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Abstract: This article presents proposed model and application of proposed model investigation of different Reynolds number of 

turbulent flow in periodically small pipes. Here we discussed a universal resistance equation relating friction factor (F), the Reynolds 

number (Re) and roughness height (𝜺) for the entire range of turbulent flow in small pipes covering regimes in smooth and rough. We 

have also discussed about the variation in friction factor F, used in the Darcy Formula with the Reynolds number in both laminar and 

turbulent flow. As discussed Colebrook-White formula deviates from Nikuradse experimental results in transition range of their 

difference in roughness factor. Hazen-Williams equation and review of equations on friction factor to be used. Such an equation is 

found to be sufficient to predict the friction factor for all ranges of Re and different values of (𝜺). 
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1. Introduction 
 

To study the differentiation in friction factor, F, used in the 

Darcy Formula with the Reynolds number in both laminar 

and turbulent flow. The friction factor will be temperance as 

a function of Reynolds number and the roughness will be 

calculated using the Colebrook equation. The loss of head 

resulting from the flow of a fluid through a pipeline is 

demonstrated by the Darcy Formula. 

 
In this equation (1), where𝐻𝑓  the loss of head (units of 

length) is and the average velocity is V. The friction factor, 

F, varies with Reynolds number and a roughness factor, L is 

the characteristics length of the pipe, D is the diameter of the 

pipe, g is the acceleration due to the gravity. The friction 

factor (F) is a measure of the shear stress (or shear force per 

unit area) that the turbulent flow exerts on the wall of a pipe. 

The Hagen-poiseuille equation for laminar flow declares that 

the head loss is the unrestricted of surface roughness. 

 
Thus in laminar flow the head loss varies as average velocity 

v and inversely proportional to the pipe diameter𝐷2.Now 

comparing equation (1) and (2) we can get, 

 

We know that, R=
𝜌𝑉𝐷

𝜇
 

 
From (3), declaring that the friction factor is amount to 

viscosity and conversely amount to the velocity ,pipe 

diameter and fluid density under laminar flow conditions 

.The friction factor is unrestricted of pipe roughness in 

laminar flow because the disorders motive by surface 

roughness are hurriedly humored by viscosity. Equation (2) 

can be solved for the pressure drop as a function of total 

discharge to receive. 

 

 
When the flow is turbulent the connection becomes more 

complex and is best shown by means of a graph since the 

friction factor is a function of both Reynolds number and 

roughness. Where as in turbulent flow(R>>4000) the friction 

factor, depends upon the Reynolds number(R) and on the 

relative roughness of the pipe,
𝜀

𝐷
 Where,𝜀 is the average 

roughness height of the pipe. The usual treatment of turbulent 

pipe flow in appearance of surface roughness is wall deposit. 

Nikuradse showed the dependence on roughness by using 

pipes not naturally roughened by binding a coating of 

uniform sand-grains to the pipe walls. The degree of 

roughness was specified as the ratio of the gravel corn 

diameter to the pipe diameter (
𝜀

𝐷
 ). When 𝜀 is very small 

likened to the pipe diameter D .i.e.
𝜀

𝐷
→ 0, F depends only on 

Reynolds number R. The connection between the friction 

factor and Reynolds number can be firm minded for every 

comparative roughness. When 
𝜀

𝐷
 is of a significant value, at 

low Reynolds number R, the flow can be considered as in 

smooth regime (there is no effect of roughness).The 

connection between the friction factor and Reynolds number 

can be resolute for every comparative roughness. As R 

increase, the flow becomes transitionally rough, called as 

transition regime. From these connections, it is apparent that 

for rough pipes the roughness is more important than the 

Reynolds number in resolutions the magnitude of the friction 

factor. At high Reynolds number (complete turbulence, rough 

pipes).The friction factor depends wholly on roughness and 

the friction factor can be received from the rough pipe law. 

 
In a smooth pipe flow, the viscous sub layer wholly skunks 

the effect of 𝜀  on the flow. In which the friction factor arises 

above the smooth value and is a function of both 𝜀 and the 

flow ultimately arrives a wholly rough regime in which F is 

unrestricted on R. In this case, the friction factor F is a 

function of R and is unrestricted of the effect of 𝜀   on the 

flow. Hence the smooth pipe law is. 
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The smooth and the rough pipes laws were developed by 

Von-Kerman in 1930. For transition Regime in which the 

friction factor varies with both Reynolds number R and 
𝜀

𝐷
 , 

many pipe flow are in the regime sketch rated “transition 

zone” that is between the smooth and rough pipe laws. In the 

transition zone head loss is a function of both Reynolds 

number and roughness. Colebrook developed a technical 

transition function for commercial pipes. The moody 

diagram is plinth on the Colebrook equation in the turbulent 

regime. Moody (1944) [38] presented a friction diagram for 

commercial pipe friction factors plinth on the Colebrook 

White equation, Which has been pervasively used for 

functional petition, Because of Moody‟s work and the 

ascertained practicality of Colebrook-white equation over a 

wide range of Reynolds numbers and relative roughness 

value  
𝜀

𝐷
 , the equation unanimously adopted is due to 

Colebrook and white (1937)[9] proposed the following 

equation. 

 
Equation (9) veils not only the transition region but also the 

wholly developed smooth and rough pipes. By putting𝜀 → 0, 

Equation (9) reduces to equation (7) for smooth pipes and as 

R→ ∞; equation (9) becomes equation (8) for rough pipes. 

Equation (9) has become the act of receiving unit of 

measurement for calculating the friction factors. It suffers; 

however, from being an implicit equation in F and thus 

requires an iterative solution. Their calculation results were 

however, thoroughly different from those received in the 

laboratory when using the Colebrook-white equations. The 

friction factor determined from laboratory data decrease 

with an increase in the Reynolds number even after a 

perfectly sure critical value, where as the friction factor of 

the Colebrook-white equation tends to be constant with an 

increase in the Reynolds number. The Colebrook equation 

can be used to resolute the absolute roughness,, 

experimentally measuring the friction factor and Reynolds 

number. 

 
Since the mid-1970s, many alternative distinct equations 

have been developed to abandon the iterative procedure 

instinctive to the Colebrook-white equation. Alternatively 

the distinct equation for the friction factor derived by swam 

me and gain can be solved for the absolute roughness. 

 
 When solving for the roughness it is important to note that 

the quantity in equation (11) that is squared is negative. 

 
Equation (10) and (12) are not equivalent and will yield 

slightly different results with the error a function of the 

Reynolds number. 

 

2. Proposed Model  
 

The established laws of velocity distribution for turbulent 

flows are given by,  

 
Where, A, a, and b are constants, u is the velocity at a 

distance y, temperance from the pipe wall, u is the friction 

velocity, 𝜀 is the roughness height and n is the kinematics 

viscosity of the fluid. 

 

As seen from the equation (13) and (14), the characteristic 

length l for non-dimensional sing the intensity y is
𝛾

𝑢∗
 for 

smooth turbulent flows and 𝜀 for rough turbulent flows. So it 

is proposed that l is infarct a lineal unification of both 

(
𝛾

𝑢∗
and𝜀) with a rectification factor, reporting the all ranges 

i.e. smooth, transition, and rough regimes of turbulent flows, 

thus 

 
Where,𝑅∗ is the friction Reynolds number and defined equal 

to𝜀
𝑢∗

𝛾
 .At𝑅∗ → 0, pipe is said to be in smooth condition and 

𝑅∗ → ∞  pipe is said it be in rough condition. 

 

For large values of
𝛾

𝑢∗
, the term 

𝛾

𝑢∗
 dominates making the 

second term b𝜀 negligible in resemblance with it. So also for 

small values of
𝛾

𝑢∗
, the second term becomes important 

allowing the neglect of the first term. Thus the velocity laws 

reporting all the regions can be compressed as, 

 
Now, if a condition that 𝜑(𝑅∗)= 1 for both when 𝑅∗ → 0 and 

𝑅∗ → ∞ is imposed, equation (16) reduces to equation (13) 

and equation (14) respectively. From the relation  =
8(

𝑢∗

𝑢
)2   Equation (16) can be exchanged into the equation 

for the friction factor reporting the whole ranges of turbulent 

flows. Thus the hindrance equation for pipes reporting the 

smooth, transition and rough regimes can be exposed as 

 
By dissolved Nikuradse‟s data on pressure drop 

measurements in gravel roughened pipes, the following 

values of a= (0.333) and       b= (0.101) has been found and 

𝜑(𝑅∗) is given by 

 
The legality of the manifestation for 𝐵∗along with 𝜑(𝑅∗) is 

shown in Figure (1) by using the Nikuradse‟s experimental 

data 
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Figure 1: Validation of the proposed 

 

 The friction diagram plinth on Nikuradse‟s experimental 

data on the gravel roughened pipe is shown in  

 

 
Figure 2: Friction factor diagram  

 

 The hindrance equation, as given by equation (17) 

pleasurably fits the entire data of Nikuradse‟s on sand 

roughened pipes for varying relative roughness heights. In 

addition to Nikuradse‟s experimental data, resistance 

equation is also conspired for the most current experimental 

pipe friction data on smooth pipes (McKeon.et al, 2004).Thus 

a universal resistance equation is developed in the form of 
equation (17). 

 

 
Figure 3: Friction Factor diagram 

 

Moody Chart 

 
Figure 4: Effect of wall roughness on turbulent pipe flow 

 

 
Figure 5: Friction Factor depends on relative roughness and 

Reynolds number 

 

3. Review of Equations on Friction Factor  
 

During the past year since Moody‟s chart the most promising 

equations on friction factor have appeared as follows: 

 

1. Moody (1947): He proposed the equation as: 

= 0.0055(1+ (2 10
4
.
𝜀

𝐷
+

106

𝑅𝑒
) 

1/3
) 

 

2. Wood (1966): It is valid for Re>10000 and 10
-5

 <
𝜀

𝐷
<0.04. 

= .094(
𝜀

𝐷
) 

0.225
 +0.53(

𝜀

𝐷
) +88(

𝜀

𝐷
)

.44
 .R

-
 . 

Where 𝜑 =1.62(
𝜀

𝐷
) 

o.134 

 

3. Eck (1973): He proposed the equation as: 
1

√
= -2log (

𝜀

3.715𝐷
+

15

𝑅𝑒
) 

 

4. Churchill (1973): He proposed the equation as: 
1

√
= -2log ((

𝜀

3.71𝐷
) + (

7

𝑅𝑒
) 

0.9
) 

 

5. Jain and Swamis (1976): They proposed the equation 

covering the range of Re from 50000 to 10
7
 and the values 

of 
𝜀

𝐷
 between 0.00004 and 0.05 as: 

1

√
=-2log (

𝜀

3.7𝐷
+

5.74

𝑅𝑒0.9) 

 

6. Jain (1976): He proposed the equation as: 
1

√
= -2log ((

𝜀

3.715𝐷
) + (

6.943

𝑅𝑒
) 

0.9
) 

 

7. Churchill (1977): The author claimed that his equation 

holds for all Re and 
𝜀

𝐷
 has the following: 

= 8[(
8

𝑅𝑒
) 

12
 +

1

(𝐴+𝐵)1.5]
1/12 

Where,   A= [-2.457 ln [(
7

𝑅𝑒
) 

0.9
 +0.27

𝜀

𝐷
]] 

16
 

B= (
37530

𝑅𝑒
) 

16 

 

8. Chen (1979): He also proposed equation for friction factor 

covering all the ranges of Re and
𝜀

𝐷
 . 

1

√
 = -2 log [

𝜀

3.7065𝐷
−

5.0452

𝑅𝑒
log (

1

2.8257
 (
𝜀

𝐷
) 

1.1098 
+  

5.8506

𝑅𝑒
 ) 

 

9. Round (1980): He also proposed the equation in the 

following form: 
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1

√
 = 1.8 log [

𝑅𝑒

0.135𝑅𝑒 
𝜀

𝐷
 +6.5

] 

 

10. Barr (1981): He proposed the equation as: 

1

√
 = -2 log [

𝜀

3.7𝐷
+

5.158log⁡(
𝑅𝑒

7
)

𝑅𝑒(1+
𝑅𝑒 .52

29
(
𝜀

𝐷
))0.7

  ] 

 

11. Zigzag and Sylvester (1982): They proposed the 

following equation as: 
1

√
= -2 log [

𝜀

3.7𝐷
−

5.02

Re
 log (

𝜀

3.7𝐷
− 

5.02

𝑅𝑒
log (

𝜀

3.7𝐷
+

13

𝑅𝑒
))] 

Or  
1

√
 = -2 log [

𝜀

3.7𝐷
− 

5.02

𝑅𝑒
 log (

𝜀

3.7𝐷
+

13

𝑅𝑒
)] 

 

12. Haalland (1983): He proposed a variation in the effect of 

the relative roughness by the following expression: 
1

√
 = - 1.8 log [(

𝜀

3.7𝐷
) 

1.11
 +

6.9

𝑅𝑒
] 

 

13. Serghide‟s (1984): He proposed the equation in the 

following expression: 

 = [
1
−

(
2
−

1
)2


3
−2

2
+

1

  ]
-2

 

Or  = [4.781 – 
( −4.781)2


2
−2

1
+4.781

]
-2

 

 

14. Manadilli (1997): He proposed the following expressions 

valid for Re ranging from 5235 to 108 and for any value of
𝜀

𝐷
. 

1

√
= − 2 log [

𝜀

3.7𝐷
+

95

𝑅𝑒0.933 −
96.82

𝑅𝑒
] 

 

15. Monzon, Romeo, Royo (2002): They proposed the 

equation in the following expression: 
1

√
=-2log[

𝜀

3.7065𝐷
−

5.0272

𝑅𝑒
log (

𝜀

3.827𝐷
−

4.657

𝑅𝑒
log((

𝜀

7.798𝐷
)

0..9924
+(

5.3326

208.815+𝑅𝑒
)

0.9345
))] 

 

16. Goudar, Sonnad (2006): They proposed the equation in 

the following expression: 
1

√
= 0.8686 ln [

.4587𝑅𝑒

(𝑆−0.31)
𝑠

𝑠+1

] 

Where, S=0.124Re
𝜀

𝐷
+ln (0.4587Re) 

 

17. Vatankhan, Kouchakzadeh (2008): They proposed the 

equation in the following expression: 
1

√
=0.8686 ln[

0.4587𝑅𝑒

(𝑆−0.31)
𝑠

𝑠+.9633

] 

Where, S=0.124Re
𝜀

𝐷
+ ln (0.4587Re) 

 

18. Buzzeli (2008): He proposed the equation as: 

1

√
=𝛼 −[

𝛼+2log⁡(
𝛽

𝑅𝑒
)

1+
2.18

𝛽

] 

Where, 𝛼= [
 0.744 ln 𝑅𝑒  −1.41

1+1.32√
𝜀

𝐷

] 

𝛽=
𝜀

3.7𝐷
Re+2.51𝛼 

 
 

19. Avci, Kargoz (2009): They proposed the equation as: 

  =[
6.4

ln 𝑅𝑒 −ln⁡(1+0.01𝑅𝑒
𝜀

𝐷
(1+10√

𝜀

𝐷
)2.4

] 

 

20. Evangleids, Papaevangelou, Tzimopoulos (2010): They 

proposed the equation in the following expression as: 

  =[
0.2479−0.0000947 (7−𝑙𝑜𝑔𝑅𝑒 )4

(log⁡(
𝜀

3.615𝐷
+

7.366

𝑅𝑒
))2

] 

 

4. Discussions  
 

The correlation/friction factor relations shown in the 

literature have been developed by petitioning the successive 

substitution method to the Colebrook-white formula. The 

Colebrook curve corresponding to𝜀𝑠=7.5𝜇𝑚, the monotonic 

Colebrook curve makes a needy prediction for the 

transitionally rough treatment of this surface. At the point of 

going out from the smooth regime, At Red=1. 5 106, the 

Colebrook relation over evaluates the friction factor by 

approximately 10%. In the transitional regime, in lieu of 

following the Colebrook  correlation, The data display an 

term national roughness, similar to the treatment of the 

gravel corn roughness flavored by Nikuradse(1933),in spite 

of the fact that neutered surfaces are often classified as, in 

Colebrook‟s  terms, ‟‟natural‟‟ or „commercial‟‟ roughness. 

More purity can be achieved by using a large number of 

internal substitutions to the Colebrook-white formula .Thus 

a new distinct formula for calculating the friction factor. For 

a given relative roughness, the Nikuradse fully rough 

correlation. The Colebrook curves for the equivalent gravel 

corn roughness. In the transitional regime, the injustices 

between the Colebrook curves and those calculated with the 

method used here are significant. Whereas neutered surface 

roughness displays a term national friction factor 

connection, the Colebrook curves monotonically depart from 

the smooth curve and draw near the wholly rough value 

from above. As discussed, Colebrook-white formula 

deviates from Nikuradse experimental results in transition 

range, because of their difference in roughness factor 

Colebrook-white formula is for irregular surface roughness 

in pipes resulting from the growing procedure. For turbulent 

flow, the friction factor correlations are more complex as 

they are implicit in F. For turbulent flow in smooth pipes, 

the unanimous law of friction factor relates F and Re. For 

turbulent flow in rough pipes which is of greater practical 

interest, the Colebrook-white equation is by far the most 

widely used correlation to calculate F. It relates the friction 

factor to the Reynolds number and pipe roughness
𝜀

𝐷
.We 

present a book of fiction ,mathematically equivalent agency 

of the Colebrook-white equation to calculate friction factor 

for turbulent flow in rough pipes. This new form is simple 

no iterative calculations are precise friction factor 

discrimination. A limiting case of this equation provided 

friction factor computes with a maximum absolute error of 

0.029 and a maximum percentage error of 1% over a 

20 500 grid of 
𝜀

𝐷
 and Re values (10−6 ≤

𝜀

𝐷
≤ 5 ×

10−2; 4 × 103 ≤ 𝑅 ≤ 108.This was more precise than the 

best recently available  non-iterative approximation of the 

Colebrook-white equation(maximum absolute error of 

0.058;maximum percentage error of 1.42%).present model is 

equally valid for commercial pipes and sand roughened 

pipes. By making correction factor 𝜑(Re ) =1, resemblance 
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are made for prediction of   over a wide range of  
𝜖

𝐷
 by 

equation (12) and Colebrook-White formula. As shown in 

Figure (6), present model predicts approximately the same 

  as predicted by Colebrook-White formula. Figure (7) 

gives the percentage error in prediction of the friction factor 

by the present model. As shown, the error range from -

0.12292 to 0.04884%, making the present model acceptable 

for commercial pipes. 

 

 
Figure 6: Prediction for commercial pipe 

 

 

Figure 7: Percentage of error in the estimation of with 

Colebrook-white formula. 
 
Example: (use of moody Diagram to find friction factor): A 

commercial steel pipe, 1.5 m in diameter, carries a 3.5 m
3
/s 

of water at 20
0
 c. Determine the friction factor and the flow 

regime. (I.e. laminar-critical, turbulent-transitional zone, 

turbulent-smooth pipe or turbulent rough pipe).Sol: To 

determine the friction factor, relative roughness and the 

Reynolds number should be calculated. 

For commercial steel pipe, roughness height (𝜀) = 0.045 mm 

Relative roughness (
𝜀

𝐷
) =0.045 mm/1500 mm=0.00003 

V=Q/A=(3.5 m
3
/s)/[

𝜋

4
 (1.5 m)

2
]=1.98 m/s 

NR=Dv/v=[(1.5 m)(1.98 m/s)] / (1.00 10
-0.6 

m
2
/s) 

=2.97 10
6
 

From moody Diagram, f=0.011 

The flow is turbulent-transitional zone. 

As discussed, proposed model predicts reasonably well in 

the entire turbulent ranges of pipe flow and equally valid in 

case of commercial pipes as well as sand roughened pipes, 

this can be used as an alternative of Hazen-Williams formula 

in designing the pipe line. 

 

5. Application of the Proposed Model  
 

Discrimination of head losses due to friction in pipes 

important task in optimization studies and when in a state of 

rest dissolution of pipelines and water donation procedure. 

Energy loss resulting from friction in pipeline is commonly 

period the friction head loss. This is the loss of head motive 

by pipe wall friction and the viscous dissipation in flowing 

water. It is also called major loss. It is animate in new 

pipeline invent to have a good compute of powers of 

retention as the large part of the economics will be 

dependent on this. Solving for the flow in personal pipes of a 

looped, water bestowal procedure can be a very intricate 

procedure as each existing procedure or proposed procedure 

is unique with different layouts and composition materials. 

The Hazen-Williams equation was developed plinth on years 

durations of flows and head losses for water flow through 

pipes made of different materials. In most cases, when in a 

state of rest engineers use the Hazen-Williams formula to 

characterize the roughness of the pipes inner surface. 

Relatively precise results can be received for flow (Q) in 

personal pipes of a looped procedure by first making a 

skilled supposition for the flow in each pipe of the procedure 

plinth on continuity and then using successive substitution 

with new flow (Q) values received by the Hazen-Williams 

equation. Commercial software has been developed that can 

solve very intricate procedure using the Hazen-Williams 

draw near as well as other technically developed equations. 

It was developed for water flow in large pipes (D5 cm, 

approximately 2 in) within an abstemious range of water 

velocity (V3 m/s, approximately 10 ft/s).  However, being 

technical, the Hazen-Williams equation is not dimensionally 

homogeneous and its ranges of practicality is limited (Lieu, 

1998).Hazen-Williams equation, originally developed for 

British durations procedure, has been written in the 

form,  𝑉 = 𝐾 ∗ 𝐶𝐻𝑊 ∗ 𝑅𝑕
0.63 ∗ 𝑆𝐸

0.54  

Where, V=Mean fluid velocity in the pipe, K=1.318 for U.S 

units and K=o.85 for S.I units. 

 𝐶𝐻𝑊= Hazen-Williams resistance coefficient, R= When in a 

state of rest radius (A/P, Where A is the cross-sectional area 

and P is the wetted perimeter) 

𝑆𝐸= Slope of the energy grade line or the head loss per unit 

length of the pipe (S=h/L). 

 

By making use of equation (1), equation (7) and Hazen –

Williams formula.  C can be interpreted as 𝐶 =

14.07
−0.54

𝑅0.06(
𝜀

𝐷
)0.01𝜀−0.01𝛾0.08, is implying that C is a 

function of R,
𝜀

𝐷
 ,𝜀 and Kinematics viscosity,𝛾, C is also 

found to be dependent on pipe diameter (Lieu, 1998). 

 

 

 
Connection between Hazen-Williams C and when a state of 

rest parameters. 

Figure 8: Variations in C 
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IS-SP35:1987(Handbook on water supply and Drainage with 

special Emphasis on plumbing) gives the values of Hazen-

Williams constant C in some range for different types of 

pipe materials, i.e. fore cast iron new pipe, the recommended 

value of C is 130 and for design purpose, it is 130.  As 

shown in Figure (8) assuming C as constant is hazardous. 

 
Table of Hazen-Williams coefficients for different type of 

pipes 
Pipe materials 

 
Asbestos Cement 140 

Brass 130-140 

Brick Sewer 100 

Cast-Iron(common in older water line)  

New unlined 130 

10-year-old 107-113 

20-year-old 89-100 

30-year-old 75-90 

40-year-old 64-83 

Concrete or Concrete-lined  

Steel forms 140 

Wooden  forms 120 

Smooth 140 

Average 120 

Rough 100 

Centrifugally spun 135 

Copper 130-140 

 
Table of Roughness Heights,𝜀 for certain common materials 

Pipe materials (mm) (ft) 

Brass 0.0015 0.000005 

Concrete   

Steel forms, Smooth 0.18 0.0006 

Good join is average 0.36 0.0012 

Rough visible form marks 0.60 0.002 

Copper 0.0015 0.000005 

Corrugated metal(CMP) 0.45 0.15 

Iron(common in older water lines 

except ductile or DIP) 

  

Asphalt lined 0.12 0.0004 

Cast 0.26 0.00085 

Ductile, DIP-cement mortar lined 0.12 0.0004 

Galvanized 0.15 0.0005 

Wrought 0.045 0.00015 

Polyvinyl chloride (PVC) 0.0015 0.000005 

Polyethylene high density(HDPE) 0.0015 0.000005 

Steel   

Enamel coaled 0.0048 0.000016 

Riveted 0.9-9.0 0.003-0.03 

Seamless 0.004 0.000013 

C0mmercial 0.045 0.00015 

 

6. Conclusion  
 

Plinth on the Nikuradse‟s experimental data, an improved 

version of equation on friction factor covering the whole 

Turbulent flow range flow has been presented. The friction 

factor treatment of a nectar surface in the transitional regime 

does not follow the Colebrook relationship and in lieu of 

exhibits treatment more pattern cal of Nikuradse‟s gravel –

corn roughness.  
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