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Abstract: The failure of material always involves with the plastic deformation and fracturing process. For the plastic deformation, the 

continuum plastic mechanics can competently deal with the plastic deformation through a yield function and the flow rule.  However, 

the continuum mechanics method has some limitations in dealing with the fracture problem due to that it cannot account for the 

microstructure of the material. The lattice model can simulate the fracture problem very well, but it is inadequate in dealing with plastic 

deformation. To unify the plasticity and the fracture together on the bond level, the present paper employed the Stillinger-Weber 

potential-based discretized virtual internal bond (SW-DVIB) method. DVIB is a kind of lattice model. It considers material to consist of 

bond cells. Each bond cell can take any geometry with any number of bonds. In original DVIB, the interaction between particles in a 

cell is characterised by an interatomical bond potential, which intrinsically contains the microfracture mechanism. However, because 

the interatomical potential only accounts for the effect of the bond stretch, the Poisson ratio it represents is fixed. To remedy this 

drawback, in the SW-DVIB the SW-potential is adopted to characterise the energy of a bond cell. Due to that, the SW-potential can 

simultaneously account for the bond angle and stretch effect; the SW-potential can represent the variable Poisson ratio. In this paper, 

the SW-DVIB is adopted to model the elastoplastic fracture. The plasticity is considered in the two-body potential. That is before the 

bond reaches its yielding point, this bond is linear elastic. After it reaches the yielding point, the bond enters the ideal plastic state. The 

irreversible deformation is reflected by following different loading-unloading paths. The bond does not rupture until its deformation 

reaches the limit value, which is related to the bond cell size and the macro fracture energy of the material. The three-body potential is 

kept linear elastic until the normal bond is ruptured. By this method, several examples were simulated. It is suggested that the 

irreversibility feature of the plastic deformation can be well captured. It can simulate the fracture propagation of material with the 

conservation of the fracture energy. The present paper provides an efficient approach to the elastoplastic fracture simulation.  
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1. Introduction 

 
For the common engineering material, the fracture always 

goes together with the plastic deformation. How to consider 

the plastic deformation and fracture together has been an 

important topic since the plastic deformation takes a critical 

part in the fracturing process. The plastic deformation is 

usually localized before fracture, which cannot be ignored to 

understand the failure mechanism of materials. From a 

general viewpoint, continuum plasticity is a smooth 

irreversible deformation process, which is characterized by 

the yield surface and flow rules. The increment of the plastic 

strain tensor is described by the derivative of the flow 

potential with respect to the corresponding stress tensor. 

However, the continuum plasticity theory cannot be directly 

used to the lattice model.  Xu et al [1] have ever combined 

the continuum plastic theory with the lattice model. In their 

method, the total strain is decomposed into the elastic and 

plastic part. For the elastic part, the micro lattice model is 

adopted while for the plastic part, the continuum plastic 

theory is adopted. Some other scholars considered the plastic 

deformation directly on the micro bond level. For instance, 

Zapperi et al [2], Seppala et al [3], Picallo et al [4] 

considered the plasticity in the arbitrary fuse grid which is 

analogous to the lattice structure. These progresses suggest 

that it is a feasible approach to reflect the plastic 

deformation on the micro bond level. More recently, Ding et 

al [5] accounted for the plastic deformation in the discretized 

virtual internal bond (DVIB) model introduced by Zhang [6].  

DVIB [6] is a new lattice model which is different from the 

conventional one in that it can capture the meso structural 

characteristics of material composed of grains on mesoscale. 

Though the elastoplastic DVIB [5] can reproduce the plastic 

deformation to great extent, the Poisson ratio represented by 

this model is fixed. This is due to the two-body potential 

used in the DVIB, which misses the contribution of bond 

rotation. To overcome the limitation of Poisson ratio, Zhang 

and Chen [8] used the modified Stillinger–Weber (SW) 

potential to describe the total energy of a bond cell of DVIB. 

Here, term the SW potential-based DVIB as SW-DVIB. 

Because the SW potential can account for both the bond 

angle and the bond stretch effect, the SW-DVIB can 

represent the variable Poisson ratios. To extend the 

SW-DVIB to the plastic case in this paper, we embed the 

plastic deformation into the two-body interaction of the 

modified SW potential and keep the three-body interaction 

elastic. By this means, the SW-DVIB can account for the 

plastic deformation on one hand. On the other hand, it can 

represent the variable Poisson ratios. 

 

2. Brief introduction to the SW-DVIB 
 

The SW potential developed in [9], is a combination of two 

and three body interactions. It means that the bond energy is 

not only related to the bond length, but also related to the 

bond angles subtended to by the given bond and other bonds. 

Originally, the SW potential was specially used to simulate 

the silicon material since the reference bond angle is the 
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ideal tetrahedral angle. In 2014, the SW potential was 

modified by Zhang et al [8]. In the modified version of SW 

potential, the bond angle in the reference configuration, 

rather than the ideal tetrahedral angle, is taken as the 

reference bond angle value. Therefore, the modified 

SW-potential can be used to the material other than silicon. 

The SW potential takes: 

   2 3 , ,ij ij ik ijk

i j i j
j k

r r r 
 


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In which 2
, 3

stands for the two- and three-body 

interaction, respectively; ijr
 the bond length of bond vector

ijr
; jik

the bond angle subtended by the bond vector ijr
,

ikr
at vertex i , shown in Fig.1.  

 

Figure 1: The conjugate bond vectors subtended at a given 

particle i in a discrete system with N particles. 

In the modified SW potential shown in [8], the 2
, 3

are 
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In which Ir , Jr are the normalized bond length, 

0 0,I ij J ikr r l r r l  
; 0IJ

stands for the bond angle 

subtended by the bond ijr
 and ikr

in the reference 

configuration whereas IJ
its value in the current 

configuration. 

 

The linear elastic SW-potential developed by Zhang et al. [7] 

reads:  
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or the lattice bond cell shown in Fig.1, the total strain energy 

can be written as 
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In which N denotes the total particle number in a unit cell 

with ij jir r
.  

By Eq.(5), the particle force vector F  and the stiffness 

matrix K of this bond cell are respectively derived as 

i
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               (5) 
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Where u denote the particle displacement vector of this 

bond cell. 

 

3. Consideration of plasticity in SW-DVIB 

 

Ding et al [5] considered the plasticity in DVIB by the 

following two-body potential , whose first derivative reads  

 

   (7) 

where ek
, pk

are the elastic and plastic stiffness of bond, 

respectively; yl is the yield bond length; bl is the transition 

bond length from plasticity to fracture; fl
is the ultimate 

failure bond length; 

*

pl is the maximum plastic bond length; 

uPl
is the historic maximum unloading bond length in the 

plastic stage; uFl
is the historic maximum unloading bond 
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length in the fracture stage. The diagram of  is shown in 

Fig.2.  

 
Figure 2: Diagram of the bond force versus bond length of 

the unified plasticity-fracture bond potential 

 

To embed the plasticity into the SW-DVIB, we take Eq.(7) as 

the two-body potential ,i.e., 
   2 l l  

and Eq.(3.2) as 

the three-body potential. Then, by Eqs. (4,5,6), the  

constitutive relation of a bond cell of: 
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and the stiffness matrix is  
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Substituting Eq.(7) and Eq.(3.2) into Eq.(8) and Eq.(9), the 

specific expression of constitutive relation of elastoplastic  

SW-DVIB  is obtained 
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Where the second derivative  is  

 

As for the other derivatives, e.g. 
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, refers 

to Zhang and Chen [8].  

According to Zhang and Chen [8], the bond potential 

parameters are calibrated as 
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Where V the volume of a unit cell is, E is Young’s 

modulus and  is the Poisson ratio. 

  

4. Simulation Examples 
 

To show the performance of the presented model, we 

simulate a uniaxial loading-unloading test reported in the 

case reported in Chen et al [10].  The geometry and the 

meshing scheme of the simulated specimen are shown in 

Fig.3. The restriction boundary at the left side of the plate 

subjected to the loading-unloading condition is shown in 

Fig.4.  The material parameters provided in fig.4. are: the 

tangent modulus E= 69 GPa, the plastic tangent modulus 

Ep= 0.69 GPa, the yield strength   σy = 200 MPa, the 

material density ρ= 2700 kg/m2. To validate the present 

method, we simulate the plate following the 

loading-unloading path shown in fig.4. The simulated 

reaction at the loading point is reported in fig.5, which 

shows that the present method can simulate the plastic 

response of material under loading-unloading condition. 

 

 

Figure 3: Simulation object and meshing scheme for plastic deformation,(unit: mm). 
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Figure 4: Restriction boundary at the left side of the plate 

subjected to the loading-unloading condition. 

 

Figure 5: Simulated reaction at the right side of plate 

 

5. Conclusion 
 

By embedding the plasticity into the two-body interaction of 

SW potential, the SW-DVIB can account for the plastic 

deformation. Compared with the plastic DVIB, the 

SW-DVIB can represent the variable Poisson ratios. The 

simulation result demonstrates that the SW-DVIB can 

reproduce the loading-unloading plastic behaviors of 

material. The SW-DVIB is promising approach to simulate 

the plastic fracture.    
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