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Abstract: This paper presents the concept of equimomental system of point-masses for rigid body to balance the mechanisms 

dynamically. The links of mechanism are modelled as rigid bodies for kinematic and dynamic analysis. The mass and moment of inertias 

of the links govern the shaking force and shaking moment transmitted to the frame on which they are mounted. Optimization of mass 

and moment of inertias methodology is used in minimizing the shaking force and shaking moment. The formulation of optimization 

problem is greatly simplified using the equimomental system of point-masses. The effectiveness of the method is illustrated with 

an example. 
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1. Introduction 
 

A rigid body can be defined as a system of particles 

where the distances between particles remain essentially 

unchanged. However, this is an idealization as all solid 

bodies change shape to some extent when the forces are 

applied to them. Moreover, if the movements associated 

with the changes in shape are very small compared with 

the overall movements of the body as a whole, then the 

ideal concept of rigidity is quite acceptable. The 

machine mechanisms, land and air vehicles, rockets and 

spacecrafts, and many moving structures can be 

analysed using the concept of the rigid body [1-3].  

 

To balance a mechanism, one has to eliminate the shaking 

force and shaking moment transmitted to the ground. 

The links of such mechanism can be modelled as rigid 

bodies for simplifying the kinematic and dynamic 

analysis [4]. The mechanisms are to be balanced either 

statically or dynamically. In some cases, static balancing 

can be acceptable substitute for dynamic balancing and 

is generally easier to do. 

 
Like any system of forces acting on a rigid body can be 

replaced by an equivalent system of forces which 

produce identical motion, an equivalent mass distribution 

of a rigid body can be determined. For example, spatial 

mass distribution of a rigid body can be converted into a 

system of point-masses keeping the dynamic behavior 

identical. Such dynamically indistinguishable systems are 

called equimomental systems. The general requirements 

for the dynamical equivalence were laid down by Routh 

[5]. The set of point-masses and the rigid body are 

equimomental if they have the same total mass, the same 

center of mass, and the same inertia tensor with respect 

to the same coordinate frame [6]. However, there is no 

such limit on the maximum number of point-masses. 

The number of parameters related to the point-masses 

increase with increase of point- masses. It is shown that 

a set of seven point-masses is very effective in 

reducing shaking force and shaking moment in the 

mechanism [7]. This set of rigidly connected seven point-

mass systems is explained in this paper to balance the 

mechanism dynamically.  

 
This paper is organized as follows. Section 2 explains the 

equations of motion for rigid body. Equations of motion 

for equimomental point-masses are re-written in section 

3. Problem of minimizing shaking force and shaking 

moment for a rotating link is then formulated in 

Section 4. A numerical example is solved using the 

proposed method in section 5. Finally, conclusions are 

given in Section 6. 

 

2. Equations of Motion of Rigid Body 
 

A link of a multibody system is modelled as the rigid 

body for the dynamic analysis. The Newton-Euler 

equations of motion for the ith rigid body of a 

multibody system shown in the Figure 1 are expressed as 

[8]: 

 
c
ii

c
iii

c
i nωIΩωI  ; c

i
c
ii fv m  (1)-(2) 

 

Where 
c
in is resultant of pure moment and moment of 

external forces about the mass center, Ci , and c
if is 

resultant force acting on the body at Ci. Moreover, c
iI is 

the centroidal inertia tensor with respect to Ci. In Eqs. 

(1) and (2), mi, iω and iω are defined as the mass, 

angular velocity and angular acceleration of the body. The 

three-dimensional vector c
iv defines the linear 

acceleration of the mass center. 

 
Figure 1 Free-body diagram of the ith body 

 

Let the ith body is connected to the previous and next 

bodies at Oi and Oi+1 through joints. The reference frame 

OXYZ is the fixed inertial frame. Then ai can be 

defined as the link length. As in linkage balancing 

problem, we are more interested to know the forces at 
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the joints, the equations with respect to mass center can 

be modified to find these forces directly at the joints. 

The NE equations, eqs. (1) and (2), are to be expressed 

with respect to Oi, in compact form as [7]:  

 

M 
i 
t

i 
 W

i 
M 

i 
E

i 
t 

i 
 w 

i (3) 

 

Here, 6×6 matrices of extended mass, Mi, extended 

angular velocity, Wi, and Ei are defined as: 

  

(4)

Where Di and Ωi are the 3x3 cross-product tensors 

associated w ith three-dimensional vectors di and ωi, 

respectively. Note that 1 and O are 3×3 unity matrix 

and 3×3 zero matrix, respectively. Furthermore, the six-

dimensional vectors of twist, t i, twist rate, it , and 

wrench wi , are defined as:  

  

                                        (5) 

 

where ωi, vi, ni and fi, are angular velocity, linear 

velocity, resultant moment, and resultant force acting on 

the ith body, respectively, at Oi of the body. Equation 

(3) is the desired NE equations of motion of the ith body 

written with respect to the point, Oi. It is suitable for 

finding the reaction forces at the joints. This formulation 

avoids the post processing for computing the reactions. 

 

3. Equations of Motion for Equimomental 

System of Point-Masses 
 

The Newton-Euler (NE) equations of motion for the rigid 

body presented in section 2 are, now, modified for the 

equimomental system of point-masses. A set of n point- 

masses will be dynamically equivalent to the rigid body 

if [4] 

  

 

here m
ij is jth point-mass and x

ij
, y

ij
, z

ij are its 

coordinates where as the rigid body has mass m
i
, the 

mass center )( z,y,x and the moment of inertias I
ixx

, I
iyy

, I
izz 

and product of inertias I
ixy

, I
iyz

, I
izx

. An equimomental 

system of seven point-masses as shown in Figure 2 is 

used here for the rigid body. Referring to Figure 2, the 

three-dimensional vectors, d
ij and r

ij
, are the positions 

the point-mass, m
ij
, from the origins O

i and O
i+1

, 

respectively. Subscripts i and j denote the ith link and 

its jth point-mass, respectively.  

 

 
Figure 2 Equimomental system of seven point-masses 

 

Vector di locating the total mass center in terms of dij‟s 

is obtained as: 

 

 
 

 (16) 

Denoting d
ij=[d

ijx
, d

ijy
, d

ijz
]

T
, the 3x3 skew-symmetric 

matrix, Di, associated with the vector, di, and inertia 

tensor, o
iI , about Oi, in terms of the point-mass 

parameters are represented as: 

 

 
(17) 

Equations (16) and (17) define the mass matrix, Mi, of 

the ith body in terms of the parameters of the 

equimomental seven point-masses. Putting this mass 

matrix Mi in the Eq. (3) will give the modified NE 

equations of motion for equimomental point- mass 

system. 
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4. Problem Formulation for Minimizing 

Shaking Force and Shaking Moment for a 

Rotating Link 
 

Based on the analysis presented in sections 2 and 3, the 

problem for minimizing the shaking force and shaking 

moment for a rotating link is formulated in this section. 

The single link mechanism under consideration is shown 

in Figure 3.  

 

 
 

The rigid link is connected to frame through a revolute 

joint and rotating about X axis. The fixed inertial frame, 

OXYZ, is located at the joint between link and frame. 

The path of center of mass of the link lies in YZ plane 

for complete cycle. The resultant moment about the 

origin, O, and the resultant force acting at O on the link 

are shown in Figure 4. Here the frame and the link 

are numbered as ≠0 and ≠1, respectively, for the analysis 

purpose. f
01 and n

01 are moments and forces applied by 

the frame on the link at the joint. Without losing 

generality, the external forces like gravity and dissipative 

forces are not considered here. As discussed in previous 

sections, this link can be treated as dynamically equivalent 

system of seven point-masses. A body fixed frame, 

o
1
x

1
y

1
z

1 is suitably chosen for finding mass center and 

inertias. The point-masses and their locations are shown 

in Figure 5.  

 
Figure 5 Equimomental seven point-masses 

 

The positions of point-masses in body fixed frame, 

o1x1y1z1, are given by three- dimensional position vectors, 

dij [dijx,dijy,dijz]
T
, for j=1,…,7. These position vectors 

are transferred into fixed inertial frame, OXYZ using 

two rotation matrices, Q
θ and Q

α about axis Z and X 

respectively, defined as: 

 

 
 

where Cθ=cosθ and Sθ=sinθ, while θ and α are the 

angles of rotation about Z and X axes, respectively. 

Knowing the rotation matrix, Qi, the three-dimensional 

position vector d
1j and 3x3 inertia tensor, o

iI for point-

masses in frame o
1
x

1
y

1
z

1 can be transformed into that of 

OXYZ as: 

 
The NE equations of motion of the link in the given 

mechanism as explained in Eq. (3) will be written as: 

M1t


1  W1M1E1t1  w1 (18) 

 

The terms associated with Eq. (18) for single link 

mechanism are determined from Eq. (4) and Eq. (5) for 

i=1. For the problem under consideration: 

 

 
(19) 

 

Shaking force is defined as the reaction of the resultant 

inertia forces, whereas shaking moment about any 

particular point is the reactions of the resultant inertia 

couples and the moment of the inertia forces about that 

point [9]. For the mechanism under consideration, the 

shaking force and shaking moment with respect to the 

joint are obtained as:  

  
 fsh  f

01 
; nsh  n

01
                                                        (20) 

 

where three-dimensional vectors, fsh and nsh , represent 

shaking force and shaking moment while three-

dimensional vectors, f01 and n01 are the vector components 

of w1. In this case, both shaking force and shaking 

moment transmitted to the frame are to be minimized, 

so the combined objective function is used for the 

optimization problem. For a combined objective function, 

its quantities are normalised with respect to the reference 

link parameters, which are defined as [9]: 

 

                                                (21) 

 

The parameters m, a and ω represent mass, length and 

angular velocity of the link respectively. The 

normalization of dynamic quantities allows one to 

consider the quantities of different dimensions during 

optimization [10]. The root mean square (RMS) values 

of the normalized shaking force and shaking moment 

are used for the minimization purpose. Considering the 

RMS values of the normalized shaking force and 

shaking moment, an optimality criterion is proposed as:  

  

 z  w
1
f

sh,rms  w
2 nsh,rms                                                 (22) 

 

where w
1 and w

2 are the weighting factors. The seven 

point-masses parameters for the link are design variables 

for the optimization. The task here is to find the values 

of these variables to minimize the function, z.  

 

5. Numerical Example 
 

The effectiveness of the proposed method is shown 

using a cylindrical shaped link made of steel, whose 

parameters are given in table 1. The body fixed frame 

011 ff 
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o
1
x

1
y

1
z

1 
is chosen such that x

1 
coincides with the axis of 

the cylinder. Mass and inertias of the normalized link are 

given in Table 2. MATLAB programs were developed for 

finding seven point-masses dynamically equivalent to 

the link. The resulting point- masses and their locations 

are shown in the Table 3. 

 

Table 1: Parameters for rigid link in spatial motion 

Parameter Description Value 

m, a, R mass, length and radius of link 
61.23 kg, 1 m 

and 

0.05 m 
ωx, α 

angular velocity and angle of 

rotation of link 

about X axis of inertial frame 

100 radians/sec, 

variable (0 to 

360°) θ angle between x1 and X 45° 

Ixx 
moment of inertia of the link 

about the x-axis 

of body fixed frame o1x1y1z1 

0.0765 kg-m2 

Iyy= Izz 
moment of inertia of the link 

about the y-axis 

and z-axis of body fixed frame 

o1x1y1z1 

20.4483 kg-m2 

Ixy=Iyz=Izx polar moment of inertias of the 

link 
0 

D 
distance of centre of mass from 

the origin of 

body fixed frame o1x1y1z1 

xc=0.5 m,yc= 

zc=0 

  

Table 2: Mass and inertias of the normalized link 
m 

(kg) 

dx dy dz Ixx Iyy Izz Ixy Iyz Izx 

(meter) (kg-meter2) 
1 0.5 0 0 0.0765 20.4483 20.4483 0 0 0 

  

Table 3: Equimomental point-masses of the normalized 

link 
m1=m5 m2=m6 m3=m7 m4 Dx dy=dz 

(kg) (meter) 

0.25 0.2165 0.03349 0 0.5774 0.0250 

 

T he point-masses are the design variables in this case 

and the optimization problem is solved using 

„„fmincon‟‟ function of the optimization toolbox of 

MATLAB (Figure 6). The comparison of original and 

optimum values of shaking force and shaking moment 

components and resultant are shown in Figure 7  and 

8, respectively. (discontinuous curves represent optimum 

values while continuous curves represent original 

values) 

 

 
Figure 6: Flowchart of MATLAB Algorithm 

 

 
Figure 8: Comparison of Normalized Resultant Shaking 

Force and Shaking Moment 

 

The resultant of the original as well as optimum shaking 

force and shaking moment values are shown in Table 4. 

Similarly, optimized balance mass, its location, and 

moment of inertia are given in Table 5.  

 

Table 4: Comparison of the RMS values of the 

normalized shaking force and the shaking moment 
 Original Value Optimized 

Value Shaki

ng 

Force 

0.3

53

6 

1.4895 x 10-6 

Shakin

g 

Momen

t 

0.1

66

4 

0.24

96  

Table 5: Mass and inertia properties of the 

counterweight 

M dx dy=dz Ixx Iyy= 

Izz 

Ixy Iyz Izx 

(kg) (meter) (kg-meter2) 

0.50 -1.00 0 -0.000625 0.1670 -0.0046 -0.000206 -0.0046 

 

From results, it is clear that x components of shaking 

force and shaking moment are zero for complete cycle 

as link is rotating about x axis. The optimum shaking 

force values for y and z components as well as 

resultant is reduced and reaches to zero. However, 

optimum shaking moment values are increased slightly as 

single link is considered in this problem. The reduction 

in shaking moment can be achieved for the mechanisms 

using this method. This methodology will be extended for 

the slider crank mechanism. 

 

6. Conclusions 
 

This paper presents a method for balancing the 

mechanism using the concept of the equimomental 

system for rigid body. The dynamic equations of motion 

are formulated systematically in the parameters related 

to the equimomental point-masses. Using these 

equations, the optimization problem is formulated for 

the balancing of shaking force and shaking moment of a 

rigid link in spatial motion. The proposed method is 

illustrated using a single link mechanism. The method 

completely balanced the shaking force transmitting to the 
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frame. Further, the shape optimization may be used to 

find the shape and size of the counterweight. 
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