Holomorphic Functions of Bounded Type

Mohamed Nour A. Rabih¹, Habeeb I. A. Ibrahim², Osman Abdalla Adam Osman³

¹Department of Mathematics – College of Science - University of Bakht Er-ruda-Eddwaim -Sudan

^{1,3}Department of Mathematics – College of Science & Arts in Oklat Alskoor – Qassim University – Saudia Arabia

(mohammednoor81@gmail.com)

(osmanabdallah1970@gmail.com)

²Department of Mathematics – Faculty of Education University of Zaligei -Sudan

²Department of Mathematics – College of Science & Arts in Elmiznab – Qassim University – Saudia Arabia

Email: o.osman@qu.edu.sa

Abstract: We prove that if U is a balanced $\mathcal{H}_{(a+\varepsilon)}(U)$ - domain of holomorphy in T sirelson's space then the spectrum of $\mathcal{H}_{(a+\varepsilon)}(U)$ is identified with U. We show that if A is a bounded subset of a Banach space E, then $\widehat{A}_{\mathcal{H}_{(a+\varepsilon)}(E)} = \widehat{A}_{\mathcal{P}(E)}$. Also we show theorems of Banach-Stone type for the algebras $\mathcal{H}_{(a+\varepsilon)}(U)$ and $\mathcal{H}_{(a+\varepsilon)}(V)$.

Keywords: convex open subsets, Banach stone, holomorphic mappings.

Introduction

Let E be a Banach space and let U be an open subset of E. In [2, 15], it is proved that if E is Tsirelson's space, then the spectrum of $\mathcal{H}_{(a+s)}(U)$ is identified with U, when U = E. In [11], J. Mujica generalized this result for absolutely convex open subsets of Tsirelson's space, and asks if the result can be improved for a more general class of open subsets of E, for instance, polynomially convex open subsets. In this Paper we give a partial answer to this question, i.e., we show that the result remains true for balanced $\mathcal{H}_{(a+\varepsilon)}(U)$ -domains of holomorphy on Tsirelson's space. we define $\mathcal{H}_{(a+s)}(U)$ -convex open subsets and present properties and examples of such sets. We also give some auxiliary results. Most of them are generalizations to U-bounded sets of known results for compact sets. Also we show a corollary on finitely generated ideals of the algebra $\mathcal{H}_{(a+\varepsilon)}(U)$. Finally we show algebras of holomorphic germs $\mathcal{H}(K)$ and $\mathcal{H}(L)$, improving results from [14].

Blanced Open Subspace and Continuous Mappings

We refer to [7,15] and [10] for background information on infinite

dimensional complex analysis. E and F will always denote Banach spaces. Let $\mathcal{P}(E; F)$ denote the Banach space of all continuous polynomials from E into F. $\mathcal{P}({}^{m}E; F)$ denotes the Banach space of all continuous m-homogeneous polynomials from E into F.

 $\mathcal{P}_f({}^mE;F)$ denotes the subspace of $\mathcal{P}({}^mE;F)$ generated by all polynomials of the form $P(x) = \varphi(x){}^mb$, for all $x \in E$, where $\phi \in E'$ and $b \in F$. Such polynomials are called of finite type. When $F = \mathbb{C}$, we write $\mathcal{P}(E)$, $\mathcal{P}(^{m}E)$ and $\mathcal{P}_{f}(^{m}E)$ instead of $\mathcal{P}(E;\mathbb{C})$, $\mathcal{P}(^{m}E;\mathbb{C})$ and $\mathcal{P}_{f}(^{m}E;\mathbb{C})$ respectively.

Let U be an open subset of E. We say that a subset $A \subset U$ is U-bounded if A is bounded and there exists $\varepsilon > 0$ such that $A + B(0, \varepsilon) \subset U$.

We will denote by $\mathcal{H}_{(a+\varepsilon)}(U;F)$ the vector space of all holomorphic mappings $f: U \to F$ which are bounded on every U-bounded subset. Such mappings are called holomorphic mappings of bounded type. If $F = \mathbb{C}$, we write $\mathcal{H}_{(a+\varepsilon)}(U)$ instead of $\mathcal{H}_{(a+\varepsilon)}(U;\mathbb{C})$. We denote by $\tau_{(a+\varepsilon)}$ the topology on $\mathcal{H}_{(a+\varepsilon)}(U;F)$ of the uniform convergence on all U-bounded subsets. $\mathcal{H}_{(a+\varepsilon)}(U;F)$ is a Fréchet space for this topology, and like wise $\mathcal{H}_{(a+\varepsilon)}(U)$ is aFréchet algebra. If U is balanced, it follows from the Cauchy inequalities that the Taylor series of each $f \in \mathcal{H}_{(a+\varepsilon)}(U;F)$ at the origin converges uniformly on each U- bounded subset. In particular, if ρ_U denotes the restriction of mappings to U, then $\rho_U(\mathcal{P}(E;F))$ is $\tau_{(a+\varepsilon)}$ -dense in $\mathcal{H}_{(a+\varepsilon)}(U;F)$.

We denote by $S_{(a+\varepsilon)}(U)$ the spectrum of the algebra $\mathcal{H}_{(a+\varepsilon)}(U)$, i.e., the set of all continuous complex homomorphisms (and by that we mean linear and multiplicative) of $\mathcal{H}_{(a+\varepsilon)}(U)$.

Every point of U can be associated with an element of $S_{(a+\varepsilon)}(U)$ as follows: for each $z \in U$ fixed, let $\delta_z: \mathcal{H}_{(a+\varepsilon)}(U) \to \mathbb{C}$ be defined by $\delta_z(f) = f(z)$, for all $f \in \mathcal{H}_{(a+\varepsilon)}(U)$. Each δ_z is called evaluation at z. It is clear that $\delta_z \in S_{(a+\varepsilon)}(U)$, for all $z \in U$, and the mapping $\delta: U \to S_{(a+\varepsilon)}(U)$ is used in order to identify U

Volume 6 Issue 11, November 2018 <u>www.ijser.in</u> Licensed Under Creative Commons Attribution CC BY with the subset $\delta(U)$ of $S_{(a+\varepsilon)}(U)$. Note that δ is injective because the continuous linear forms already separate the points of E.

We will show that under certain hypotheses on E and U, all the elements of $S_{(a+\varepsilon)}(U)$ are evaluations at some point of U, and in this sense we say that $S_{(a+\varepsilon)}(U)$ is identified with $\delta(U)$.

In the following we give some needed results.

Let X be a subset of E, A be a subset of X, and $\mathcal{F} \subset \mathcal{C}(X)$. Then the \mathcal{F} -hull of A is the following set: $\widehat{A}_{\mathcal{F}} = \left\{ x \in X: |f(x)| \leq \sup_{A} |f|, \text{ for all } f \in \mathcal{F} \right\}.$

Definition(1):

Let E be a Banach space and let U be an open subset of E. We say that U is:

(a) $\mathcal{P}_{(a+\varepsilon)}(E)$ -convex if $\widehat{A}_{\mathcal{P}(E)} \cap U$ is U-bounded, for every U- bounded

subset A;

(b) strongly $\mathcal{P}_{(a+\varepsilon)}(E)$ -convex if $\widehat{A}_{\mathcal{P}(E)} \subset U$ and is U-bounded, for every

U-bounded subset **A**;

(c)
$$\mathcal{H}_{(a+\varepsilon)}(E)$$
-convex if $\widehat{A}_{\mathcal{H}_{(a+\varepsilon)}(E)} \cap U$ is U-
bounded, for every U-

bounded subset A;

(d) strongly
$$\mathcal{H}_{(a+\varepsilon)}(E)$$
-convex if $\widehat{A}_{\mathcal{H}_{(a+\varepsilon)}(E)} \subset U$ and is *U*-bounded, for

every U-bounded subset A;

(e) $\mathcal{H}_{(a+\varepsilon)}(U)$ -convex if $\widehat{A}_{\mathcal{H}_{(a+\varepsilon)}(U)} \cap U$ is Ubounded, for every Ubounded subset A;

The following lemma shows that the notions of (strongly) $\mathcal{P}_{(a+\varepsilon)}(E)$ -

convex and (strongly) $\mathcal{H}_{(a+\varepsilon)}(E)$ -convex set coincide.

Lemma (2):

Let A be a bounded subset of E. Then $\widehat{A}_{\mathcal{H}_{(a+\varepsilon)}(E)} = \widehat{A}_{\mathcal{P}(E)}$.

Proof:

Since $\mathcal{P}(E) \subset \mathcal{H}_{(a+\varepsilon)}(E)$, we have that $\widehat{A}_{\mathcal{H}_{(a+\varepsilon)}(E)} \subset \widehat{A}_{\mathcal{P}(E)}$. Now let us suppose that there exists $a \in \widehat{A}_{\mathcal{P}(E)}$ such that $a \notin \widehat{A}_{\mathcal{H}_{(a+\varepsilon)}(E)}$. Let $f \in \mathcal{H}_{(a+\varepsilon)}(E)$ be such that $|f(a)| > \sup_{A} |f|$. since $\widehat{A}_{\mathcal{P}(E)}$ is bounded and $\mathcal{P}(E)$ is dense in $\mathcal{H}_{(a+\varepsilon)}(E)$ for the $\tau_{(a+\varepsilon)}$ topology. Given $\varepsilon > 0$ there exists $P \in \mathcal{P}(E)$ such that $\sup_{\widehat{A}_{\mathcal{P}(E)}} |f - P| < \frac{\varepsilon}{2}$. In particular we have that

$$\begin{split} \sup_{\mathbf{A}} |p| &\leq \sup_{\mathbf{A}} |p - f| + \sup_{\mathbf{A}} |f| < \frac{\varepsilon}{2} + \sup_{\mathbf{A}} |f|.\\ \text{Finally} & \text{we} & \text{get} & \text{that} \\ |f(a)| &\leq |f(a) - p(a)| + |p(a)| < \frac{\varepsilon}{2} + \sup_{\mathbf{A}} |P| < \varepsilon + \sup_{\mathbf{A}} |f| \\ \text{, for all } \varepsilon > \mathbf{0}, \text{ which is a contradiction.} \end{split}$$

Lemma (3):

If $\widehat{A}_{\mathcal{H}_{(a+\varepsilon)}(E)} \subset U$, for every *U*-bounded subset *A*, then *U* is strongly $\mathcal{H}_{(a+\varepsilon)}(E)$ -cnvex.

Proof:

We follow ideas of [9]. Let A be a U-bounded subset.

We must show that $\overline{A}_{\mathcal{H}_{(a+\varepsilon)}(E)}$ is U-bounded. Since it is clear that $\widehat{A}_{\mathcal{H}_{(a+\epsilon)}(E)}$ is bounded, it remains to show that $\varepsilon > 0$ there exists such that $\widehat{A}_{\mathcal{H}_{(n+\varepsilon)}(\mathcal{E})} + B(0,\varepsilon) \subset U$. Let $\varepsilon > 0$ be such that $A + B(0,\varepsilon)$ **U**-bounded. is Then $(A + B(0,\varepsilon))^{\wedge}_{\mathcal{H}_{(a+\varepsilon)}(E)} \subset U$. Let $y \in \widehat{A}_{\mathcal{H}_{(a+\varepsilon)}(E)}$, $t \in B(0,\varepsilon)$ and $0 < \theta < 1$. Then for each $f \in \mathcal{H}_{(a+\varepsilon)}(E)$ we have that

$$|f(y+\theta t)| \le \sum_{m=0}^{\infty} \theta^m |p_t^m(f)(y)| \le \sum_{m=0}^{\infty} \theta^m \sup_{A} |p_t^m(f)|$$

$$\leq (1-\theta)^{-1} \sup_{\Lambda+B(0,\varepsilon)} |(f)|,$$

where the second inequality follows because $P_t^m(f) \in \mathcal{H}_{(a+\varepsilon)}(E)$ and $y \in \widehat{A}_{\mathcal{H}_{(a+\varepsilon)}(E)}$. The third inequality follows by applying [10], with $t \in B(0,\varepsilon)$ and r = 1.

Next we apply the above inequality to f^n , take n -th roots and let $n \to \infty$ to get that $|f(y + \theta t)| \leq \sup_{A+B(0,\varepsilon)} |f|$, that is, $y + \theta t \in (A + B(0,\varepsilon))^{\hat{}}_{\mathcal{H}(a+\varepsilon)}(E) \subset U$. By letting $\theta \to 1$ we have that $y + t \in U$, and the conclusion follows.

Lemma (4):

Let $\mathcal{F} \in \mathcal{H}_{(a+\varepsilon)}(E)$ be a family with the property that the function $x \mapsto f(\lambda x)$ is an element of \mathcal{F} , for every $f \in \mathcal{F}$ and $|\lambda| \leq 1$. Let $A \subseteq E$ be a balanced subset. Then $\widehat{A}_{\mathcal{F}}$ is balanced.

Proof:

Let $f \in \mathcal{F}$. For each $\lambda \in \mathbb{C}$ such that $|\lambda| \leq 1$, let $f_{\lambda} \in \mathcal{F}$ be such that

 $f_{\lambda}(x) = f(\lambda x)$, for all $x \in E$. Let $y \in \widehat{A}_{\mathcal{F}}$. Then $|f(\lambda y)| = |f_{\lambda}(y)| \le \sup_{A} |f_{\lambda}| \le \sup_{A} |f|$, proving that $\lambda y \in \widehat{A}_{\mathcal{F}}$, and hence $\widehat{A}_{\mathcal{F}}$ is balanced.

Volume 6 Issue 11, November 2018 www.ijser.in

Licensed Under Creative Commons Attribution CC BY

It is clear that strongly $\mathcal{H}_{(a+\varepsilon)}(E)$ -convex open subsets are always $\mathcal{H}_{(a+\varepsilon)}(E)$ -convex. Also, it is easy to see that $\widehat{A}_{\mathcal{H}_{(a+\varepsilon)}(E)} \subset \widehat{A}_{\mathcal{H}_{(a+\varepsilon)}(E)} \cap U$, and hence we have that $\mathcal{H}_{(a+\varepsilon)}(E)$ -convex open subsets are always $\mathcal{H}_{(a+\varepsilon)}(U)$ -convex. The next Proposition shows that if Uis balanced, then all these notions coincide.

Propositions (5):

Let $U \subset E$ be a balanced open subset. Then the following conditions

- are equivalent.
- (a) U is stongly P_(a+ε)(E)-convex.
 (b) U is stongly H_(a+ε)(E)-convex.
- (b) = 13 stoligly (a+s)(b)
- (c) U is $\mathcal{P}_{(a+\varepsilon)}(E)$ -convex.
- (d) U is $\mathcal{H}_{(a+\varepsilon)}(E)$ -convex.
- (e) U is $\mathcal{H}_{(a+s)}(U)$ -convex.

Proof:

The implication (a) \Leftrightarrow (b) and (c) \Leftrightarrow (d) were proved in Lemma (2). The implication (b) \Rightarrow (d) \Rightarrow (e) were commented above.

(e) ⇒ (d) we show that $\widehat{A}_{\mathcal{H}_{(a+\varepsilon)}(U)} = \widehat{A}_{\mathcal{P}(E)} \cap U = \widehat{A}_{\mathcal{H}_{(a+\varepsilon)}(E)} \cap U,$ for every U-bounded subset A, and then conclude that U is $\mathcal{H}_{(a+\varepsilon)}(E)$ -convex. Let $y \in \widehat{A}_{\mathcal{P}(E)} \cap U$ and we show that $y \in \widehat{A}_{\mathcal{H}_{(a+\varepsilon)}(U)}$. Let $f \in \mathcal{H}_{(a+\varepsilon)}(E)$ fixed. Since $\mathcal{H}_{(a+s)}(E)$ -convex, U the set $B = \widehat{A}_{\mathcal{H}_{(n+s)}(U)} \cup \{y\}$ is U-bounded, and since U is balanced, given $\varepsilon > 0$, there is $P \in \mathcal{P}(E)$ such that $\sup|f-P| < \frac{\varepsilon}{2}.$ Then

 $|f(y)| \le |f(y) - P(y)| + |P(y)| < \frac{\varepsilon}{2} + \sup_{A} |P|.$ On other hand:

On other hand:

 $\sup_{A} |P| \le \sup_{A} |f - P| + \sup_{A} |f| < \frac{\varepsilon}{2} + \sup_{A} |f|.$ And finally we get that $|f(y)| < \varepsilon + \sup_{A} |f|$, for all $\varepsilon > 0$, which implies that $y \in \widehat{A}_{\mathcal{H}_{(a+\varepsilon)}(U)}.$

(d) \Rightarrow (b) let *A* be an *U*-bounded subset. By Lemma(3), it suffices to prove that $\widehat{A}_{\mathcal{H}(a+\varepsilon)}(E) \subset U$. First we assume that *A* is balanced. Let $x \in \widehat{A}_{\mathcal{P}(E)}$. Define $D_1 = \{\lambda \in \mathbb{C}: |\lambda| \le 1\}$ and $D = \{\lambda \in D_1: \lambda x \in U\}$. Then *D* is a disk centered at the origin because *U* is balanced, and *D* is an open subset of D_1 because *U* is open. Let $\varepsilon > 0$ be such that $\widehat{A}_{\mathcal{P}(E)} \cap U + B(0,\varepsilon) \subset U$. Let $\lambda \in D_1, \lambda x \in U$, and let $\mu \in D_1$ be such that $|\mu - \lambda| ||x|| < \varepsilon$. Then $\lambda x \in \widehat{A}_{\mathcal{P}(E)} \cap U$ because $x \in \widehat{A}_{\mathcal{P}(E)}$ and $\widehat{A}_{\mathcal{P}(E)}$ is balanced by Lemma(4). Furthermore $\|\mu x - \lambda x\| < \varepsilon$, hence $\mu x \in \widehat{A}_{\mathcal{P}(E)} \cap U + B(0, \varepsilon)$, and therefore $\mu x \in U$. This implies that any point on the boundary of D belongs to D, and D is an open and closed subset of D_1 , and therefore $D = D_1$. It follows that $x = 1x \in U$. Since this holds for any $x \in \widehat{A}_{\mathcal{P}(E)}$, we have proved that $\widehat{A}_{\mathcal{P}(E)} \subset U$.

If A is not balanced, we consider B = ba(A), the balanced hull of A.

It follows by [5] that, B is a balanced U-bounded subset. Then we apply the arguments above and get that $\widehat{A}_{\mathcal{H}_{(a+\varepsilon)}(E)} \subset \widehat{B}_{\mathcal{H}_{(a+\varepsilon)}(E)} \subset U$.

Corollary (6):

Let A be a bounded subset of E. Then $\widehat{A}_{\mathcal{H}_{(a+e)}(E)} = \widehat{A}_{\mathcal{P}(E)}$.

Proof:

Since $\mathcal{P}(E) \subset \mathcal{H}_{(a+\epsilon)}(E)$, we have that $\widehat{A}_{\mathcal{H}_{(a+\epsilon)}(E)} \subset \widehat{A}_{\mathcal{P}(E)}$. For $a \in \widehat{A}_{\mathcal{P}(E)}$ such that $a \notin \widehat{A}_{\mathcal{H}_{(a+\epsilon)}(E)}$, let $f_j \in \mathcal{H}_{(a+\epsilon)}(E)$ be such that $\sum_{j=1}^{n} |f_j(a)| > \sup_{A} \sum_{j=1}^{n} |f_j|$. Since $\widehat{A}_{\mathcal{P}(E)}$ is bounded and $\mathcal{P}(E)$ is dense in $\mathcal{H}_{(a+\epsilon)}(E)$ for the $\tau_{(a+\epsilon)}$ topology. Given $\epsilon > 0$ there exists $P^j \in \mathcal{P}(E)$ such that $\sup_{\widehat{A}_{\mathcal{P}(E)}} |\sum_{j=1}^{n} f^j - \sum_{j=1}^{n} P^j| < \frac{\epsilon}{2}$.

We get in particular,

$$\begin{split} \sup_{A} \sum_{j=1}^{n} |p^{j}| &\leq \sup_{A} \sum_{j=1}^{n} |p^{j} - f_{j}| \leq \sup_{A} \sum_{j=1}^{n} |f_{j}| \\ &< \frac{\epsilon}{2} + \sup_{A} \sum_{j=1}^{n} |f_{j}|. \\ & \text{Hence} \\ & \sum_{j=1}^{n} |f_{j}(a)| \leq \sum_{j=1}^{n} |f_{j}(a) - p^{j}(a)| + \sum_{j=1}^{n} |p^{j}(a)| \end{split}$$

 $<rac{\epsilon}{2}+\sup_{A}\sum_{j=1}^{n}|p^{j}|, \quad for \ \epsilon>0.$

which is a contradiction.

Corollary (7):

Let $\mathcal{F} \in \mathcal{H}_{(a+\varepsilon)}(E)$ be a family with the property that the function $x \mapsto f((\lambda_1 + \lambda_2 + \dots + \lambda_n)x)$ is an element of \mathcal{F} , for every $f \in \mathcal{F}$ and $|\lambda_1 + \lambda_2 + \dots + \lambda_n| \leq 1$. Let $A \subseteq E$ be a balanced subset. Then $\widehat{A}_{\mathcal{F}}$ is balanced.

Proof:

Let $f \in \mathcal{F}$, for each $\lambda_1, \lambda_2, ..., \lambda_n \in \mathbb{C}$ such that $|\lambda_1 + \cdots + \lambda_n| \leq 1$, let $f_{(\lambda_1 + \cdots + \lambda_n)} \in \mathcal{F}$ be such that

Volume 6 Issue 11, November 2018

www.ijser.in

 $\begin{aligned} f_{(\lambda_1 + \dots + \lambda_n)}(x) &= f((\lambda_1 + \dots + \lambda_n)x), & \text{for any} \\ x \in E. \text{ Let } y \in \widehat{A}_{\mathcal{F}}. \text{ Then} \\ |f((\lambda_1 + \lambda_2 + \dots + \lambda_n)y)| &= |f_{(\lambda_1 + \dots + \lambda_n)}(y)| \\ &\leq \sup_{A} |f_{(\lambda_1 + \lambda_2 + \dots + \lambda_n)}| \leq \sup_{A} |f|, \end{aligned}$

proving that $(\lambda_1 + \dots + \lambda_n)y \in \widehat{A}_{\mathcal{F}}$, and hence $\widehat{A}_{\mathcal{F}}$ is balanced.

Next we give some examples.

Example (8):

Let $P \in \mathcal{P}({}^{m}E;F)$ and let $U = \{x \in E : ||P(x)|| < 1\}$. Then U is a balanced $\mathcal{H}_{(a+\varepsilon)}(E)$ -convex open set. **Proof:**

Clearly U is a balanced open set. Let A be an U-bounded subset of U. Let $\varepsilon > 0$ denote the distance from A to the boundary of U, and let $r = \sup_{x \in A} ||x||$. If $x \in A$ and $1 \le \lambda < 1 + \frac{\varepsilon}{2}$, then $\|\lambda x - x\| = |\lambda - 1| \|x\| < \varepsilon$, and $\lambda x \in U$ hence therefore $\|P(x)\| = \left\|P((\frac{1}{\lambda})\lambda x)\right\| = \lambda^{-m} \|P(\lambda x)\| < \lambda^{-m}.$ Taking in the right-hand side the infimum over all λ such $1 \leq \lambda < 1 + \frac{\varepsilon}{2}$ that we conclude that $||P(x)|| \le c := (1 + \frac{\varepsilon}{n})^{-m} < 1$ for every $x \in A$. us show that $\widehat{A}_{\mathcal{H}(a+\varepsilon)}(E) \subset U$. Let Let $y \in \widehat{A}_{\mathcal{H}_{(a+\varepsilon)}(E)}$ and $\varphi \in F'$. Then $\varphi \circ P \in \mathcal{H}_{(a+\varepsilon)}(E)$ and hence $|\varphi \circ P(y)| \leq \sup_{A} |\varphi \circ P|.$ Now $\|P(y)\| = \sup_{\varphi \in B_{F'}} |\varphi(P(y))| \le \sup_{\varphi \in B_{F'}} \sup_{x \in A} |\varphi(P(x))| \le$

and hence $y \in U$.

This shows that $\overline{A}_{\mathcal{H}_{(a+\varepsilon)}(E)}$ is *U*-bounded, because if 0 < c < 1, then every bounded subset of $\{x \in E : ||P(x)|| \le c\}$ is *U*-bounded. Hence *U* is strongly $\mathcal{H}_{(a+\varepsilon)}(E)$ -convex by Lemma (3). Finally *U* is $\mathcal{H}_{(a+\varepsilon)}(U)$ -convex by Proposition (5).

Corollary (9):

Let $P \in \mathcal{P}(^{m}E)$ and let $U = \{x \in E : |P(x)| < 1\}$. Then U is a balanced $\mathcal{H}_{(a+\varepsilon)}(U)$ -convex open set.

Corollary (10):

Let $A \in \mathcal{L}(E_1, \dots, E_m; F)$ and $E = E_1 \times \dots \times E_m$. Then $U = \{(x_1, \dots, x_m) \in E : ||A(x_1, \dots, x_m)|| < 1\}$

is a balanced $\mathcal{H}_{(a+\varepsilon)}(U)$ -convex open set.

Corollary (11):

Let $U = \{(x, \lambda) \in E \times \mathbb{C} : ||\lambda x|| < 1\}$. Then U is a balanced $\mathcal{H}_{(a+\varepsilon)}(U)$ -convex open set. In [13], B. Tsirelson constructed a reflexive Banach space X, with an unconditional Schauder basis, that does not contain any

subspace which is isomorphic to c_0 or to any ℓ_p . R. A lencar, R. Aron and S. Dineen proved in [1] that $\mathcal{P}_f(^m X)$ is norm-dense in $\mathcal{P}(^m X)$, for all $m \in \mathbb{N}$. Inspired by this result, we will say that a Banach space E is a Tsirelson-like space if E is reflexive and $\mathcal{P}_f(^m E)$ is norm-dense in $\mathcal{P}(^m E)$, for all $m \in \mathbb{N}$.

We have The following theorem.

Theorem (12):

Let E be a Tsirelson-like space, and let U be a balanced $\mathcal{H}_{(a+\varepsilon)}(U)$

convex open subset of E. Then the spectrum of $\mathcal{H}_{(a+\varepsilon)}(U)$ is identified with U.

Proof:

Since U is balanced and $\mathcal{H}_{(a+\varepsilon)}(U)$ -convex, it follows by Proposition (5) that U is strongly $\mathcal{H}_{(a+\varepsilon)}(U)$ -convex. Now we follow the ideas of [11]. Let $T: \mathcal{H}_{(a+\varepsilon)}(U) \to \mathbb{C}$ be a continuous homomorphism. Then there exists C > 0and a U-bounded subset $A \subset U$ such that

 $|T(f)| \le C \sup_{A} |f|, \quad \text{for all } f \in \mathcal{H}_{(a+\varepsilon)}(U).$

multiplicative, we Since Т is have that $|T(f)|^n = |T(f^n)| \le C \sup |f|^n$ for every $n \in \mathbb{N}$. Taking n -th roots and making $n \rightarrow \infty$ we conclude that actually C = 1. Let r > 0 such that $A \subseteq B(0, r)$. In have particular, we that $|T(f)| \leq \sup_{A} |f| \leq \sup_{B(0,r)} |f|$, for all $f \in E'$. Hence p_{X} have that $T|_{E'} \in E'' = E$, so there exists a unsidue $a \in E$ such that T(f) = f(a), for all $f \in E'$, and hence T(P) = P(a), for all $P \in \mathcal{P}_f(^m E)$, for all $m \in \mathbb{N}$. Since $\mathcal{P}_{f}(^{m}E)$ is norm-dense in $\mathcal{P}(^{m}E)$, for all $m \in \mathbb{N}$, it follows that T(P) = P(a), for all $P \in \mathcal{P}(E)$. Then we have that $|P(a)| = |P(f)| \le \sup_{A} |P|$, for all which $P \in \mathcal{P}(E)$ implies that $a \in \widehat{A}_{\mathcal{P}(E)} = \widehat{A}_{\mathcal{H}_{(a+\varepsilon)}(E)} \subset U$. Since U balanced, we have that $\mathcal{P}(E)$ is $\tau_{(a+\varepsilon)}$ -dense in $\mathcal{H}_{(a+\varepsilon)}(E)$, and then we conclude that T(f) = f(a), for all $f \in \mathcal{H}_{(a+\varepsilon)}(E)$, proving the Theorem.

Definition (13):

Let E be a Banach space and let U be an open subset of E. We say that U is a $\mathcal{H}_{(a+\varepsilon)}(U)$ -domain of holomorphy if there are no open sets V and W in E with the following properties:

(a) V is connected and not contained in U;
(b) Ø ≠ W ⊂ U ∩ V;
(c) for each f ∈ ℋ_(a+ε)(U) there exists f̃ ∈ ℋ(V) such that f̃ = f on W.

Volume 6 Issue 11, November 2018

www.ijser.in

The following corollary is the announced result for balanced $\mathcal{H}_{(a+\varepsilon)}(U)$ -domains of holomorphy.

Corollary (14):

Let *E* be a Tsirlson-like space, and let *U* be a balanced $\mathcal{H}_{(a+\varepsilon)}(U)$ -domain of holomorphy in *E*. Then the spectrum of $\mathcal{H}_{(a+\varepsilon)}(U)$ is identified with *U*.

The following result is a consequence of Corollary (14). It says that under the hypotheses of Corollary(14), every proper finitely generated ideal of $\mathcal{H}_{(a+\varepsilon)}(U)$ has a common zero.

Theorem (15):

Let E be a Tsilrson-like space. Let $U \subseteq E$ be a balanced $\mathcal{H}_{(a+\varepsilon)}(U)$ -domain of holomorphy. Then given $f_1, \ldots, f_n \in \mathcal{H}_{(a+\varepsilon)}(U)$ without common zeros, we can find $g_1, \ldots, g_n \in \mathcal{H}_{(a+\varepsilon)}(U)$ such that $\sum_{i=1}^n f_i g_i = 1$.

In [3], S. Banach proved that two compact metric spaces X and Y are homomorphic if and only if the Banach algebras $\mathcal{C}(X)$, $\mathcal{C}(Y)$ are isometrically isomorphic. M.H. Stone, in [12], generized this result to arbitrary compact Hausdorff topological spaces, the well-known Banach –Stone theorem.

Algebras of holomorphic germs

In [14], D.M. Vieira presents similar results for algebras of holomorphic functions of bounded type, using results on the spectrum of such algebras. More specifically, let E and F be reflexive spaces, one of them a Tsirelson-like space, and let $U \subseteq E$ and $V \subseteq F$ be absolutely convex open subsets. Then it is shown that the algebras $\mathcal{H}_{(a+\varepsilon)}(U)$ and $\mathcal{H}_{(a+\varepsilon)}(V)$ are topolo-gically isomorphic, if and only if there is a special type of holomorphic mappings between U and V. To show these results we use the characteriz-ation of the spectra of $\mathcal{H}_{(a+\varepsilon)}(U)$ with U due to J. Mujica, [11]. Now we are going to generalize this result to balanced $\mathcal{H}_{(a+\varepsilon)}(U)$ -domains of holomorphy, using the characterization of the spectrum of the spectrum of $\mathcal{H}_{(a+\varepsilon)}(U)$.

Let E and F be Banach spaces, and $U \subset E$ and $V \subset F$ be open subsets of E and F, respectively. We denote by $\mathcal{H}_{(a+\varepsilon)}(V,U)$ the set of all holomorphic mappings $\varphi: V \to E$, with $\varphi(V) \subset U$, such that φ maps Vbounded subsets into U-bounded subsets.

Theorem (16):

Let E and F be reflexive Banach spaces, one of them a Tsirelson-like space. Let $U \subseteq E$ and $V \subseteq F$ be balanced $\mathcal{H}_{(a+\varepsilon)}$ -domains of holomorphy. Then the following conditions are equivalent.

(a) There exists a bijective mapping φ : V → U such that φ ∈ H_(a+ε)(V, U) and φ⁻¹ ∈ H_(a+ε)(U,V).
(b) the algebras H_(a+ε)(U) and H_(a+ε)(V) are topologically isomorphic.

In [14] it is shown that if $K \subset E$ and $L \subset F$ are absolutely convex compact subsets of Tsirelson-like spaces, then the algebras $\mathcal{H}(K)$ and $\mathcal{H}(L)$ are topologically isomorphic if and only if K and L are biholomorphically equivalent.

The key to the proof of such result is a theorem of Banach-Stone type between algebras of holomorphic functions of bounded type [14]. We are going to present a generalization of this result to greater class of compact sets, using Theorem (15).

Let E be a Banach space, and let $K \subseteq E$ be a compact subset. We define $\mathcal{H}(K)$ to be the algebra of all functions that are holomorphic on some open neighborhood of K. The elements of $\mathcal{H}(K)$ are called germs of holomorphic functions. We endow $\mathcal{H}(K)$ with the locally convex inductive limit of the locally convex algebras $(\mathcal{H}(U), \tau_{\omega})$, where U varies among the open subsets of E such that $K \subseteq U$. If $U_n = K + B(0, \frac{1}{n})$, for all $n \in \mathbb{N}$, then it is easy to see that:

$$(\mathcal{H}(K), \tau_{\omega}) = \lim_{\substack{n \in \mathbb{N}}} \mathcal{H}_{(a+\varepsilon)}(U_n).$$

Definition (17):

Let E be a Banach space, let K be a compact subset of Eand let $m \in \mathbb{N}$. We say that K is $\mathcal{P}({}^{m}E)$ -convex if $K = \widehat{K}_{\mathcal{P}}({}^{m}E)$.

Before we present examples of balanced $\mathcal{P}({}^{m}E)$ -convex compact sets, we shall need the next lemma. If A is a subset of a Banach space, we denote by $\overline{\Gamma}(A)$ the closed, absolutely convex hull of A.

Lemma(18):

Let E be a Banach space and let A be a bounded subset of E. Then

 $\widehat{A}_{\mathcal{P}_{f}(^{m}E)} \subset \overline{\Gamma}(A), \text{ for all } m \in \mathbb{N}.$ **Proof:**

Let $y \notin \overline{\Gamma}(A)$. By the Hahn-Banach Theorem, there exists $\varphi \in E'$ such that $|\varphi(y)| > \sup_{x \in \overline{\Gamma}(A)} |\varphi(x)|$. Hence $|\varphi^m(y)| > \sup_{x \in \overline{\Gamma}(A)} |\varphi^m(x)| \ge \sup_A |\varphi^m|$, which shows that $y \notin \widehat{A}_{\mathcal{P}_f}({}^m_E)$.

Example (19):

Every absolutely convex compact subset of Banach space E is $\mathcal{P}(^{m}E)$ -convex, for all $m \in \mathbb{N}$.

Proof:

Let $K \subseteq E$ be an absolutely convex compact set. Since $\mathcal{P}_f({}^mE) \subseteq \mathcal{P}({}^mE)$, we have that $\overline{K}_{\mathcal{P}({}^mE)} \subseteq \overline{K}_{\mathcal{P}_f({}^mE)} \subseteq \overline{\Gamma}(K) = K$, where the last inclusion follows by Lemma(18).

Example (20):

Let *E* be a Banach space, and $L \subseteq E$ be a compact, balanced and $\mathcal{P}(^{m}E)$ -convex set. Let $P \in \mathcal{P}(^{m}E)$. Then $K = \{ x \in L: |P(x)| \leq 1 \}$ is compact, balanced and $\mathcal{P}(^{m}E)$ -convex.

Theorem (21):

Let E be a Banach space and let K be a compact, balanced and $\mathcal{P}({}^{m}E)$ -convex subset of E, for some $m \in \mathbb{N}$. Let Ube an open subset of E such that $K \subset U$. Then there exists an open set $V \subset E$ which is balanced and $\mathcal{H}_{(a+\varepsilon)}(V)$ convex, such that $K \subset V \subset U$.

Proof:

We begin with a slight modification of [10]. If $\overline{\Gamma}(K) \subset U$, then we take $V = \overline{\Gamma}(K) + B(0,\varepsilon)$, where ε is such that $\overline{\Gamma}(K) + B(0,\varepsilon) \subset U$. If $\overline{\Gamma}(K)$ is not contained in U, then for each $a \in \overline{\Gamma}(K) \setminus U$ there is $P \in \mathcal{P}({}^{m}E)$ such that $\sup_{K} |P| < 1 < |P(a)|$. Since $\overline{\Gamma}(K) \setminus U$ is compact, we can find polynomials $P_1, \ldots, P_k \in \mathcal{P}({}^{m}E)$ such that

$$\overline{\Gamma}(K) \setminus U \subset \bigcup_{j=1}^{\kappa} \{x \in E \colon |P_j(x)| > 1\}.$$

Now it is easy to see that $\{x \in \overline{\Gamma}(K): |P_j(x)| \le 1, \text{ for } j = 1, ..., k\} \subset U$. Next we follow the arguments of [10], finding a positive

Next we follow the arguments of [10], finding a positive number $\delta > 0$ such that:

$$V = (\overline{\Gamma}(K) + B(0,\varepsilon)) \cap \{x \in E : |P_j(x)| < 1, \text{for } j = 0\}$$

Now V is balanced and $\mathcal{H}_{(a+\varepsilon)}(V)$ -convex, by Corollary (9).

Let *E* and *F* be Banach spaces, and let $K \subset E$ and $L \subset F$ be compact subsets. We say that *K* and *L* are biholomorphically equivalent if there exist open subsets $U \subset E$ and $V \subset F$ with $K \subset U$ and $L \subset V$ and a biholomorphic mapping $\varphi: V \to U$ such that $\varphi(L) = K$. The next theorem is the announced result for algebras of holomorphic germs, and generalizes [14].

Theorem (22):

Let E and F be Tsirelson-like spaces. Let $K \subseteq E$ and $L \subseteq F$ be balanced compact subsets, such that K is $\mathcal{P}(^{m}E)$ -convex, and L is $\mathcal{P}(^{k}F)$ -convex, for some $m, k \in \mathbb{N}$. Then the following conditions are equivalent.

(a) K and L are biholomorphically equivalent.

(b) The algebras $\mathcal{H}(K)$ and $\mathcal{H}(L)$ are topologically isomorphic.

Proof:

 $(a) \Rightarrow (b)$ [14] applies.

 $(b) \Rightarrow (a)$ We claim tat $\mathcal{H}(K)$ is the inductive limit of a sequence of Fréchet spaces $\mathcal{H}_{(a+\varepsilon)}(V_n)$, where each V_n is balanced and $\mathcal{P}_b(E)$ -convex (and the same for $\mathcal{H}(L)$). Indeed, let $U_n = K + B(0; \frac{1}{n})$, for every $n \in \mathbb{N}$. Appling Theorem (21), for each $n \in \mathbb{N}$ there exists a balanced \mathcal{H}_b -convex open subset V_n such that $K \subset V_n \subset U_n$. Since $\mathcal{H}(K) = \lim_{n \in \mathbb{N}} \mathcal{H}_b(U_n)$, and the inclusion $\mathcal{H}_{(a+\varepsilon)}(U_n) \hookrightarrow \mathcal{H}_{(a+\varepsilon)}(V_n)$ is continuous, we have that $\mathcal{H}(K) = \lim_{n \in \mathbb{N}} \mathcal{H}_b(V_n)$, and our claim is proved. Next we apply the same arguments of $(b) \Rightarrow (a)$ of [14].

References

- Alencar R., Aron R.M., Dineen S, -A reflexive space of holomorphic func- tionns in Infinitely many variables. Proc. Amer. Math. Soc. 90(1984) 407-411.
- [2] Aron.R.M., Cole B.J., Gamelin T.W. Weak- star continuous analytic Functions, Canad. J. Math. 7(4) (1995) 673-683.
- [3] S. Banach, Theories des Operations lineaires, Monngrafje, Matematyczne, Warsaw, 1932.
- [4] Bierstedt K, -D., Meise R. Aspects of inductive limits in spaces of germs of holomorphic functions on locally convex spaces and applications to the study of $(\mathcal{H}(U), \tau_{\omega})$, in: J.A.Barroso (Ed.), Adva nces in Holomorphy, Nort -Holland, Amsterdam, 1979, pp. 111-178.
- [5] Bulandy P., Moraes L. A. The spectrum of an algebra of weakly continuous holomorphic mappings, indag. Math. 11(2000)525-532.
- [b] Direct, SU Cartan-Thullen theorem for Banach spaces, Ann. Scuola Norm. Sup. Pisa 24(3) (1970) 667- 676.
- [7] Dineen,S.- Complex analysis on infinite dimensional spaces. Springer -Verlag, Berlin, 1999.
- [8] Matos M. –On the Cartan –Thullen theorem for some sub agras of holomorphic functions in a locally convex space, J. Reine Angew. Math.270 (1974) 7-11.
- [9] J. Mujica, –Spaces of germs of holomorphic functions, in: Adv. Math. Suppl. Stud., vol. 4, Academic Press, 1979, pp. 1-41.
- [10] J. Mujica, Complex Analysis in Banach Spaces, North Holland Math. Stud., vol. 120, North-Holland, Amsterdam, 1986
- [11] J. Mujica, Ideals of holomorphic functions on Tsirelson's space, Arch. Math. 76(2001) 292-298.
- [12] Stone M.H. –Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc. 41(1937) 375-481.

Volume 6 Issue 11, November 2018

<u>www.ijser.in</u>

Licensed Under Creative Commons Attribution CC BY

- [13] Tsirelson B. Not every Banach space contains an imbedding of l_p or c_0 . Funct. Anal. Appl. 9(1974) 138-141.
- [14] Vieira D.M. –Theorems of Banach-Stone type for algebras of holomorphic functions on infinite dimensional spaces, Math. Proc. R. Ir. Acad. A 106 (2006) 97-113.
- [15] Vieira D.M. Spectra of algebra of holomorphic functions of bounded type. Indag. Mathem. N.S., 18 (2), 269-279