
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 6, June 2015
Licensed Under Creative Commons Attribution CC BY

Proxy Based Backup in a Multiple Cloud Storage

with Depreciated Repair Traffic

Abhilatha Pˡ, Manasa K
2
, Bhagya M

3

1Student, Nagarjuna College of Engineering, Department of Computer Science Bangalore, India

²Student, Nagarjuna College of Engineering, Department of Computer Science Bangalore, India
3Asst.Professor, Senior Grade, Nagarjuna College of Engineering, Department of Computer Science, Bangalore, India

Abstract: In this paper demonstrates the use of proxy-based distributed storage in cloud. We are providing implementable design of

how to regenerate the lost data when cloud storage failed permanently. Our Scheme achieves cost-efficient repair by using Functional

Minimum Storage Regenerating (FMSR) codes which is network coding based storage scheme with reduced repair traffic and incur less

monetary cost.

Keywords: Fault tolerance, FMSR, erasure codes, repair traffic

1. Introduction

Cloud computing is gaining extensive popularity because

of its intrinsic resource-sharing, flexible storage capacity,

and pay as you go characteristics. Its usage is stretching

worldwide in various fields like Military, Education,

Research, Business, public organizations and many other

[1]. It has been emerged as a intelligent solution in order to

provide cheap and easy way to externalized IT resources.

Cloud users can enjoy high-quality services provided by

various cloud service providers (CSP) such as Amazon,

Redhat, Google with the help of their powerful data

centers and also can save significant investments on their

local infrastructures. CSP facilitates various scalable IT

services [2]. Data storage is the most fundamental services

offered by cloud providers along with the on-demand

remote backup solution.

In general there are two types of cloud storage failure:

transient failure and permanent failure.

Transient failure is the short term failure of cloud and will

return to its normal condition after some time. There will

be no data loss.

Permanent failure is long term failure means outsourced

data will become unavailable permanently. There are

several situations like data-center outages in disaster,

malicious attacks where permanent cloud failure occurs.

There are many real-life cases [3][4] where data in cloud

had lost accidently. However usage of single-cloud storage

leads to single point of failure.

The plausible solution is to stripe data across multiple

storage in a cloud [5]. It is advantageous in terms of

security too. By exploiting the diversity of multiple

storage, we can improve the fault tolerance of a cloud.

When a cloud failed, it is essential to activate repair to

maintain fault-tolerance and data redundancy [6].

Regeneration of lost data is achieved by retrieving data

from other existing survived storage nodes over the

network and reconstructs the lost data. Moving an

enormous amount of data across will introduce significant

monetary costs. Hence it is essential to minimize the repair

traffic as much as possible (i.e., during repair the amount

of data that is being transferred over the network).

In this paper, we present the proxy-based storage system

design and implementation of a designed for providing

fault-tolerant storage system in cloud [7]. Our main focus

is on minimizing repair traffic which is achieved by FMSR

code implementation [8]. It consumes same storage

capacity as other traditional erasure coding schemes but

uses less repair traffic when recovering a single-cloud

failure only.

2. Related Work

The simplest form of redundancy is replication (i.e.

keeping the duplicate of data) [9]. In this method files are

divided into blocks and each block is striped across

distributed storage nodes in a cloud and replica of each

block is generated. If any node fails then simply copy the

replica of that file from healthy node is used to reconstruct

original file. But it requires often unnecessarily and

unsustainably high expense. The storage cost for

replication based system is very high.

Another regenerating code is studied extensively in which

is widely used by cloud service providers at present

namely Reed-Solomon based Raid-6[10] is shown in

Figure 1.

Figure 1: Reed Solomon code

In this scheme file of size M is divided into k fragments

stored in a different storage nodes. Size of each fragment

is M/k. If any fragment is unavailable, original file can be

recovered from remaining fragments. There is no focus on

reducing repair traffic. It is of high monetary cost.

Paper ID: IJSER15225 8 of 10

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 6, June 2015
Licensed Under Creative Commons Attribution CC BY

3. Proposed Scheme

Our proposed system demonstrates the FMSR code

implementation in a proxy based distributed storage

system which maintains fault tolerance and also minimizes

the repair traffic while recovering from the single cloud

failure. It will consume the same storage cost as in

traditional erasure coding schemes based on Reed-

Solomon.

The FMSR code implementation is as shown in Figure 2

Figure 2: FMSR code

 Any file uploaded by cloud user is divided into four native

chunks. By using these native chunks eight distinct code

chunks P1, P2. . . P8 is constructed by different linear

combinations [11] of the native chunks as shown in Figure

3 .

Figure 3: Formation of code chunks

The Encoding matrix which is generated will be multiplied

with the each block and code chunks will be generated i.e

p1, p2….p8.The size of each code chunk is M/4 which is

same as each native chunks. Suppose Node N1 is down

then the proxy regenerates lost data by collecting one code

chunk ex. P3or p4, p5 or p6, p7 or p8 randomly from each

surviving node each of size M/4 i.e. total 3M/4 amount of

data is used to regenerate original file. Its repair traffic is

3M/4 whereas in the existing system repair traffic is M. In

our proposed system repair traffic is reduced by 25%

compared to existing system.

4. Scope

Our implementation of a proxy-based storage system with

FMSR code provides fault-tolerance in multiple-cloud

storage. It also achieves the cost-effective repair in case of

permanent single-cloud failure. One key design feature of

our FMSR codes is that we relax the encoding requirement

of storage nodes, while preserving the benefits of network

coding during repair.

5. Implementation

Implementation of Proposed System is divided into four

modules: user, file upload, download and repair.

User: This module consists registration, login, group-

creation, join request and accept request operations. User

first register by giving input username, password and

email. Once register he can update his details after login.

He should create a group before upload data. Other users

can register under this group. Once user confirmed other

users can access the data uploaded into this group.

File Upload: User can upload file using this module. When

file is uploaded, the file is divided into equal size and

stores it into buffer. This buffer is called native chunks.

The file upload operation consists following operations.

1. Each code chunk is encoded and forms a coded chunk.

Code chunk is denoted as P.

Each Pi is formed by a linear combination of the native

chunks.

2. Encoding matrix (EM) is created using Galois Fields.

3. Create Meta data object embed with EM.

4. Upload coded chunks and metadata object into n nodes.

File Download:

File downloaded by using following steps.

1. Download the metadata object that contains the

encoding coefficient vector (ECV).

2. Select k of n storage nodes and get the code chunks from

k nodes.

3. Generate the square matrix using ECVs and multiply

square matrix with code chunks to generate native

chunks.

4. Merge Native chunks, decode it and send for download.

Repairs: Corrupted node data repair done by following

steps.

1. Download metadata object from surviving nodes. Get

the EM from metadata object.

2. Select one ECV from selected surviving node. Generate

a repair matrix (RM)

3. Generate new ECV by multiplying RM with selected

ECV in step 2.

4. Generate the new encoded matrix. And new coded

chunks.

Paper ID: IJSER15225 9 of 10

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

Volume 3 Issue 6, June 2015
Licensed Under Creative Commons Attribution CC BY

5. Upload new encoded matrix and coded chunks to new

node.

6. Evaluation

We define the repair traffic as the amount of outbound

data being downloaded from the other surviving clouds

during the single-cloud failure recovery. We seek to

minimize the repair traffic for cost-effective repair. To

generalize double-fault-tolerant FMSR codes for n storage

nodes, we divide a file of size M into 2(n-2) native chunks,

and use them to generate 2n code chunks. Then, each node

will store two code chunks of size M/ 2(n-2) each. Thus,

the total storage size is Mn/(n-2). To repair a failed node,

we download one chunk from each of the other n-1 nodes,

so the repair traffic is M(n-1)/2(n-2). In contrast, for

RAID-6 codes, the total storage size is also Mn/n-2, while

the repair traffic is M. Our proposed system reduces repair

traffic by 25% of repair traffic, compared to Reed-

Solomon based erasure codes.

6. Conclusion

We present a proxy-based, multiple-cloud storage system

that practically addresses the reliability of today’s cloud

backup storage. FMSR codes, which regenerates new

parity chunks during repair subject to the required degree

of data redundancy. Our FMSR implementation eliminates

the encoding requirement of storage nodes (or cloud)

during repair, while ensuring that the new set of stored

chunks after each round of repair preserves the required

fault tolerance. Our proposed system not only provides

fault tolerance in storage, but also allows cost-effective

repair when a cloud permanently fails.

References

[1] M. Armbrust et al., “Above the Clouds: A Berkeley

View of Cloud Computing,” Univ. California,

Berkeley, Tech. Rep. UCBEECS-2009-28, Feb. 2009.

[2] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.

Katz, A. Konwinski, G. Lee, D. Patterson, A. Rabkin,

I. Stoica, and M. Zaharia, “A View of Cloud

Computing, ” Comm. the ACM, vol. 53, no. 4, pp. 50-

58, 2010.

[3] Amazon Web Services, “AWS Case Study:

Backupify,” http://aws.amazon. com/solutions/case-

studies/backupify/, 2013.

[4] M. Arrington, “Gmail Disaster: Reports of Mass

Email Deletions,

”Dec.2006.http://www.techcrunch.com/2006/12/28/g

mail-disaster-reports-of-assemail deletions

[5] R. Ahlswede, N. Cai, S.-Y.R. Li, and R.W. Yeung,

“Network Information Flow, ” IEEE Trans.

Information Theory, vol. 46, no. 4, pp. 1204-1216,

July 2000.

[6] Gupta Sarika, Sangita Rani Satapathy, Mehta Piyush

and ripathy Anupam, “A Secure and Searchable Data

Storage in Cloud Computing”, 3rd IEEE International

Advance Computing Conference (IACC), 2013, page

106-109.

[7] Liu Hao, Dezhi Han, “The study and design on

secure-cloud storage system”, In IEEE society, 2011,

page 5126-5129.

[8] A.G. Dimakis, P.B. Godfrey, Y. Wu, M. Wainwright,

and K. Ramchandran, “Network Coding for

Distributed Storage Systems” IEEE Trans.

Information Theory, vol. 56, no. 9, pp. 4539-4551,

Sept. 2010.

[9] M.O. Rabin, Simple replication based distributed

system,” ACM, vol. 36, no. 2, pp. 335-348, Apr.

1999.

[10] J.S. Plank, “A Tutorial on Reed-Solomon Coding for

Fault-Tolerance in RAID-Like Systems,” Software—

Practice & Experience, vol. 27, no. 9, pp. 995-1012,

Sept. 2005

[11] K.M. Greenan, E.L. Miller, and T.J.E. Schwarz,

“Optimizing Galois Field Arithmetic for Diverse

Processor Architectures and Applications,” Proc.

IEEE Int’l Symp. Modeling, Analysis and Simulation

of Computers and Telelcomm. Systems (MASCOTS

’08), 2008

Paper ID: IJSER15225 10 of 10

