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Abstract: Our objects in this work is to obtain complexity theory, a specific problem known as Steiner problem in Coxeter graph which
is NP complete and also it is worth mentioning that our result every full component of a Steiner tree contains almost 4 terminals involved

therein.
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1. Introduction

A Steiner minimum tree in a graph with R-terminals is
interior points. The Steiner tree (ST) problem in graph
called for brevity ST, defined in decisional form as
follows:

e Anundirected graph G= (V,E )
e A subset of the vertices R C V, called terminal nodes.
e Anumber K € N.

There is a subtree of (G that includes all the vertices of
R. (i.e., a spanning tree for R) and that contains at most

K edges.

Steiner tree problem has many applications especially
when we have to plan a connectivity structure among
different terminal points. For example, when we want to
find an optimal way to build roads and railways to
connect, a set of cities or decide routing policies over the
internet for multicast traffic, usually from a source to
many destinations.

For many decision problems no polynomial time algorithm
is known. Nevertheless some of these problems have a
property which is not inherent to every decision problem,
there exists algorithm which, if presented with an instance

of the problem [i.e., a graph G with terminal set K , and

a bound B, respectively a Boolean Formula F]. These

algorithms verify in polynomial time whether X a valid
solution is. The decision problem with this property forms
the NP. In this work, we propose an NP-completeness
result for the Steiner problem in coxeter graphs.

2. Preliminaries
Definition 2.1
A Steiner tree is a tree in a distance graph which spans a

given subset of vertices (Steiner point with the minimum
total distance on its edges).

C
Figure 1: Steiner Tree

Figure 2: Steiner Tree
Two Steiner points Sl and S2 .

The Steiner Tree problem

Definition

Let G = (V,E ) be an evaluated graph. Let T be a set
of terminal nodes that should be connected. The Steiner
problem consists of finding a tree of G containing all

terminal nodes 7  with a minimum weight. The optimal
tree can contain other nodes called Steiner nodes in the set

= T\V . We note that two special cases of Steiner
problem are solved polynomialy.

If |T |= 2, then the Steiner problem is equivalent to
shortest path.

If 7=V then the Steiner problem is equivalent to the
minimum spanning tree problem.

Volume 4 Issue 3, March 2016

Paper ID: 13031601

Licensed Under Creative Commons Attribution CC BY

99 of 103




International Journal of Scientific Engineering and Research (IJSER)

ISSN (Online): 2347-3878, Impact Factor (2014): 3.05

O Steiner nodes
@ Terminal nodes
Figure 3: An example of the Steiner tree problem

Definition 2.2

Let a connected graph G =(V,E) andaset K =V

of terminals, then the Steiner minimum tree for K in
(7 that is Steiner tree 7 for K such that

| E(T) |= min {E(T")/T'is a steinertree for K inG}

In the Steiner minimum tree problem, the vertices are
divided into two parts, terminals and non-terminal vertices.
The terminals are the given vertices which must be
included in the solution.

Example 2.2

v 8

Figure 4: Steiner minimal tree

VI,VZ,V3,V4 are terminals V5 and V6 is non-

terminals.
Definition 2.3

A class of problems solvable by non deterministic
polynomial time algorithm is called NP.

Definition 2.4
A problem is NP-complete if
1.1t is an element of the class NP.

2. Another NP-complete problem is polynomial time
reducible to it.
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Definition 2.5

A Steiner minimum tree for K is given such that some of
the terminals are interior points. Then we decompose this
tree into components so that terminals only occur as leaves
of these components. Such a component is called full
component.

Figure 5: The full components of a Steiner Tree
Definition 2.6

The Coxeter graph is a non-hamiltonian cubic symmetric
graph on 28 vertices and 42 edges.

Figure 6: The Coxeter graph
Properties of the Coxeter graph
1. A spanning cycle in a graph is called a Hamiltonian
cycle.
2.A graph having a Hamiltonian cycle is called a
Hamiltonian graph.
3. The coxeter graph has no Hamiltonian cycle

This implies coxeter graph is not Hamiltonian.

4. A regular graph of degree 3 is called cubic graph.
5.Each vertex of a coxeter graph is of degree 3.

This implies coxeter graph is called cubic graph.
Definition 2.7

A symmetric graph is a graph in which both edge and
vertex are transitive.
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Definition 2.8
An edge transitive graph is a graph such that any two
edges are equivalent under some element of its

automorphism group.

Example

Figure 7: Triangle graph

More precisely, a graph is edge transitive if for all pairs of

edges (el 62) there exists an elements Y of the edge

automorphism group Aul‘ (G) such that y(el) =e,.

An undirected graph is edge transitive iff its line graph is
vertex transitive.

Definition 2.9
A vertex — transitive graph is a graph such that every
pair of vertices is equivalent under some element of its

automorphism graph.

Example

Figure 8: Square graph

Steiner Problem in Coxeter Graph Which is NP-
Complete

Result 1

Steiner problem in Coxeter graph which is NP-complete.
Proof

Let the Steiner problem in graph is € NP, it is sufficient
to show that Steiner problem in Coxeter graph is NP-

complete.

To construct a Coxeter graph on 28 vertices and 42 edges.

Figure 9: Coxeter graph

Now we take a Steiner tree from the Coxeter graph of
maximum number of vertices in the following Figure 10.

Us
U
1,
u,
uy
u,
u,

Figure 10: A Steiner tree in Coxeter graph

We reduce 3SAT to Steiner problem in Coxeter graphs.
Let X;,X,,X;5,...,X, be the variables C,,C,,...,C, the

clauses in an arbitrary instance of 3 SAT.

Our aim is to construct a Coxeter graph G= (V, E )

and a terminal set K , and a bound B such that Coxeter

contains Steiner tree I for K at size at most B if and
only if the given 3 SAT instance is satisfiable.

Transforming 3 SAT to Steiner problem in Coxeter graph
is constructed as follows. We connect U; and U, by a

variable path in Figure 11.
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Figure 11: Transforming 3SAT to Steiner Problem in
Coxeter graph

Then we crate for every clause gadget consisting of a

vertex C;that is connected to the literals contained in the

clause C,; be paths of Length = 2n+1.

As terminal set K = {ul u, }U {Cl ,Cy,Cy ,04} and set
B=2n+tm

=]

Figure 12: The clause gadget for the clauses

C =X VX, VX,
C, =X; VX, VX,
Cy; =X,V X5 VX
Cy =X,V XV X

The dashed lines indicated paths of Length f = 2n+1

from C ; to the appropriate vertices on the variable path.

Let X, € P if X, is said to true in this assignment and
)_Cl € P otherwise. To construct a Steiner tree for K we

start with U, — U, path reflecting a satisfying assignment.

X, is true for variables. Hence we arrive from our SAT

problem seven variable and 4 clauses for a 3SAT problem.

The number of variables # =7 to form the clauses

{Cl 5Cy5C5,Cy } and the terminal set
K:@ﬁukwb%q}mdB:%+mn

Next observe that every clause the vertex C; can he

connected by path of Length.
t=2n+1

n=7=1t=2(7)+1=15

In this way we obtain a Steiner tree for K of Length
B=2n+tm

m=4= B=2n+tm
=2(7)+15.4
=14+60

=74

A Steiner tree for this Coxeter graph we starting with a

U, — U, path P reflecting a satisfying assignment.

On the other hand, we assume now that T is a Steiner tree

for K of Length at most B, Trivially for each clause to

the vertex C; has to be connected to the variable path.

Then | E(T) [=(m +1).t > B
>(4+1).15>74

>5.15>74
> 75> 74 = Contradiction

In this graphs %, — U, path contains 28 edges and that

each clause gadget is connected to this path using exactly
t edges.

This shows that U, and U, can only be connected along

the variable path, which requires atleast 2n edges.

In this Coxeter graph U; — U, Path contains 28 edges.

Thus U; — U, path reflects a satisfying assignment. This

implies that a Steiner problem in Coxeter graph is NP-
complete.
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In figure 10 the Steiner tree contains 14 terminals.

Figure 13: A Steiner tree in Coxeter graph
This implies that every full component of a Coxeter graph
contains at most four terminals. This implies that R-

Restricted Steiner problem in Coxeter graph is NP-
complete.

Result 1

Steiner problem in Coxeter graph is NP-complete.

Result 2

Every U, —U, path of Steiner tree in Coxeter graph is

NP-complete and every U; — U, path of Coxeter graph

contains exactly 2n edges.
Result 3

A Steiner tree of Coxeter graph, every full component
contains at most 4 terminals.

Result 4

Transforming 3SAT to Steiner problem in Coxeter graph
is NP-complete.

3. Conclusion

In this paper, we proved that the Steiner tree problem in
Coxeter graph which is NP-complete. We have also shown
that every full component of a Steiner tree contains almost
4 terminals and every U —V path of Steiner tree in
Coxeter graph contains exactly 2n edges.
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