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Abstract: The compound distributions have applications in many fields including insurance. The present paper introduces a new 

family of Exponential power distribution called compound Exponential power distribution, which is obtained by compounding the 

exponential power distribution with the gamma distribution. This family of distribution includes the Laplace and normal distributions 

as special cases. We discuss various properties of this distribution. The maximum likelihood estimation procedure is employed to 

estimate the parameters of the proposed distribution and an algorithm in R package is developed to carry out the estimation. Simulation 

studies for various choices of parameter values are performed to validate the algorithm. Finally, we illustrate the application using 

microarray gene expression data. 
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1. Introduction 
 

The microarray technology introduced in 1990’s is a 

powerful tool for simultaneous study of the expression levels 

of thousands of genes. After normalization, gene expression 

distribution generally have heavier tails than Gaussian 

distribution and have asymmetry of varying degrees with a 

sharp peak, due to the bulk of the mass at the middle.  

 

The gene expression distribution has been modelled using 

several densities, Kuznetsov [22] used different classes of 

skewed probability functions such as Poisson, exponential, 

logarithmic series and Pareto-like distribution. In Hoyle et 

al. [10] the error distribution is modelled by two 

distributions: a log-normal in the bulk of microarray spot 

intensities and a power law in the tails. In Khondoker et al. 

[17] the distribution of gene expression is modelled using a 

Cauchy distribution as a part of a statistical model for 

estimating gene expression using data from multiple-laser 

scans. Various authors suggested error distribution for gene 

expression data, Asymmetric Laplace distribution (Purdom 

& Holmes [11]), asymmetric type II compound Laplace 

(Bindu et al.[4]), slash distribution with normal kernel 

(Bindu [7], asymmetric slash Laplace (Bindu [6]), skew 

slash t (Bindu [5]), Laplace mixture (Bindu and Kannan [8], 

slash distribution with Cauchy kernel (Bindu [3]), Double 

Lomax (Bindu and Sangita [2]), etc. In the present study we 

introduce the compound exponential power distribution as an 

error distribution for cDNA microarray gene expression 

data.  

 

The compound distributions have applications in the study of 

production/inventory problems, since it provides a flexible 

description of the stochastic properties of the system. These 

distributions play importantl role in insurance and other 

areas of applied probability modeling such as queuing 

theory. Also compound distributions also found applications 

in genomic studies, Bindu et al. [4] introduced the 

asymmetric type II compound Laplace and found that it is 

suitable for modelling impulsiveness and skewness required 

for microarray gene expression data. In present paper we 

introduce generalization of exponential power distribution. 

This article is organized as follows. Brief introduction of 

exponential power distribution (Subottin [18]) is given in 

section 2. In section 3, the compound exponential power 

distribution is derived, and various properties explored. In 

section 4 we describe the maximum likelihood estimation of 

parameters using the BFGS algorithm of optim function in R 

(R Core Team [19]). The application of the compound 

exponential power distribution distribution is illustrated in 

section 5 and we conclude in section 6. 

 

2. Exponential Power Distribution 
 

2.1 Exponential Power Distribution 

 

The Exponential power (EP) distribution introduced by 

Subottin [18], with  scale parameter σ> 0, a shape parameter 

p > 0 and a location parameter  μ ε R.  

 

The probability density function of exponential power 

distribution is given by 

 

Where  

 

If we put we get the standard exponential 

power distribution. For p < 2 the distribution has heavier 

tails, smaller values of p corresponds to fatter tails. The EP 

distribution is leptokurtic for 0 < p < 2 and platikurtic for p 

> 2. Also for   p = 1 we get the Laplace density, the normal 

density for p = 2 and the uniform distribution as  p → ∞. 

 

Maximum likelihood estimation of the EP distribution are 

discussed in Agro’ [12]. Software Tool to compute the 

density function, the distribution function and the quantiles 

and to generate pseudorandom numbers from the EP 

distribution is developed by Mineo and Ruggieri [1]. Rachev 

and Mittnik [21] and Nelson [9] found applications of EP 

models for financial data modeling. 

 

Now we introduce the compound exponential power 

distribution, a family of exponential power distributions 
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which is obtained by compounding the exponential power 

density with the gamma distribution. 

 

3. Compound Exponential Power Distribution 
 

3.1 Compound Exponential Power 

 

The compound exponential power (CPE) distribution, a 

family of exponential power distributions which is obtained 

by compounding the exponential power density with the 

gamma distribution. Now we derive the probability density 

function of compound exponential power distribution from 

the exponential power distribution. 

 

Let X follow a exponential power distribution given s with 

density given by  

 
and let s follow a Gamma( ) distribution with density 

    (2) 

 

Then the unconditional distribution of X is the compound 

exponential power distribution with parameters (µ, p, α, β), 

denoted by X CEP(µ, p, α, β) and the density function is 

given by 

 

 
For p=1 the density reduce to 

. 

Which is the density of the compound Laplace studied in 

Bindu et al. 43]. 

 

Remark 1: If X has a compound exponential power 

distribution with parameters α, β, p and µ then α → ∞, β → 

∞ and αβ= σ the compound exponential power density f(x) 

converges to the exponential power density. 

 

Figure 1 shows density plots of compound exponential 

power distribution (for various values of α, β, p). From 

figure 1 we can see that peakedness of CEP density increases 

when increasing the values of α. From figure 2 and 3 we can 

see that peakedness of the pdf decrease when value of p 

increases.  

 
Figure 1: Plot of CEP of various values of α and for µ=0, 

p=1and β=1. 

 
Figure 2: Plot of CEP of various values of p and for µ=1, 

α=1.5 and β=1. 

 
Figure 3: Plot of CEP of various values of p, α, β and for 

µ=1. 
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3.2 Properties 

 

The compound exponential power density has the following 

interesting properties. 

 

P1. The compound exponential power distribution is 

symmetric and unimodal around the location parameter µ. 

P2. The compound exponential power distribution has finite 

mean if (α
p
+1/p)> 2 and has finite variance if (α

p
+1/p) > 3.   

P3. The compound exponential power distribution is heavy 

tailed than exponential power, Laplace and normal 

distributions. Also more area is concentrated towards the 

center (mode). Note that the tail probability of the compound 

exponential power density is, F(x) ~ cx
-(α^p+1/p)

; as x→±∞. 

P4. The compound exponential power distribution is 

completely monotone on (µ, ∞) and absolutely monotonic on 

(-∞, µ). Hence the compound exponential power distribution 

with μ=0 is completely monotone on (0 ;∞) [and absolutely 

monotone on (-∞, 0)]. As noted by Dreier [15], every 

symmetric density on (-∞, ∞), which is completely monotone 

on (0, ∞), is a scale mixture of Laplace distributions. 

 

4. Estimation of Parameters 
 

In this section we study the problem of estimating four 

unknown parameters = (µ, p, α, β), of compound 

exponential power  distribution. To estimate the parameter µ 

we use the quantile estimation and maximum likelihood 

estimation is used to estimate other three parameters. 

 

Let X = be independent and identically 

distributed samples from compound exponential power 

distribution with parameters . To estimate  maximum 

likelihood estimation procedure is used where the likelihood 

function is maximized to estimate the unknown parameters 

and is describe below. 

 

The log-likelihood function of the data X takes the form, 

Log L( , X) = n log - n log 2- n log B  –n  

logp  , 

Where  

 
Existence, uniqueness and asymptotic normality of maximum 

likelihood estimators (MLEs) can be derived on the same 

lines as described in detail for exponential power distribution 

in Subottin [18], and compound Laplace distribution Bindu 

et al. [4]. 

 

The MLEs of ( ,p) for given   are obtained by 

solving the score equations for ,  and p.  

 

In our illustrations, the maximization of the likelihood is 

implemented using the optim function of the R statistical 

software, applying the BFGS algorithm (R Development 

Core Team [19]). Estimates of the standard errors were 

obtained by inverting the numerically differentiated 

information matrix at the maximum likelihood estimates. 

 

5. Applications 
 

In this section, we present applications of the compound 

exponential power distribution. We use microarray gene 

expression dataset from published microarray experiments. 

The dataset is the cDNA dual dye microarray dataset 

(Experiment id-51402) downloaded from the Stanford 

Microarray Database. Each array chip contains 

approximately 42000 human cDNA elements, representing 

over 30000 unique genes. These datasets were normalized 

using (Lowess) locally weighted linear regression method 

(Cleveland and Delvin, [23]). This method is capable of 

removing intensity dependence in log2(Ri/Gi) values and it 

has been successfully applied to microarray data (Yang et 

al., [24]), where Ri is the red dye intensity and Gi is the 

green dye intensity for the ith gene. 

 

We use the maximum likelihood estimation method to 

estimate the parameters. The maximization of the likelihood 

is implemented using the optim function of the R statistical 

software, applying the BFGS algorithm (See R Development 

Core Team, [19]).  

 
The maximum likelihood estimates of the parameters and 

standard errors (SE) are reported in Table 1. Figure (4) given 

below, depicts the histogram of the gene expression data and 

the fitted probability density function evaluated at the MLEs. 

We compared the empirical distribution function of the 

microarray gene expression data with the compound 

Exponential Power (CEP) red line, Exponential Power (EP) 

blue dotted line and Gaussian (normal) distribution, green 

dashed line distributions evaluated at the MLEs. It can be 

clearly seen that the estimated density of the CEP fits the 

data quite well compare to EP  and normal distributions. 

 

Table 1 Application - maximum likelihood estimates and 

their asymptotical standard deviations for CEP, EP and 

normal 

 CEP EP Normal 

µ 0.061(0.003) 0.029(0.002) 0.001(0.002) 

σ - 0.941(0.026) 0.081(0.004) 

p 1.071(0.009) 0.961(0.061) - 

α 5.554(0.127) - - 

β 0.421(0.014) - - 

AIC 85090 89184 100225 

BIC 85125 89212 100243 
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Figure 4: Fitted compound Exponential Power (CEP) red 

line, Exponential Power  (EP) blue dotted line and Gaussian 

(normal) distribution, green dashed line (evaluated at MLEs) 

for the microarray data from Experiment id-51402 

 

 

We used Akaike’s Information Criterion (AIC) (Akaike, 

[14]; Burnham and Anderson, [16]) and Bayesian 

Information Criterion (BIC) (Schwarz, [13]) to assess the 

appropriateness of CEP over the EP and normal. The AIC 

and BIC are given by 

AIC= -2 log L + 2 k and BIC= -2 log L + k log n, 

Where k is the number of parameters estimated and n is the 

sample size. 

 

A smaller value of AIC or BIC indicates a better fit. We 

calculated AIC and BIC for the CEP, EP and normal 

distributions for the dataset examined. From Table 1we can 

see that  AIC and BIC values are smaller for CEP. Smaller 

AIC and BIC values indicate better fit and hence CEP fit the 

data better than EP and normal distributions. 

 

6. Conclusion 
 

In the present paper we introduced a new heavy tailed 

generalization of exponential power distribution called  

compound exponential power (CEP) distribution and is 

useful in analysing datasets that are symmetric, leptokurtic, 

and deviate considerably from the classical symmetric 

distributions such as normal, Laplace, etc. These are some of 

the common features of data in financial modelling and 

microarray modelling in addition to the heavy tail structure. 

The CEP introduced in this paper can be useful in analyzing 

data sets which exhibits heavy tails and peakedness. We 

found that CEP is suitable for modeling microarray gene 

expression data, since it is having thick tails and sharp peak 

in the middle. 
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