
International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

 Index Copernicus Value (2015): 62.86 | Impact Factor (2015): 3.791

Volume 5 Issue 8, August 2017

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

New Pre-Processor EXCLUDE Directive of C/C++

Gaurav Kumar Roy

1B.S. EC Council University (School of Cyber Security) USA, 2 M.C.A. Lovely Professional University (School of Computer Application)

India

Abstract: This study and research paper is an attempt to bring in a new feature in C and C++ language where the unused headers can

be omitted or excluded from the program. This paper brings in the idea of excluding the unused libraries from within the program. I’d

further like to forward my research paper to our respected Sir Bjarne Stroustrup to apply my idea into his compiler.

Keywords: compiler, libraries, header-file, programming, efficiency, header file, algorithm

1. Introduction

As we all know that today’s modern coding techniques and

programming methodologies are equipped with more

efficiency so that the time and space complexities can be

reduced to a handsome extent. Not a single corporation,

organization, developer or programmer wants unnecessary

codes or function or even libraries to get added up in the

program we write. So here I come with one solution to

eliminate and reject those unnecessary inclusions, in case we

got some within our program. This elimination of unnecessary

may get performed based on certain criteria as well. I will

discuss in this paper why I thought of this and the algorithm

to eliminate and when to implement this concept.

2. Topic of Discussion

Here’s a lists of topics to be discussed:

 What is Programming

 Efficiency and Effectiveness of Programming

 The Famous C / C++

 Header files in C / C++

 #include <bits/stdc++.h>

 #exclude: A new Approach to Preprocessors.

3. What is Programming?

Programming is the technique of grabbing an algorithm and

encoding it into a specific notation, i.e. a programming

language, so that it can be executed by a computer in the form

of program. Although many programming languages and

many different types of computers exist, the important first

step is the need to have the solution.

4. Efficiency and Effectiveness of Programming

A great starting point for talking about program evaluation is

to get a better understanding of the concepts of "efficiency",

"effectiveness" of a program. In simple terms, program

efficiency relates to the cost of producing products or services

relative to other programs or to some ideal process. Program

effectiveness relates to the level by which the activities of a

program produce the desired effect. According to Peter

Ferdinand Drucker, who was an Austrian-born American

management consultant, educator, and author; and according

to him, Efficiency is the capacity to do things perfect (which

tends to perfection). Effectiveness is the capacity to do the

right things in a right way/path. These two became the

primary important thing in today’s programming and tech

world as well. Why I’m discussing about these topics will be

answered in the coming points and topics.

4.1 Figure to Show its effect

Figure 1: Graph showing the inverse reaction of efficiency

wrt increase in Program statements

In the above diagram, it is clear that with the increase in the

number of statements or libraries, there lies an opposite

outcome, i.e. in the above graph; it decreases the efficiency of

a program. So my main focus is to point out how to reduce or

minimize such problem by eliminating extra unused

statements, expressions and libraries from a program.

5. The Famous C and C++

C is a middle-level programming language that was

developed in the mid-1970s. It was originally used for writing

UNIX programs, but is now used to write applications for

nearly every available platform.

C++, pronounced "C plus plus," is a high-level programming

language that was built off the C language. The syntax of C++

Paper ID: 2081701 49 of 52

file:///G:\www.ijser.in\Documents\www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

 Index Copernicus Value (2015): 62.86 | Impact Factor (2015): 3.791

Volume 5 Issue 8, August 2017

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

is nearly identical to C, but it has object-oriented features,

which allow the programmer to create objects within the

code. This makes programming easier, more efficient, and

some would even say more fun. Because of the power and

flexibility of the language, most software programs today are

written in C++.

6. Header Files in C and C++

Header files are library files of C and C++ that contain

definitions of pre-defined functions and variables that can be

imported or used in any C++ program by using the pre-

processor directive #include statement in the beginning o the

program. All header file have an extension ".h" that contains

C++ function declaration and macro definition.

 Examples of some header files are:

 Stdio.h

 Iostream.h

 Conio.h

 Stdlib.h

 String.h

 Bits/stdc++.h

 Algorithm.h

 Math.h and lots more….

Each header file contains information (or declarations) for a

particular group of functions. Like stdio.h header file contains

declarations of standard input and output functions available

in C++ which is used for get the input and print the output.

Similarly, the header file math.h contains declarations of

mathematical functions available in C++.

7. The newly introduced <bits/stdc++.h> Header

File

It is basically a header file that includes every standard

library. In programming contests, using this file is a good

idea, when you want to reduce the time wasted in doing

chores; especially when your rank is time sensitive. It is

basically used by testers, newbie and for education purposes.

But there may arise some situation when programmers might

not recall some of the header files which he/she wants to use

in his program, in that situation also, this header file proves

very useful. Also, there can be another case when a

programmer wants to use all the standard header files except

3 or 4 header files, in that case also, this header file can make

readability as well as implementation simpler.

From, software engineering perspective, it is a good idea to

minimize the ‘include’. If you use this header file, it actually

includes a lot of .h files, which your program may not need,

thus increase both compile time and program size

unnecessarily.

Though it rings programmers with lots of advantages, but

basically, it holds three disadvantages as well, i.e.:

 increases the compilation time

 uses an internal non-standard header file of the GNU C++

library, and so will not compile in MSVC, XCode, and

many other compilers

 This header file is not part of the C++ standard, is therefore

non-portable, and should be avoided

The sample code of bits/stdc++.h is:

 // C

#ifndef _GLIBCXX_NO_ASSERT

#include <cassert>

#endif

#include <cctype>

#include <cerrno>

#include <cfloat>

#include <ciso646>

#include <climits>

#include <clocale>

#include <cmath>

#include <csetjmp>

#include <csignal>

#include <cstdarg>

#include <cstddef>

#include <cstdio>

#include <cstdlib>

#include <cstring>

#include <ctime>

#if __cplusplus >= 201103L

#include <ccomplex>

#include <cfenv>

#include <cinttypes>

#include <cstdalign>

#include <cstdbool>

#include <cstdint>

#include <ctgmath>

#include <cwchar>

#include <cwctype>

#endif

// C++

#include <algorithm>

#include <bitset>

#include <complex>

#include <deque>

#include <exception>

#include <fstream>

#include <functional>

#include <iomanip>

#include <ios>

#include <iosfwd>

#include <iostream>

#include <istream>

#include <iterator>

#include <limits>

#include <list>

#include <locale>

#include <map>

#include <memory>

#include <new>

#include <numeric>

#include <ostream>

#include <queue>

Paper ID: 2081701 50 of 52

file:///G:\www.ijser.in\Documents\www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

 Index Copernicus Value (2015): 62.86 | Impact Factor (2015): 3.791

Volume 5 Issue 8, August 2017

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

#include <set>

#include <sstream>

#include <stack>

#include <stdexcept>

#include <streambuf>

#include <string>

#include <typeinfo>

#include <utility>

#include <valarray>

#include <vector>

#if __cplusplus >= 201103L

#include <array>

#include <atomic>

#include <chrono>

#include <condition_variable>

#include <forward_list>

#include <future>

#include <initializer_list>

#include <mutex>

#include <random>

#include <ratio>

#include <regex>

#include <scoped_allocator>

#include <system_error>

#include <thread>

#include <tuple>

#include <typeindex>

#include <type_traits>

#include <unordered_map>

#include <unordered_set>

#endif

 It is obvious that you can make this advantageous by

modifying the code and keeping those specific header files

that you need for your everyday program by removing

unwanted header files and then saving the file with the same

name or something else along with a .h extension.

Again, the possibilities of increasing its advantages in cases

when the programs or source codes are big and need majority

of the header files, except 5 or 6 or some quantity like this.

This will both reduce programmer’s including of headers as

well as increase readability and efficiency.

8. #exclude: A new Approach to Preprocessors

Directives

A new way of eliminating unwanted header files can be

introduced in the C and C++ programming world, which will

exclude dynamically those header files which are not required

within the program. The exclusion can also be put within

condition-blocks in order to eliminate unwanted headers

based on some specific conditions within the program after

the program runs. And if the programmers us the

bits/stdc++.h header files, there won’t be any problem in

eliminating those header files using the

#exclude<headerFileName.h> which tells the compiler to

release or exclude that specific header from the lists of

headers residing inside the bits/stdc++.h code.

So the compiler developers and the C / C++ developer’s

community should incorporate this concept of #exclude<>.

Here I’m having a sample overview kind off algorithm of how

internally this #exclude changes the structure of the program,

in choosing or eliminating the header file from getting called.

8.1 Rough Algorithm and explanation how will works:

char headerTok[100];

#if exclude "headerTok"

//Check whether <bits/stdc++.h> exists in the program

#ifdef<bits/stdc++.h> // if exists

//------------------------

 char incl[20]="#include";

 // creates a character variable storing the string "#include"

 if(headerTok == (incl+"<" +tok+ ">"))

// if the headerTok has the structure

#include<headerFileName>

 {

 filename=bits/stdc++.h;

 // open the header file bits/stdc++.h in any editor

 open(filename,"rw");

// in read-write mode, opened so that it can be dynamically

editted

 for(char word=0; word<filename.EOF; word++)

// check for the 'headerTok' word, whether matches with the

string or word inside that file

 {

 if(stringSearch(incl+"<" +headerTok+ ">") == TRUE)

// if headerTok matches with headerFIleName

 {

 incl+=("//"+incl+"<" +headerTok+ ">");

// comment that header file and save the file

 }

 }

 }

 filename.close(); // close the file

#endif

Let me explain what the above algorithm is doing….

Here, first you have to take a string which will hold your

header file name in the form of token. Then, you have to

check for the condition whether the header file name is called

with the new concept and preprocessor directive exclude.

Then you have to check, whether your program is having the

header file – bits/stdc++.h or not. If your program already

include the bits/stdc++.h header then check, whether the

header-file which you have mentioned along with the exclude

directive is residing within the code of bits/stdc++.h or not. If

yes, then the algorithm opens that bits/stdc++.h file in read-

write mode, and searches for the specific string which will be

the header-file name in the form of token, and put a comment

i.e. “//” at the starting point of that statement. The string

search will go on till it reaches the end of file. And finally the

file will be saved and closed. And then in the original

program, the code will execute with the include statement

which will eventually exclude those header files which will be

written like this:

 #include< bits/stdc++.h >

Paper ID: 2081701 51 of 52

file:///G:\www.ijser.in\Documents\www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

 Index Copernicus Value (2015): 62.86 | Impact Factor (2015): 3.791

Volume 5 Issue 8, August 2017

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

 #exclude<stdlib.h>

 #exclude<math.h>

 #exclude<exception.h>

 # exclude<future.h>

This is how the entire thing will be going to work.

9. Other Recommendations and Help

I would like others to recommend me or contribute to my

algorithm as to how to build the algorithm so that in case the

bits/stdc++.h is used and programmers need to eliminate the

header files using the #exclude<> or #exclude” “statement(s).

References

[1] Wikipedia.com

[2] Programming -- Principles and Practice Using C++

(Second Edition) – By: Bjarne Stroustrup

[3] Programming with Today’s C++ (C++11 and C++14) by

Bjarne Stroustrup

[4] Identifying and Undеrstandіng Header File Hotspots in

C/C++ Build Processes – by: Shane McIntosh and Bram

Adams

Author’s Profile

Gaurav Kumar Roy has received his BCA

degree from Assam University, India and then

moved to Hacking and Security discipline and did

Diploma in Hacking and Security under EC

University, USA in 2017. Also he has done C|EH, CH|FI,

VA|PT, CCNA(r&s), PMP, OWASP10 certifications.

Currently he is pursuing his Masters in Computer Application

(MCA) from Lovely Professional University (LPU), Punjab

(with Game Engineering and Development as specialization).

Also he is a tech writer of various tutorial-sites like:

w3schools, study tonight, tutorials Cloud etc. Also he is a

faculty member and a Trainer of 2 famous institutes like:

CERTSTORE (certstore.in) and STUCORNER

(stucorner.com). Also he was a software developer intern in

ATTOCOM Pvt. Ltd. (Java-Hibernate, JDBC and

RabbitMQ). He has already written 6 international research

papers in famous journals. He is the creator and host of his

own YouTube channel as well.

Paper ID: 2081701 52 of 52

file:///G:\www.ijser.in\Documents\www.ijser.in
http://creativecommons.org/licenses/by/4.0/

