
incorporates learning ability which provides flexibility to the
robotic systems. Neural network can be implemented using
MATLAB software. Procedure to train the neural network
model is as follows:

e Data collection

e Network creation

o Network configuration

¢ Initialization of the weights and biases
o Network training

e Network validation

e Use the network

The working principal of a neural network is based on
learning from the formerly obtained data set known as
training set, and then go through the success of system using
test data. The learning algorithm affects the employment of
the neural network greatly. In this study, the effects of
Levenberg-Marquardt learning algorithm have been tested for
the inverse kinematics solution of a six joint robotic
manipulator.

This paper is organized as follows: Section Il provides the
kinematics analysis of the 6-R robot. Section 11 of the paper
deals with the neural network based inverse kinematics
solution. Section IV describes training and testing. Section V
gives results and a discussion, and finally Section VI
concludes the paper.

2.Kinematic Analysis of 6-R Robot

A Robot manipulator is composed of a group of links (rigid
bodies) connected together by revolute or prismatic joints
which allow motion for the desired link. Robot Kinematics
refers to the analytical study of the motion of a robot
manipulator without regard to any factor (like force) which
influence the robot movement. Robot Kinematics can be split

into forward and inverse kinematics. In the forward
kinematics problem, the end effector’s location in the work
space, that is position and orientation, is determined based on
the joint variables [1] [2] [3]. The forward kinematics
problem may express mathematically as follows:

F (ela 629 e3en) = [va py: pZ: R]

Where, 04, 6,, 05....0, are the input variables, [py, py, p.] are
desired position and R is the desired rotation.

The inverse kinematics problem refers to finding the values of
the joint variables that allows the manipulator to reach the
given location. The inverse kinematics problem can be
expressed mathematically as follows:

F [pX: pyv pZn R] = (91, 629 GSGH)

The joint variables are the link extension in the case of
prismatic joints, or the angles between the links in case of
rotational joints.

Figure 1: D-H coordinates of the robot

Figure 1 depicts the structure and coordinates of 6-DOF robot
manipulator which is studied in during the work.

The D-H parameters of the manipulator are listed in Tablel.

Table 1: D-H parameters of the manipulator

Joints aj.1 0.1 di 0;
1 0 0 0 0,
2 0 /4 0 0,
3 |2 /4 |1 93

Volume 3 Issue 11, November 2015

Paper ID: IJSER15586

Licensed Under Creative Commons Attribution CC BY

79 of 83

International Journal of Scientific Engineering and Research (IJSER)

WWW.ijser.in
ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

4 I3 /4 0 0,
5 0 0 0 05
6 |5 TE/ 4 |4 ee

According the Denavit-Hartenberg method, the
transformation can be formulated in the chain product of six
successive homogeneous matrices' ™ 5T

1T is the homogeneous transformation matrix relating the
i" coordinate frame to the (i-1)" coordinate frame [4].

or=ITiT......... T ()
Equation (1) contains a large set of trigonometric functions:
sing; = S; and cosd, = C;.

T can be calculated by following:

nX OX aX pX
oT _ n, o, a P)
I nZ OZ a'Z pZ

0 0 0 1

In (2), ny, ny, N, 0y Oy, Oy 8, &, & show the rotational
elements of the transformation matrix and p, py, p, refer to
the elements of the position vector.

N, = - C1S,C3C45S6 + S1S3C45Ss — C1C2S45S6 — C1S25:C6 —
S;C3Cs

N, = - 515;C5CusSe - C1S5CusSe — S1C2845S6 — C15,55Ce +
C1C3Ce

N, = CaC3C45S6 - S2S45S6 +C2S3Cs

0, = - C1S;C3C4sSs + S1S3CusCe — C1C3845C6 + C1S,535¢ +
S1C3Se

0, = - $15,C5Ca5Cs - C1S5CasCs — S1C5845C6 + S15,53Ss -
C1CsSe

0, = C2C3C45C6 - S2S45C6 - C2S3S6

a, = - C1S,C3Cy5+ S1S5Cu5 + C1C2S4s5

a, =- 51S5C3C5 - C1S3C45 + S1C2S45

A, = CoCsSy5 + S5S45

P, = (- CiS;C3845 + S1S5Sas + C1C3Cus) Is + (— C1S,C3S, +
$185S4+ C1CoCy) 14+ C1Cy s

Py = (= S1S2C3Sss — C1S3Sss + S1C5Cus) Is + (= S1S,C3S, —
C1S3S4+ S1CCy) Iy + S1Cy s

P, = (CoCsSas + SoCys) Is + (CoC3S4 + S;Ca) 14+ Salost I

The inverse kinematics solution for the robot is indicated as
follows:

0804 = - (lyg” + 12— d?) 1 2 13 1,(3)
The equation obtained from (2) as:

(Sus Is+ Sa 12)*+ (Cas ls + Cy 1y + 1p3)> = py 2+ py * + (p; - 1)
4

Then,

05 = arcsin [{pe® + Py + (P2 -)7 - 15> Sa 1,2 — (Cy 14 + 1)}
A] - arctan [(C4 |4 + |23) / S, |4] -0, (5)

We could also obtain the following expressions:
0= arcsin [(Cys s+ Cy s+ lz3) / N (- 12)* + py] - arctan [py
! (pz-)]

0; = arcsin [(S,CsSs - CoCa— Calas) / \ (Px- ay Is)* + (py — ay
|5)2] - arctan [(px - Ay |5) / (py' ay I5)]

03= arcsin [(Cy+ px - ax Is) / S1S4ls (a, - S2Cys)] - arctan [(py -ax
ls) / (py -ay I5)]

The strategy to solve inverse kinematics problem tend to be
time consuming, so there is usually low interest in applying
this technique for kinematic calculations. The trained neural
network can give the inverse kinematics solution quickly for
any given Cartesian coordinate in a robotic system.

3.Neural Network based Inverse Kinematics

Solution

Neural networks are generally used in the modeling of
nonlinear processes. ANN is a parallel-distributed
information processing system. To form a trainable nonlinear
system, it stores the samples with distributed coding. Training
of a neural network can be expressed as a mapping between
any given input and output data set. Neural networks have
some advantages, such as adoption, learning and
generalization. Implementation of a neural-network model
requires us to decide the structure of the model, the type of
activation function and the learning algorithm.

In Figure 3, the schematic representation of a neural network
based inverse kinematics solution is given. The solution
system is based on training a neural network to solve an
inverse kinematics problem based on the prepared training
data set using direct kinematics equations. In Figure 2, “¢”
refers to error — the neural network results will be an
approximation, and there will be an acceptable error in the
solution.

Actusal Joint Angles

L

Forward Kinematics

Position & Orisptation ofend-

m o a B
b i i
- & 4 F
|0 0 0 1]
¥ 1 - -
Artificial Neural Meterork
[ANN)

L J
Dasirzd Joint Anglas

Volume 3 Issue 11, November 2015

Paper ID: IJSER15586

Licensed Under Creative Commons Attribution CC BY

80 of 83

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878,

Impact Factor (2014): 3.05

Figure 2: ANN based inverse kinematics solution system [5]

The designed neural-network topology is given in Figure 3. A
feed-forward multilayer neural-network structure was
designed including 12 inputs and 6 outputs. Only one hidden
layer was used during the study.

s

n =
L &

g {x
]

alx)
B

plx)
s

Input Layer
(12x1)
Hidden Layar &s
Cutput Lavar
(6x1)

Figure 3: Structure of neural network used in this study

4.Training Method

To train the network we must provide the ANN with the
dataset. ANN is trained with the data which is generated by a
fifth-order polynomial trajectory planning algorithm. The
equation for fifth-order polynomial trajectory planning is
given in following equation:

0; ()= 0io + 10/t *(0i¢ - 0io) * + 15/t¢" (Bi¢ - 0io) t* + 6/t°(Oi¢ - 0io)
% i=1,23........ n (6)

Where,

0; (t) = angular position at time t

0;,= initial position of the i joint

0i = final position of the i" joint

n = number of joints

ts= arrival time from initial position to the target

Initial and final angular positions are defined to produce data
in the workspace of robot. After gathering data from the
whole network is trained in the back propagation mode and
all the weighs are updated according to the new training data.
For the training, 100 data values corresponding to the (6, 65,
0s....0¢) joint angles according to the different (ny, Oy, a, Px,
Ny, Oy, 8y, Py, Nz O &, P,) Cartesian coordinate parameters
were generated by using (6) based on kinematic equations
given in (2). A sample data set produced for the training of
neural networks is given in Table 2 and 3.

Table 2: A sample input data set for the training of neural networks

Inputs
Ny ny n, 0y 0y 0, ay ay a, Px py P,
-0.9467 | -0.0186 | -0.3216 | -0.3188 | -0.0909 | 0.9435 | -0.0468 | 0.9957 | 0.0802 | 10.7388 | 18.5368 | -3.6269
0.4031 | -0.4414 | -0.8017 | -0.8689 | -0.4595 | -0.1839 | -0.2872 | 0.7707 | -0.5688 | -15.6523 | -7.3269 7.3444
-0.9209 | 0.3787 | -0.0921 | -0.3898 | -0.8943 | 0.2199 | 0.0009 | 0.2384 | 0.9712 1.0641 2.808 -13.0244
0.7646 | -0.3951 | -0.5091 | 0.6249 | 0.6478 | 0.4358 | 0.1576 | -0.6514 | 0.7422 | -9.4243 | -0.5505 7.7646
0.2783 | 0.4263 | -0.8607 | 0.9056 | -0.4151 | 0.0872 -0.32 | -0.8037 | -0.5016 5.307 -5.8058 -0.9137
0.1042 | -0.5075 | -0.8553 | 0.0489 | 0.8616 | -0.5053 | 0.9934 | 0.0108 | 0.1146 -1.071 1.0777 -3.8184
-0.7806 | 05435 | 0.3086 | 0.4541 | 0.1539 | 0.8775 | 0.4295 | 0.8251 | -0.367 | -2.8101 -1.7129 4.4017
-0.4807 | 0.2339 | -0.8451 | 0.6899 | 0.6958 | -0.1999 | 0.5413 | -0.6791 | -0.4958 | 2.7343 5.3178 2.8208
-0.7663 | -0.6233 | -0.1561 | -0.4972 | 0.4213 | 0.7585 | -0.407 | 0.6588 | -0.6327 | -8.1384 2.135 0.6667
-0.4693 | 0.873 | -0.1325 | 0.8665 | 0.4264 | -0.2594 | -0.1699 | -0.2366 | -0.9566 | -7.5946 2.9237 3.6417
-0.5937 | -0.5062 | -0.6255 | -0.7906 | 0.5119 | 0.3361 | 0.1501 | 0.694 | -0.7041 | -4.8593 | -1.8317 8.8997
Volume 3 Issue 11, November 2015
Paper ID: IJSER15586 810f 83

Licensed Under Creative Commons Attribution CC BY

International Journal of Scientific Engineering and Research (IJSER)

WWW.ijser.in
ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Table 3: A sample target data set for the training of neural networks

Targets
6, 6, 03 0, 0s 05

169.779 74.3217 -79.0853 169.779 -6.3597 169.779
176.5911 78.1062 -73.0301 176.5911 -2.1211 176.5911
183.4089 81.8938 -66.9699 183.4089 21211 183.4089
190.221 85.6783 -60.9147 190.221 6.3597 190.221
197.0165 89.4536 -54.8742 197.0165 10.588 197.0165
203.7842 93.2135 -48.8585 203.7842 14.7991 203.7842
210.5132 96.9518 -42.8772 210.5132 18.986 210.5132
217.1925 100.6625 -36.94 217.1925 23.142 217.1925
223.8114 104.3396 -31.0566 223.8114 27.2604 223.8114
230.3591 107.9773 -25.2363 230.3591 31.3346 230.3591
236.8254 111.5696 -19.4886 236.8254 35.358 236.8254

Learning / Training Function

‘Trainlm’ from MATLAB toolbox is a network training
function which updates weight and bias values according to
Levenberg-Marquardt optimization [6]. It is the fastest back
propagation algorithm in the MATLAB toolbox, and is
immensely suggested as a first-choice supervised algorithm.

5.Result and Discussion

In this study, Neural Network Fitting Tool (using command:
nftool) is used to create and train the network. The dataset is
loaded into selected data window [6]. The network is trained
using the input data and the performance plot, training state
and regression plots are observed. In this training, Random
(dividerand) rule divides the data where 70% data are
assigned to training set, 15% to validation and 15% data to
test set. As shown in Figure 4, this time the training continued
for the maximum of 1000 iterations.

i N k Training intoo) - = I
Neural Network
Hidden Output

Input Output
¢ w w =
L %’ %“ i

- =] =] C

14 ©

Algorithms

Data Division: Random (dividerand

Training: Levenberg-Marquardt (trainlm

Performance: Mean Squared Error (mse)

Derivative: Default (defaultderiv)
Progress

Epoch: 1] 1000 iterations 1000
Time: 0:01:27

Performance: 4.42 1.14e-10 I] o.00
Gradient: 5.47 1.33e-07 l| 1.00e-07
Mu: 0.00100 1.00e-00 1.00e+10
Validation Checks: o a &
Plots

F— e

Training State (plottrainstate

Error Histogram (ploterrhist
Regression (plotregression
Fit (plotfit

Plot Interval: 1 epochs

%’” Maximum epoch reached.

Stop Training D cance

Figure 4: Neural Network Training

From the training state plot it is seen that training continued
for iterations before the training stopped. The performance
plot shown in Figure 6 does not indicate any major problems
with the training. The validation and test curves are very
similar.

Gradient = 1.3338e-07. at epoch 1000

gradient
=
=
|

Vlu = 1e-0¢, at epoch 1000

mu
o
=
I

Velidation Checks = 0, at epoch 1000

I
900 100C

4 I I I I I I I I
0 100 200 30C 400 500 GO0 70O 8OO
1000 Epochs

Figure 5: Training Plot

Best Validation Performance is 1.0164e-09 at epoch 1000

Train B
Validation |}
Test

Mean Squared Error (mse)

o
=)
b

---------- >

n n N T
0 100 200 300 400 500 600 700 800
1000 Epochs

Figure 6: Performance Plot

10"

900 1000

6.Conclusion

Mostly mathematical models fail to simulate the complex
nature of inverse kinematics problem. In contrast, ANN is
based on the data input/output data pairs to determine the
structure and parameters of the model. Also, ANN’s can
always be updated in order to achieve better results by

Volume 3 Issue 11, November 2015

Paper ID: IJSER15586

Licensed Under Creative Commons Attribution CC BY

82 of 83

International Journal of Scientific Engineering and Research (IJSER)

WWW.ijser.in
ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

presenting new training examples as new data become
available.

References

[1] M.W. Spong, S. Hutchinson and M. Vidyasagar, Robot
Modeling and Control, 1% Edition, Jon Wiley & Sons,
Inc, 2005.

[2] J. Angeles, Fundamentals of Robotic Mechanical
Systems: Theory, Methods, and Algorithms, 2nd Edition,
Springer, 2003.

[3] J. J. Crage, Introduction to Robotics Mechanics and
Control, 3rd Edition, Prentice Hall, 2005.

[4] J. Denavit and R. Hartenberg, “A Kinematic Notation for
Lower-Pair Mechanisms Based on Matrices” of Applied
Mechanics, pp. 215-221, 1955.

[5] R. Koker, T. Cakar, Y. Sari, A neural-network committee
machine approach to the inverse kinematics problem
solution of robotic manipulators. Engineering with
Computers, Springer-Verlag London, DOl
10.1007/s00366-013-0313-2, 2013.

[6] The Mathworks Neural Network Toolbox user guide.

Available on line on:
http://www.mathworks.com/access/helpdesk/help/pdf_do
c/nnet/nnet.pdf

_ Volume 3 Issue 11, November 2015
Paper ID: IJSER15586 Licensed Under Creative Commons Attribution CC BY

83 of 83

