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Abstract: To calculate the response of a metal surface from microscopic quantum mechanical models in a formidable task of heavy 
computation. It is the therefore desirable to drive the answer to question of metal optics from macroscopic relation between fields, current 
and charge densities. Such a phenomenological approach is simpler to handle often more transparent and easier adaptable to real 
experiments The HD with ABC is the most successful approximation for this purpose.
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1. Introduction 

The dielectric function ε is related by linear response theory 
to a microscopic description of the system. The response 
functions are generally tensors and nonlocal in space and 
time. A system is called spatially dispersive and its response 
function depends on wave vector K which is mathematically 
related to the non-locality. Much effort have been spent in 
calculating ε(𝑘 , 𝜔) for bulk metals. But the knowledge of the 
bulk response is not sufficient to solve the problem of metal 
optics since the surface breaks the translational invariance of 
the system. Then ε(𝑘 , 𝜔) depend on 𝑟  and 𝑟 ′ separately and 
not only on the difference (𝑟 − 𝑟 ′). There have been many 
attempts to driven the response near the surface from the 
known response function of the bulk. The hydrodynamic 
approximation is the simplest approach and the one used 
most successfully.  

2. Additional Boundary Condition or 
Susceptibility 

The hydrodynamic model in conjunction with additional 
boundary conditions as presented is one way to treat optical 
problems at metal surfaces. Due to its simplicity 
transparency, and flexibility this method has been widely 
used for the interpretation of experiments. In this chapter we 
have discussed other attempts to calculate electromagnetic 
fields at metal surfaces. A response theory on an 
intermediate level, which describes measurable response 
properties such as reflectivity, absorbance etc in terms of 
certain surface response functions, but which does not try to 
calculate surface electromagnetic fields. 

Attempts to calculate surface electromagnetic fields have 
been made by many authors with many different model 
assumptions, mostly on a phenomenological, but also on a 
microscopic level. This microscopic theory introduced the 
surface on the quantum mechanical level of wave functions. 
Linear response theory then yields the electromagnetic 
response of the system with surface in terms of a certain 
susceptibility, e.g. in the form. 

j 𝑟, 𝜔 =  𝑑3𝑟1 𝜎  𝑟, 𝑟1, 𝜔 𝐸(𝑟1, 𝜔)             ..(1) 
With an explicit expression for the nonlocal conductivity 




. Together with Maxwell’s equations, the material 

equation (1) yields a set of couple Integra-differential 
equation, which determines uniquely the response to 
incoming electromagnetic radiation. Microscopic 
calculations require a substantial amount of computational 
work. 

The phenomenological approaches attempts to use the 
knowledge of bulk response. This leads to the long standing 
problem of additional boundary condition (ABC) in 
phenomenological optics, which has been a matter of debate 
since PEKAR1 proposal in the context of excitation 
polarization in semiconductors. According to the manner in 
which the bulk response properties are introduced, the read 
for ABC become apparent or not. Some auther2-4 claimed 
that it is not necessary to worry about ABC, because 
mathematics automatically solves the problem. They argued 
that, if the homogeneous bulk medium responds according 
to  

j 𝑟, 𝜔 =  𝑑3𝑟1 𝜎  𝑟 − 𝑟1, 𝜔 𝐸(𝑟,, 𝜔)                ..(2) 
The response of the system containing the medium only in 
the half space z>0 is given by the same expression (2) 
provide both r and r1 are restricted to the half space. For this 
surface model which was termed the “dielectric 

approximation”, the susceptibility is obtained from the 

corresponding bulk susceptibility simply by truncation.

1 1 1( , , ) ( ) ( ) ( , )
DA h

r z rr z r    
 

 

… (3)

With θ(z) = 1 for z>0,  θ(z) = 0 for z<0 BISHOP and 
MARADUDIN5 pointed out that, in the case of a spatially 
dispersive semiconductor, model (3) leads to a discontinuity 
of the energy current at the surface, which then acts as a 
source or sink of energy. They tried to repair this defect by 
introducing additional surface forces.  

In fact, (3) is not a necessary mathematical consequence of 
(2).  

A whole class of susceptibilities for the surface problem. 
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(4)
 Where U is a model parameter and  

𝛼 =  
1 0 0
0 1 0
0 0 −1

 ….. (5)

Describe reflection at the surface, is compatible with the 
bulk formula (2) and has been considered in the Literature6-11

the special value U = +1 can be physically motivated by 
specular reflection arguments, and implies simple and 
reasonable boundary conditions for currents and fields. In 
general, the choice of model susceptibility uniquely 
determines the response of the system and consequently, the 
behaviour of currents and field at the surface, although it 
may not be possible to express this behaviour in terms of
simple boundary condition (e.g. for U = 1). If boundary 
conditions are imposed by physical requirements, the 
admissible susceptibilities will be restricted. 

The relation between ABC and susceptibility becomes 
especially transparent, if the information about the response 
of the homogeneous bulk medium is not directly taken from 
the real space material equation (2), but from this Fourier 

transform ( , ) ( , ) ( , )
h

j k k E k  


 . The latter is 
formally equivalent with an equation of the type 

𝑊    𝑗 𝑟, 𝜔 = 𝐸(𝑟, 𝜔)                             …… (6)

In real space, where 𝑊     is a differential operator containing 
spatial derivatives, an example, the hydrodynamic model12

can be cast into this form with 

   
4  .

p

i j j
iHD jW 

   




      … (7)

the nonlocal conductivity 𝜎 (𝑟, 𝑟1, 𝜔) is an inverse of the 
operator𝑊    , i.e. Green’s function of (6). Since in general the 

corresponding homogeneous equation  6 𝑜𝑟 𝐸 = 0  has 
non-trivial solutions, boundary conditions are necessary to 
uniquely determine the Green’s function, i.e. the 

conductivity. In the homogeneous bulk case, these are the 
conditions of outgoing plane waves, which are automatically 
taken into account by the Fourier Transform, and lead to (2)  

3. Discussion 

In the form (6) it is clear how to use the bulk response 
properties right up the surface: all the material parameters 
defining 𝑊     (𝑒. 𝑔. 𝜔𝑝 , 𝛾, 𝛽 𝑖𝑛 (7)  all have their bulk values 
up to the surface plane. To complete the surface model, 
boundary condition (the ABC) must be specified and then 
the Green’s function (r,𝑟1, 𝜔)for the surface problem is 
uniquely defined. As an example one consider a generation 
of the hydrodynamic model which allows a satisfy 
alternatively two different sets of reasonable ABC leading to 
different results for𝜎 (r, 𝑟1, 𝜔). The result for Pekar’s ABC, 

j(𝑧 = 0+) = 0, is not of the form (4) and cannot be expressed 
in terms of bulk conductivity  𝜎 (r − 𝑟1, 𝜔). The mentioned 
phenomenological approaches both have their merits and 
limitations. To hydrodynamic and similar approximation are 
easy to handle, and (6) together with Maxwell’s equation can 

be solved, even without explicit evaluation of the Green’s 

function, by a suitable ersatz of partial waves. The method is 
also easily adapted to metal-metal interfaces. However, his 
method works only if the differential operator 𝑊     in (6) is 
sufficiently simple, if the bulk conductivity has a 
complicated analytical dependence on the wave vector k, as 
e.g. the Lind hard function which contains branch cut, the 
method cannot be applied. The specular reflection model and 
related models, (4) are on the other hand, free from this 
limitation and work for any bulk response function. They are 
however not easily generalized to metal-metal interfaces, 
although attempts in this direction have recently been 
made13. Moreover, there are sets of physically reasonable 
ABC, which cannot be satisfied by this method. 

4. Conclusion 

One focus attention on the free vacuum-metal surface, and in 
the phenomenological discussion, on sharp, single-stepped 
surface Hydrodynamic models of the form (6) with position- 
dependent material parameters inter polluting smoothly 
between the metal and vacuum side have also been 
considered15-17. These models usually require a lot of 
computational work, already for the evaluation of the 
material equation.   
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