Comparative Analysis of MFCC, LFCC, RASTA-PLP

P. Prithvi¹, Dr. T. Kishore Kumar²
¹National Institute of Technology, Warangal, Telangana – 506 004, India
²National Institute of Technology, Warangal, Telangana – 506 004, India

Abstract: A human’s voice has various parameters that convey vital information. Speech feature extraction follows preprocessing of the speech signal. This process makes certain that the speech feature extraction contains true and accurate information that reveals the emotions of the speaker. In this paper, we present a study and comparison of feature extraction methods like Mel-Frequency Cepstral Co-efficient (MFCC), Linear Predictive Cepstral Co-efficient (LPCC), and Relative Spectral Analysis Perceptual Linear Prediction (RASTA-PLP). These techniques will be analyzed for their suitability and usage in recognition of the speaker. The experimental results show that the better recognition rate is obtained for MFCC as compared to LPCC and RASTA-PLP.

Keywords: MFCC, LPCC, RASTA-PLP, Pre-processing

1. Introduction

Speech is one of the natural means of communication between human beings and several machines have been developed to analyse, recognize, and produce speech. Speech technology is rapidly evolving and a number of tools have been developed for improved implementation.

Speech recognition is an area that involves developing systems that recognize spoken words and allows a computer to convert the captured acoustic speech signal to word(s). Automatic speech recognition (ASR) is one of the fastest growing fields. ASR allows the computer to convert the speech signal into text or commands through the process of identification and understanding. Speech recognition is connected to many fields of physiology, psychology, linguistics, computer science and signal processing, and is even linked to the person’s body language, and its objective is to achieve natural language communication between human and computer. ASR finds numerous applications such as automatic call processing in telephone networks, and query based information systems that provide updated travel information, stock price quotations, weather reports, data entry, voice dictation, access to information: travel, banking, avionics, automobile portal, speech transcription, supermarket, railway reservations etc. [1][2]

2. Speech Pre-Processing

The common steps involved to prepare speech for feature extraction are [6]:

- Sampling
- Pre-emphasis
- Framing
- Windowing

2.1 Pre-emphasis

Pre-emphasis of the speech signal has become a standard pre-processing step at high frequencies. Pre-emphasis reduces the dynamic range of the speech spectrum, enabling to estimate the parameters more accurately. At the synthesis stage, speech synthesised from the parameters representing the pre-emphasised speech is de-emphasised. This step processes the passing of signal through a filter which emphasizes higher frequencies. This increases the energy of signal at higher frequency.

2.2 SNR estimation

First order High-pass filter (FIR) is used to flatten the speech spectrum and compensate for the unwanted high frequency part of the speech signal. The following equation describes the transfer function of FIR filter in z-domain.

\[y[n] = x[n] - A \cdot x[n-1] \] (1)

where \(x[n] \):input speech signal
\(x[n-1] \):previous speech signal
\(A \):pre-emphasis factor, which is chosen as 0.975

2.3 Framing and windowing

In order to ensure the smoothing transition of estimated parameters from frame to frame, pre-emphasized signal \(y[n] \) is blocked into 200 samples with 25 ms frame long and 10 ms frame shift. In addition to that hamming window as shown in equation was selected and applied on each frame in order to minimize the signal discontinuities at the beginning and the end of each frame as shown in equation:

\[w(n) = 0.54 - 0.46 \left(\frac{2n}{N} - 1 \right), \quad 0 \leq n \ll N \] (2)
3. Speech Feature Extraction

Feature extraction is used to convert the acoustic signal into a sequence of acoustic feature vectors that carry a good representation of input speech signal. These features are then used to classify and predict new words. To increase the feature evidence of dynamic coefficients, delta and delta can be devoted by adding the first and second derivative approximation to feature parameters. In this project, several conventional and hybrid feature extraction techniques were simulated and tested using MATLAB software to generate parameter coefficients.

3.1 Mel Frequency Cepstrum Coefficients (MFCC)

MFCC is the most dominant method used to extract spectral features. MFCCs analysis is started by applying Fast Fourier Transform (FFT) on the frame sequence in order to obtain certain parameters, converting the power spectrum to a Mel-frequency spectrum, taking the logarithm of that spectrum, and computing its inverse Fourier transform as shown in figure [3].

![Figure 2: MFCC block diagram](image)

Figure 2: MFCC block diagram

3.2 Linear Predictive Cepstrum Coefficients (LPCC)

LPCC is one of the earliest algorithms that worked at low bitrate and represented an attempt to mimic the human speech and was derived using auto-correlation method. Autocorrelation technique is almost an exclusively used method to find the correlation between the signal and itself by auto-correlating each frame of the windowed signal using following equation as shown in figure. [7]

\[R[i] = \sum_{n=1}^{N_w-1} s_w(n) \cdot s_w(n-1), 0 \leq i \leq p \]

(3)

4 Results and Conclusions

In this paper, we analyzed various feature extraction techniques like MFCC, LPCC, RASTA-PLP for speech recognition. Different stages of speech pre-processing were also studied and implemented.
The two most important factors that affect the speech recognition process are the quality of speech and the size of the codebook. Varying the order of LPCC affects the speech recognition process. Increasing the order improves the rate of speech recognition. However, when higher coefficients are used, the speech recognition rate decreases. On the other hand, varying the order does not have significant impact on speech recognition rate in case of MFCC. The recognition rate increases and remains constant. MFCC yields better performance than LPCC and RASTA-PLP when the codebook size is small. Also, MFCC is robust to noise. To conclude, MFCC has better recognition rate and is robust to noise and spectral estimation errors when higher order coefficients are used. [5][8][9]

The results show that MFCC performs better than LPCC, RASTA-PLP in speech recognition. Also, MFCC gives consistent results and is robust to noise due to the fact that it is based on human perception of speech. [11][12].

References

Wavelet Transform to Kannada Speech Recognition, International Journal of Computer Applications (0975887), July 2011, Volume 26 No.4.

Author Profile

Smt. P. Prithvi is an Assistant Professor at the Dept. of ECE, National Institute of Technology, Warangal. Her major areas of interest include Speech Processing, Electronic Instrumentation.

Dr. T. Kishore Kumar is an Associate Professor at the Dept. of ECE, National Institute of Technology, Warangal. His areas of interest include Speech Processing, Radar Signal Processing, Real Time Embedded Systems, Advanced Digital System Design, VLSI systems, Real Time Processing using Embedded Systems.