
International Journal of Scientific Engineering and Research (IJSER) 
www.ijser.in 

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05 

Volume 3 Issue 11, November 2015 
Licensed Under Creative Commons Attribution CC BY 

Neural Network Based Inverse Kinematics Solution 

for 6-R Robot Using Levenberg-Marquardt 

Algorithm 
 

Prashant Badoni 
 

Mechanical Engineering Department, Graphic Era University, Dehradun - 248002, India 

 

Abstract: The traditional approaches are insufficient to solve the complex kinematics problems of the redundant robotic manipulators. 

To overcome such intricacy, ANNs are used nowadays. The performance of the neural network is affected by the training algorithm and 

network topology. There are numerous training algorithms which are used in the training of neural networks. In this paper, Levenberg-

Marquardt is used in training algorithm and its effect on the performance of the neural network on the inverse kinematics model 

learning of a 6-R robot is studied. 
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1. Introduction 
 

Neural network is one of the prominent artificial intelligent 

techniques used in the robotics to accomplish more 

intelligence in systems with high degree of autonomy. ANN 

incorporates learning ability which provides flexibility to the 

robotic systems. Neural network can be implemented using 

MATLAB software. Procedure to train the neural network 

model is as follows: 

 

 Data collection  

 Network creation 

 Network configuration  

 Initialization of the weights and biases 

 Network training 

 Network validation 

 Use the network 

 

The working principal of a neural network is based on 

learning from the formerly obtained data set known as 

training set, and then go through the success of system using 

test data. The learning algorithm affects the employment of 

the neural network greatly. In this study, the effects of 

Levenberg-Marquardt learning algorithm have been tested for 

the inverse kinematics solution of a six joint robotic 

manipulator.  

 

This paper is organized as follows: Section II provides the 

kinematics analysis of the 6-R robot. Section III of the paper 

deals with the neural network based inverse kinematics 

solution. Section IV describes training and testing. Section V 

gives results and a discussion, and finally Section VI 

concludes the paper. 

 

2. Kinematic Analysis of 6-R Robot 
 

A Robot manipulator is composed of a group of links (rigid 

bodies) connected together by revolute or prismatic joints 

which allow motion for the desired link. Robot Kinematics 

refers to the analytical study of the motion of a robot 

manipulator without regard to any factor (like force) which 

influence the robot movement. Robot Kinematics can be split 

into forward and inverse kinematics. In the forward 

kinematics problem, the end effector‟s location in the work 

space, that is position and orientation, is determined based on 

the joint variables [1] [2] [3]. The forward kinematics 

problem may express mathematically as follows:  

 

F (θ1, θ2, θ3....θn) = [px, py, pz, R] 

 

Where, θ1, θ2, θ3....θn are the input variables, [px, py, pz] are 

desired position and R is the desired rotation. 

 

The inverse kinematics problem refers to finding the values of 

the joint variables that allows the manipulator to reach the 

given location. The inverse kinematics problem can be 

expressed mathematically as follows: 

 

F [px, py, pz, R] = (θ1, θ2, θ3....θn) 

 

The joint variables are the link extension in the case of 

prismatic joints, or the angles between the links in case of 

rotational joints. 

 

 
Figure 1: D-H coordinates of the robot 

 

Figure 1 depicts the structure and coordinates of 6-DOF robot 

manipulator which is studied in during the work.  

 

The D‐H parameters of the manipulator are listed in Table1. 

 

Table 1: D-H parameters of the manipulator 

Joints ai-1 αi-1 di θi 

1 0  0 1 

2 0 /4 0 2 

3 l2 /4 l1 3 
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4 l3 /4 0 4 

5 0 0 0 5 

6 l5 /4 l4 6

 

According the Denavit-Hartenberg method, the 

transformation can be formulated in the chain product of six 

successive homogeneous matrices . 

 

  is the homogeneous transformation matrix relating the 

i
th 

coordinate frame to the (i-1)
th 

coordinate frame [4]. 

 

  = ……….  (1)  

  

Equation (1) contains a large set of trigonometric functions: 

 

sinθi = Si and cosθi = Ci. 

 

 can be calculated by following: 

 

 

 (2)                                            

 

 

 

In (2), nx, ny, nz, ox, oy, oz, ax, ay, az show the rotational 

elements of the transformation matrix and px, py, pz refer to 

the elements of the position vector. 

 

xn = - C1S2C3C45S6 + S1S3C45S6 – C1C2S45S6 – C1S2S3C6 – 

S1C3C6 

yn = - S1S2C3C45S6 - C1S3C45S6 – S1C2S45S6 – C1S2S3C6 + 

C1C3C6 

zn = C2C3C45S6 - S2S45S6 +C2S3C6 

xo = - C1S2C3C45S6 + S1S3C45C6 – C1C2S45C6 + C1S2S3S6 + 

S1C3S6 

yo = - S1S2C3C45C6 - C1S3C45C6 – S1C2S45C6 + S1S2S3S6 - 

C1C3S6 

zo = C2C3C45C6 - S2S45C6 - C2S3S6 

xa = - C1S2C3C45 + S1S3C45 + C1C2S45 

ya = - S1S2C3C45 - C1S3C45 + S1C2S45 

za  = C2C3S45 + S2S45 

xp = (- C1S2C3S45 + S1S3S45 + C1C2C45) l5 + (– C1S2C3S4 + 

S1S3S4 + C1C2C4) l4 + C1C2 l23 

yp = (– S1S2C3S45 – C1S3S45 + S1C2C45) l5 + (– S1S2C3S4 – 

C1S3S4 + S1C2C4) l4 + S1C2 l23 

zp  = (C2C3S45 + S2C45) l5 + (C2C3S4 + S2C4) l4 + S2l23+ l1  

 

The inverse kinematics solution for the robot is indicated as 

follows: 

 

cosθ4 = - (l23
2
 + l4

2
 – d

2
) / 2 l23 l4 (3) 

 

The equation obtained from (2) as: 

 

(S45 l5 + S4 l4)
2
 + (C45 l5 + C4 l4 + l23)

2
 = px 

2 
+ py

 2
 + (pz - l1)

2 

(4) 

 

Then, 

 

θ5 = arcsin [{px
 2 

+ py
 2

 + (pz - l1)
2 

- l5
2
- S4

2
 l4

2
 – (C4 l4 + l23)

2
}/ 

A] - arctan [(C4 l4 + l23) / S4 l4] - θ4 (5) 

 

We could also obtain the following expressions: 

θ2 = arcsin [(C45 l5 + C4 l4 + l23) / √ ( pz - l1)
2
 + px

 2
] - arctan [px

 

/ (pz - l1)] 

 

θ1 = arcsin [(S2C3S4 - C2C4 – C2l23) / √ ( px
 
- ax l5)

2
 + (py – ay 

l5)
2
] - arctan [(px

 
- ax l5) / (py - ay l5)] 

 

θ3= arcsin [(C1+ px
 
- ax l5) / S1S4l4 (az - S2C45)] - arctan [(px

 
-ax 

l5) / (py -ay l5)] 

  

The strategy to solve inverse kinematics problem tend to be 

time consuming, so there is usually low interest in applying 

this technique for kinematic calculations. The trained neural 

network can give the inverse kinematics solution quickly for 

any given Cartesian coordinate in a robotic system. 

 

3. Neural Network based Inverse Kinematics 

Solution 
 

Neural networks are generally used in the modeling of 

nonlinear processes. ANN is a parallel-distributed 

information processing system. To form a trainable nonlinear 

system, it stores the samples with distributed coding. Training 

of a neural network can be expressed as a mapping between 

any given input and output data set. Neural networks have 

some advantages, such as adoption, learning and 

generalization. Implementation of a neural-network model 

requires us to decide the structure of the model, the type of 

activation function and the learning algorithm. 

 

In Figure 3, the schematic representation of a neural network 

based inverse kinematics solution is given. The solution 

system is based on training a neural network to solve an 

inverse kinematics problem based on the prepared training 

data set using direct kinematics equations. In Figure 2, “e” 

refers to error – the neural network results will be an 

approximation, and there will be an acceptable error in the 

solution. 
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Figure 2: ANN based inverse kinematics solution system [5] 

 

The designed neural-network topology is given in Figure 3. A 

feed-forward multilayer neural-network structure was 

designed including 12 inputs and 6 outputs. Only one hidden 

layer was used during the study. 

 

 
Figure 3: Structure of neural network used in this study 

 

4. Training Method 
 

To train the network we must provide the ANN with the 

dataset. ANN is trained with the data which is generated by a 

fifth-order polynomial trajectory planning algorithm. The 

equation for fifth-order polynomial trajectory planning is 

given in following equation: 

 

θi (t)= θio + 10/tf 
3
(θif - θio) t

3 
+ 15/tf

4 
(θif - θio) t

4 
+ 6/tf

5
(θif - θio) 

t
5
;  i = 1, 2, 3…….. n (6) 

 

Where,  

 θi (t) = angular position at time t 

 θio= initial position of the i
th

 joint 

 θif = final position of the i
th

 joint 

 n = number of joints 

 tf = arrival time from initial position to the target 

 

Initial and final angular positions are defined to produce data 

in the workspace of robot. After gathering data from the 

whole network is trained in the back propagation mode and 

all the weighs are updated according to the new training data. 

For the training, 100 data values corresponding to the (θ1, θ2, 

θ3....θ6) joint angles according to the different (nx, ox, ax, px, 

ny, oy, ay, py, nz, oz, az, pz) Cartesian coordinate parameters 

were generated by using (6) based on kinematic equations 

given in (2). A sample data set produced for the training of 

neural networks is given in Table 2 and 3. 

 

 

 

Table 2: A sample input data set for the training of neural networks

  

Inputs 

nx ny nz ox oy oz ax ay az px py pz 

-0.9467 -0.0186 -0.3216 -0.3188 -0.0909 0.9435 -0.0468 0.9957 0.0802 10.7388 18.5368 -3.6269 

0.4031 -0.4414 -0.8017 -0.8689 -0.4595 -0.1839 -0.2872 0.7707 -0.5688 -15.6523 -7.3269 7.3444 

-0.9209 0.3787 -0.0921 -0.3898 -0.8943 0.2199 0.0009 0.2384 0.9712 1.0641 2.808 -13.0244 

0.7646 -0.3951 -0.5091 0.6249 0.6478 0.4358 0.1576 -0.6514 0.7422 -9.4243 -0.5505 7.7646 

0.2783 0.4263 -0.8607 0.9056 -0.4151 0.0872 -0.32 -0.8037 -0.5016 5.307 -5.8058 -0.9137 

0.1042 -0.5075 -0.8553 0.0489 0.8616 -0.5053 0.9934 0.0108 0.1146 -1.071 1.0777 -3.8184 

-0.7806 0.5435 0.3086 0.4541 0.1539 0.8775 0.4295 0.8251 -0.367 -2.8101 -1.7129 4.4017 

-0.4807 0.2339 -0.8451 0.6899 0.6958 -0.1999 0.5413 -0.6791 -0.4958 2.7343 5.3178 2.8208 

-0.7663 -0.6233 -0.1561 -0.4972 0.4213 0.7585 -0.407 0.6588 -0.6327 -8.1384 2.135 0.6667 

-0.4693 0.873 -0.1325 0.8665 0.4264 -0.2594 -0.1699 -0.2366 -0.9566 -7.5946 2.9237 3.6417 

-0.5937 -0.5062 -0.6255 -0.7906 0.5119 0.3361 0.1501 0.694 -0.7041 -4.8593 -1.8317 8.8997 
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Table 3: A sample target data set for the training of neural networks

 
Targets 

     

169.779 74.3217 -79.0853 169.779 -6.3597 169.779 

176.5911 78.1062 -73.0301 176.5911 -2.1211 176.5911 

183.4089 81.8938 -66.9699 183.4089 2.1211 183.4089 

190.221 85.6783 -60.9147 190.221 6.3597 190.221 

197.0165 89.4536 -54.8742 197.0165 10.588 197.0165 

203.7842 93.2135 -48.8585 203.7842 14.7991 203.7842 

210.5132 96.9518 -42.8772 210.5132 18.986 210.5132 

217.1925 100.6625 -36.94 217.1925 23.142 217.1925 

223.8114 104.3396 -31.0566 223.8114 27.2604 223.8114 

230.3591 107.9773 -25.2363 230.3591 31.3346 230.3591 

236.8254 111.5696 -19.4886 236.8254 35.358 236.8254 

 

Learning / Training Function 

„Trainlm‟ from MATLAB toolbox is a network training 

function which updates weight and bias values according to 

Levenberg-Marquardt optimization [6]. It is the fastest back 

propagation algorithm in the MATLAB toolbox, and is 

immensely suggested as a first-choice supervised algorithm. 

 

5. Result and Discussion 
 

In this study, Neural Network Fitting Tool (using command: 

nftool) is used to create and train the network. The dataset is 

loaded into selected data window [6]. The network is trained 

using the input data and the performance plot, training state 

and regression plots are observed. In this training, Random 

(dividerand) rule divides the data where 70% data are 

assigned to training set, 15% to validation and 15% data to 

test set. As shown in Figure 4, this time the training continued 

for the maximum of 1000 iterations. 

 

 
Figure 4: Neural Network Training 

 

 

From the training state plot it is seen that training continued 

for iterations before the training stopped. The performance 

plot shown in Figure 6 does not indicate any major problems 

with the training. The validation and test curves are very 

similar. 

 

 
Figure 5: Training Plot 

 

 
Figure 6: Performance Plot 

 

6. Conclusion 
 

Mostly mathematical models fail to simulate the complex 

nature of inverse kinematics problem. In contrast, ANN is 

based on the data input/output data pairs to determine the 

structure and parameters of the model. Also, ANN‟s can 

always be updated in order to achieve better results by 
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presenting new training examples as new data become 

available. 
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