
International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 9 Issue 8, August 2021

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Limited Searching by Problem Category in State

Space Tree to Solve Timetable Scheduling Problems

Jamaludin Hakim
1
, Retantyo Wardoyo

2*
, Sri Hartati

3

1,2,3 Department of Computer Science and Electronics

Universitas Gadjah Mada

D.I. Yogyakarta, Indonesia

jamaludin.hakim[at]mail.ugm.ac.id

rw[at]ugm.ac.id* (corresponding author)

shartati[at]ugm.ac.id

Abstract: The main problem in making timetable schedules is finding a solution slot that can meet the minimum tolerable constraints.

The search for solution slots aims to place all timetable components in timetable slots that fit the constraints. The searching for solution

slots does not have to be carried out on all slots in the timetable but is carried out only on slots that have the potential to provide

solutions based on problems that arise. The limited search to solution slots in the state space tree allows for finding the best solution slot

based on the problems that arise. Limited searching allows the resulting timetable scheduling to meet tolerable constraints and simplify

the searching process.

Keywords: Solution slot, State space tree, Limited searching, Timetable component (TC), Timetable media (TM)

1. Introduction

Timetable scheduling at universities are formed based on

mandatory provisions (hard constraints) and based on

tolerable conditions (soft constraints). The placement of

timetable components (TC) in accordance with the provisions

stipulated in the timetable media (TM) slots is a major

concern in the process of forming a timetable scheduling.

Until now, researchers are still looking for the most

appropriate method in placing timetable components in

timetable media.

One of the methods in establishing the timetable is to

swapping slots for each timetable component that does not

meet the constraints. The slot swapping method is carried out

with the expectation that the timetable component will find

slots that meet the constraints. The swapping of slots can be

done by various methods. Either done randomly or follow a

certain pattern or certain calculations.

Swapping can be made if the Timetable Component (TM),

which consists of lecturers, Department, courses, semesters,

classes and the number of participants, can meet the expected

Constraints. In the swapping of TM, what need to be tested

whether it meets the Constraints is TC for which a solution

will be found (TCi) and TC which occupies the solution slot

(TCj).

Solution slots are randomly distributed on the Timetable

media (SM). The easiest step is to experiment with swapping

all existing slots until the desired solution is found. However,

this step requires a lot of effort. Another step is to mapping

the slots that are candidate solutions. Determination of

candidate solutions will map solution slots. Determination of

solution slots is to take all slots in all time periods and all

days, in rooms that meet capacity.

The searching process is a factor that is one of the key

determinants in finding a mapped solution slot. Not all of the

mapped solution slots must be checked whether they match

or not. Checking the solution slots will be carried out based

on the problem categories that have been defined, so the

solution slots must be formed in a state space tree that

describes the categories of problems that arise.

2. Previous work

Swapping the position of the timetable components in the

solution slots is one of the effective ways to find solutions in

Timetable scheduling. Genetic Algorithm (GA), is one

method that swap slots to find solutions in scheduling [5].

The swapping of positions in the slots that are considered to

be a solution is also carried out when using the Ant Colony

Optimization method (ACO). Swapping of solution slots is

carried out if it is considered that the swap will result in a

better timetable [13].

The combination of GA and Simulated Annealing (SA)

creates a random step of mutation which is carried out by

greedy stochaltic local search and then will be selected

randomly through the swap of chromosomes which are

considered to represent the appropriate solution slots. The

criteria for stopping iterations in the swap of

chromosomes/solution slots are determined by SA [12].

The swapping of solution slots which are considered

potential for solving problems is still used in research for

timetable scheduling problems. The main objective of finding

solutions to timetable scheduling problems is the placement

of Timetable Components in appropriate slots where the

potential for violations of the constraints can be minimized.

3. Timetable scheduling problem

The formulation that describes the problems that arise in the

timetable is needed so that the desired solution can be found.

The formulation of the problem will be described in a

mathematical model so that it is easy to know the provisions

Paper ID: SE221026031608 15 of 21

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 9 Issue 8, August 2021

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

that are applied, but before that, the following is a description

of the problem which is divided into two categories, namely

Hard Constraints (HC) and Soft Constraints (SC).

Hard Constraints (HC)

 Lecturers are only scheduled once at a certain time (HC1)

 Room is only scheduled once at a certain time (HC2)

 Courses at the same semester level are only scheduled once

at a certain time (HC3).

Soft Constraints (SC)

 All courses chosen by students at different semester levels

should be scheduled once at a certain time (SC1).

 Lecturer teaching time should refer to the lecturer's

teaching time preference (SC2).

 Rooms are scheduled based on room capacity (SC3).

So when formulated for each Constraint is as follows:

HC1

(1)

HC2

(2)

HC3

(3)

SC1

(4)

SC2

(5)

SC3

(6)

Where,

 (7)

(8)

(9)

(10)

For r=room, p=period, d=day, b= weight, n= number of days,

m=number of rooms, D=lecture, R= used classroom, M=

subject (the same semester, class, and Department), MP= the

subjects chosen by students at different semester levels, P=

lecturer's teaching time preference, Pst= lecture participants,

KR= room capacity.

4. Timetable scheduling construction

The formation of a timetable scheduling with a certain

method requires media and compositions that must be

formulated. The timetable will be formed in a Timetable

Media (TM) which consists of day, period and room

components. The combination of the three components in the

timetable media will provide information on the position of a

slot. Determining and searching for slots on the TM will be

the main factor in the formation of the timetable. While the

courses, lecturers, number of participants and classes are

components of the timetable (TC) which will be placed on

the TM.

The process of finding solution slots will begin with the

placement of TC on TM based on constraints. TCs that do

not find slots that meet the constraints will be collected for

the process of searching for solution slots. Next, Any KJ that

does not meet the constraints will be placed in empty slots

without checking constraints. Furthermore, TC that has been

placed without checking for constraints is checked for

violations that arise against constraints in the slot. The

process is shown in the model in Figure 1.

Figure 1: The Model of Timetable scheduling with limited

searching

Based on the results of the examination of the constraints, the

number of solution slots can be determined and a state space

tree can be formed. Limited searching aims to find slots that

if tested with constraints will meet fitness. Constraint testing

is not only carried out on TC for which a solution is sought

(TCi), but also on TC that occupies the solution slot (TCj).

The slot swapping will be carried out if the TC test has met

the fitness. The fitness calculation was performed on TCi and

TCj. The search for a solution slot will be carried out in the

next iteration/Level if it does not meet the fitness, and the

timetable construction process will stop if the fitness has

been met.

4.1 Determination of solution slots

Solution slots need to be determined which ones have

potential. The number and position of the solution slots to be

used depends on the number of participants taking a course at

TC. The number of participants will determine the

classrooms that can be used. The more participants TC has,

the fewer the number of solution slots. This is related to the

smaller number of large capacity rooms and later the rooms

will be categorized based on room capacity (RC). The

number of solution slots (SoS) formed is obtained by using

equation (11).

SoS=#day*#period*#RC (11)

Paper ID: SE221026031608 16 of 21

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 9 Issue 8, August 2021

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Visually, the solution slots will spread throughout the day

and period, and in the rooms that fall into categories

according to the capacity of the participants. Figure 2, for

example describing the position of the solution slot in rooms

with a large capacity, so that only a few rooms are included

in the solution slot.

Figure 2: The Model of Timetable scheduling with limited

searching

The process of forming solution slots is a step related to the

construction of a state space tree. Each solution slot formed

will be specific to each TC for which a solution will be

sought. Prior to the construction of the solution slot,

violations that occurred for each TC that had not occupied a

slot in the initialization process would be calculated. The

calculation of violations will determine the category of

violations owned by TC. The problem category will be used

for the creation of the state space tree and the search process.

The determination of the violation is determined based on

what constraints are violated (12).

There are three main problems that arise in the violation

checking process. First, the schedule component does not

meet all the constraints. Second, schedule components meet

the constraints except SC3. Third, the schedule component

only meets SC3. Table 1, is an explanation of the categories

of violations and the actions that will be taken when the

construction of the state space tree and searching of solution

slots. The problem category will be a guide in the process of

construction the state space tree. The category of violation

determines the movement searching of solution slot (Table

2). The problem category is the key in the limited searching

process.

(12)

Table 1: Types of violations, problem categories and actions

Violation
Problem

Categories
Actions

SC3 1

Moving room

without moving

period

HC1-HC3, SC1, SC2 2

Moving period

without moving

room

HC1-HC3, SC1-SC3 3
Moving period and

Moving room

The category of violation (CoV) will consist of three parts. If

the violation only occurs in the 3rd Soft Constraint (SC3),

then it becomes a first category (1st category). For violations

that occur on all constraints except SC3, it will meet the

second problem category (2nd category). If all constraints are

violated, it will meet the third problem category (3th

category).

Table 2: Movement for next solution slot
Problem category Solution movement

1 r → next RC

2 p → p+1

3 p → p+1 and r → next RC

4.2 Construction of the State Space Tree

The formation of a state space tree refers to the category of

problems. The problem category is divided into three parts

causing the state space tree to have tree nodes. The first node

will contain the solution slots for the first category, the

second node will contain the second category solution slots

and the third node will contain the solution slots for the third

category. The state space tree will represent the position of

the solution slots based on the problem category.

Figure 3, is an illustration of a state space tree based on

problem categories. The tree will be built on three nodes

representing the problem categories. In Figure 4, the tree is

defined as consisting of three nodes and three pieces of data

containing information on day, period and space. The state

space tree will be construction according to the problem

category. Each node will contain nodes of all categories of

problems, which can be construction nodes at the next level.

Figure 3: State space tree visualization

Visually in Figure 3, Day, period and room information will

be placed on nodes based on the problem category. Taking

the next solution slots that will be placed on the tree, will

refer to the last position of the slot. While the movement of

taking slots can be seen in Table 2.

Figure 4: State space tree class node

If the problem category is one, then the next solution slot is

to take a slot in the next room category (RC) without moving

the period and day. If the problem category is two, from the

last slot position, take the slot in the next period without

moving room and day. For violation with category three, take

a slot after moving room and Period.

Paper ID: SE221026031608 17 of 21

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 9 Issue 8, August 2021

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

The solution slots that have been determined based on the

problem category are placed on the nodes according to the

problem category. The root node will contain the solution

slot with the smallest day, period and room number from the

group of solution slots that appear. For example in Figure 2,

the room category where the solution slots at room

2,3,4,5,7,8, then the sequence of the rooms will refer to that

sequence. So if the slot position on the node above it is in

room 2, for nodes in category 1, the solution slot room is in

room 3 (next room category).

The 2nd node will give a slot with a category 2 problem. The

solution to the category 2 problem is a moving of period. The

solution slot that will occupy the 2nd node is the slot in the

next period from the slot in the node above it (period

period+1). The 3rd node of the root will contain a solution

slot for category three. The solution to the problem in

category three is the moving of the room category and the

moving of the period from the slot on the parent node.

4.3 Fitness Calculation

The process of searching solution slots in the state space tree

can occur in several iterations. The iteration will continue

until the desired conditions are met. There are several

conditions that must be met in order for the iteration to be

stopped. There are minimum conditions that must be met so

that the process of searching the solution slot is considered

complete. The minimum conditions are constructed in certain

formulas which are used as fitness in the searching. Each of

iteration means that it is conducted at a certain level in the

state space tree.

There are two types fitness that must be met to complete the

searching process. The first is the fitness for each constraint

and the second is the fitness for the entire constraints. The

fitness of each constraint will limit the conditions that must

be met. Constraints HC1, HC2, HC3 are constraints that must

be met, while SC1, SC2, SC3 are constraints that can be

tolerated if they are not met.

(13)

(14)

(15)

(16)

(17)

(18)

Each TC will be checked for constraints for all slots in that

period (d,p,r=1…o). d is a position or describes day, p is a

position that describes the period and r is a position that

describes the room, and o describes the amount of room in

TM.

Hard Constraints (HC1, HC2, HC3) must be met so that it

must be scored 0 (13)(14)(15). Soft Constraints (SC1, SC2)

can be not met or can be scored 1 (16)(17), meanwhile SC3

must be met or must be scored 0 in the test (18). Testing the

fitness value for each constraint on the position of the

solution slot and replacement slot, can be called a local

fitness test (19).

(19)

The local fitness f(TC) test is done by summing the fitness of

each constraint and dividing by the number of slots in one

period (m). If the result is less than or equal to 0.33 (there are

a maximum of 2 violations) then TC can be placed in that

slot.

4.4 Limited searching

A limited search to find a solution slot will be performed on

the state space tree. After the tree is constructed, the

searching will start from the root node of the tree. The

solution slot data on the root node (day, period, room) will be

the initial solution slot for TCi. The calculation of the

constraints will be carried out on TCi if it is in the solution

slot whose data is taken from the node using equation (20).

The position of the slot where the TC is located will be

labeled with the letter "i", and the position of the slot in the

node that is a candidate for the solution slot will be labeled

with the letter "j". If the solution slot has been occupied by

TCj, a violation calculation will be carried out on TCj with

the slot occupied by TCi using equation (21).

(20)

(21)

If one of the calculations in equation (20) or (21) does not

meet the fitness, then the searching will continue on the node

at the next level (child node). The searching for nodes in the

next level will depend on the problem category. The category

of violation of equation (12) depends on the results of the

fitness calculation TCi (20). Furthermore, the slot

information (d,p,r) on the node will be used for calculating

the fitness f(TC)i (20). After the calculations in equations

(20) and (21), the next step to take if f(TC)i and f(TC)j have

been met fitness is to swapping slot positions between KJi

and KJj. The limited searching algorithm directs the

searching to the slots that have the potential to reduce the

violation of the constraints (Figure 5). The Searching that

refer to the problem category, direct the searching so that the

slot visited is a slot that is still close to the slot that was first

offered in the tree. So that the searching movement on the

node will reduce the violations encountered from the slots on

the parent node.

In Figure 5, line 10 checks whether the fitness TCi and TCj

are less than or equal to 0.33. If it meets then swapping the

slot position (line 11 to 13). If the fitness value is not met, the

slot searching will be carried out at the next level node

(child) based on the problem category. On line 15 of the

limited search algorithm, testing the category of violations

encountered (CoV) was carried out. Based on the results of

Paper ID: SE221026031608 18 of 21

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 9 Issue 8, August 2021

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

CoV, the searching for slots at the child node depends on the

category of violation (line 16 to 18).

5. Result and discussion

Initialization process is important in solving timetable

scheduling problems using limited searching. Initiation

process is to place TC on TM. The TC sorting method in

placing it on TM (Greedy) affects the number of TC results

that do not get a slot. There are 566 TCs that need to be

plotted on the TM which has 609 occupied slots.

Figure 5: Limited searching algorithm

Placement of TC on initialization if it is done by sorting

using the largest weight first, the TC that does not get a slot

is 55. Placement based on the smallest weight first, the TC

that does not get a slot is 54. Placement based on the largest

TC participant first, the TC that does not get a slot is 14.

There is a significant difference when sorting using the

number of TC participants, which means that the placement

of TCs with a large number of participants causes more TCs

to get slots.

There are 14 TCs that haven't got a slot, which needs to find

the slot that meets the constraints. After the initialization

process, it was identified that the percentage of constraints

violated for the 14 TCs in Figure 6.

Figure 6: Percentage of TCi on constraints after initialization

In Figure 6, From the constraints that must be met (not to be

violated) (HC1, HC2, HC3), there are HC1 which are still

7% violated and HC3 are 100% violated. While the

constraints that should be met (SC1, SC2, SC3), all these

constraints are violated by varying numbers.

After searching the state space tree to find solution slots and

successfully swapping TCi, the results obtained are shown in

Figure 7.

Figure 7: Percentage of TCi on constraints after limited

searching

Result after limited searching, all Hard Constraints have been

met. Meanwhile, there are Soft Constraints that cannot be

met, namely SC1 violates 14% and SC2 violates 29%. That

means there are about 14% and 29% (SC1 and SC2) of the

14 TCi that have not been met. SC1 is a student elective

course in a different semester, where 14% of the time

placement is still the same as other elective courses. SC2 is a

constraint that lecturers are occupied with the desired

teaching time preferences, so there are 29% of lecturers'

teaching time preferences that cannot be met.

It should also be noted that the TC slot is occupied a solution

slot (TCj), in swapping for the TCj slot; it must also get a slot

that meets the constraints. Figure 8 shows the percentage of

TCj after the process of searching and swapping slots.

Figure 8: Percentage of TCj on constraints after Limited

Searching and swapping slots

HC1, HC2 and HC3 of TCj have met the constraints.

However, for SC1 and SC2 there are still 7% and 14%

violations. So that there are 7% of different semester elective

courses that violate their time placement and 14% of

lecturers' teaching time preferences that are violated.

Student elective courses that still do not meet the constraints

can be caused by students choosing general courses and or

courses with a large number of participants. The Lecturers

teaching time preference that cannot be met by TCi and TCj

could be due to a less wide preference for teaching time,

Paper ID: SE221026031608 19 of 21

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 9 Issue 8, August 2021

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

which is combined with the number of courses taught by a

lecturer. The rules regarding teaching time preferences must

be analyzed so that teaching preferences can be met.

The number of nodes that must be visited to find a solution

slot is not the same for each TC. There is a root node/level 0,

a solution slot has been found. But there are also those that

up to the 10th level node, a solution slot are found (Table 3).

In Table 3, there are several TC that have to go up to level 10

in the state space tree to get a slot that can meet the

conditions. Although not all TCs do that, because the search

process is limited, so it doesn't continue to searching at the

next level if it meets fitness.

Table 3: Movement for next solution slot

Timetable

Component
At Level

Number of

Violation

i j

1 10 1 1

2 6 0 0

3 6 1 0

4 0 0 1

5 0 1 0

6 5 1 1

7 6 1 1

8 0 0 1

9 10 1 0

10 6 0 1

11 1 1 2

12 4 0 1

13 2 1 0

14 0 0 0

The use of limited searching to state space trees, providing a

new perspective in solving timetable scheduling problems.

The existence of a problem category has a very good impact

on the searching process of the expected solution slots. There

is a decrease in the violation of constraints on every visit to

the next level node. Not all of the TCs experienced a

decrease in the number of violations when moving to the next

level, but almost all showed a decrease in the number of

violations when moving on to the next level as shown in

Figure 9. In Figure 9, the number of violations tends to

decrease with each level moving. The decrease in the number

of violations each time you enter the next level (child) in the

searching, has an indication that the slot found is a suitable

solution slot. This shows that if you searching using problem

categories on child nodes, you will find nodes that contain

slots that are better than the parent node slots. So that a

solution slot that meets fitness will be found.

Figure 9: TCi and TCj graphs on decreasing the number of

constraints violation at each Level in limited searching

In general, the limited searching process has solved the

timetable scheduling problem. Constraints that have not been

met have become a condition that needs to be found a way to

solve them. However, with limited search, 70% of the

constraints have been met (4 of 6 constraints). This method

needs improvement, such as adding fitness. Addition of

fitness can be done by comparing the difference in violations

at each level node visited with the previous level node. If

there is a decrease in the number of violations then the

searching can continue to the next level. If there are more

violations, the slot with the smallest difference in violations

is taken.

Searching for solution slots by using the problem category

provides a new view that the search will be more efficient in

finding solutions. The accuracy in finding the best solution

slot cannot be said to be perfectly successful because there

are still violations that occur. However, the violations that

occur still meet fitness. But there are also TCs that do not

have violations with this method (TCs 2 and 14 in Table 3).

Limited searching by problem category, will direct the

searching to the slot that is expected to provide a solution. So

it can be concluded that the limited searching based on the

problem category, has found a solution according to fitness.

6. Conclusion

Sorting in initialization is quite influential in SC assignment.

Proper sorting will result in SCs that haven't got fewer slots.

Fewer SCs need to find a solution slot, reducing the

displacement of SCs that meet constraints.

Limited searching based on the problem category in the state

space tree to get a solution slot that satisfies the fitness.

Searching by problem category directs searching based on

problems that arise when testing constraints. Each level

moving in the searching there is a reduction in the number of

violations until it meets fitness. The limited searching by

problem category leads to a searching that leads to a solution

slot that satisfies the fitness effectively.

Further research needs to be done for fitness which is not

only on the calculation of violations, but also on changes in

violations that occur during constraints testing. The smaller

the number of violations that appear, the searching will

continue until there are no changes or the number of

violations does not decrease. This method can be applied to

all timetable schedules that can be presented in the form of

rows and columns (grids).

Acknowledgment

This paper using data of Faculty of Mathematics and Natural

Sciences, Universitas Gadjah Mada (FMIPA UGM)

Yogyakarta Indonesia. The data is closed and not distributed

outside UGM. The use of space together by several

departments in FMIPA makes scheduling quite complex and

deserves to be researched.

Paper ID: SE221026031608 20 of 21

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 9 Issue 8, August 2021

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

References

[1] Al-Mahmud and M.A.H Akhand, ‘ACO with GA

operators for solving University Class Scheduling

Problem with flexible preferences’, 2014 International

Conference on Informatics, Electronics and Vision,

ICIEV 2014. doi: 10.1109/ICIEV.2014.6850742

[2] C. K. Teoh, A. Wibowo and M. S. Ngadiman, ‘Review

of state of the art for metaheuristic techniques in

Academic Scheduling Problems’, Artificial Intelligence

Review, 44(1), pp. 1–21., 2015, doi: 10.1007/s10462-

013-9399-6

[3] D. Adrianto, ‘Comparison using particle Swarm

optimization and genetic algorithm for timetable

scheduling’, Journal of Computer Science, 10(2), pp.

341–346, 2014, doi: 10.3844/jcssp.2014.341.346.

[4] D. Suryadi and R. Pilipus, ‘Genetic Algorithm for

University Timetable Planning in FTI’, in Proceeding of

the 2012 International Conference on Industrial

Engineering and Operation Management. Istambul,

Turkey, pp. 656–664.,2012

[5] D. T. Long, ‘A Genetic Algorithm Based Method For

Timetabling Problems Using Linguistics Of Hedge

Algebra In Constraints’, Journal of Computer Science

and Cybernetics, 32(4), pp. 285–301., 2017, doi:

10.15625/1813-9663/32/4/7962.

[6] E. A. Abdelhalim and G.A. El Khayat,‘A Utilization-

based Genetic Algorithm for Solving the University

Timetabling Problem (UGA)’, Alexandria Engineering

Journal, 55(2), pp. 1395–1409, 2016, doi:

10.1016/j.aej.2016.02.017.

[7] F. Alaul, I. Zabalawi, and A. Wasfy, ‘A Sat-Based

Approach To Solve The Faculty Course Scheduling

Problem’ Department of Computer Science &

Engineering American University of Sharjah ,

UAE’,2013

[8] L. Yang and C. Xie, ‘Research on Model of Course

Scheduling System for Ideological and Political

Teaching in Colleges and Universities Based on Particle

Swarm Optimization’, 32, pp. 657–663., 2017

[9] M. Jouya and S. Khayati, ‘Review Local Search

Algorithms In Artificial Intelligence’, International

Academic Journal of Science and Engineering, 4(1), pp.

190–195.,2017

[10] R. A. Komijan and M. N. Koupaei, ‘a Mathematical

Model for University Course Scheduling : a Case

Study’, International Journal of Technical Research and

Aplications, 19(19), pp. 20–25., 2015

[11] S. I. Hossain, S. et al., ‘Optimization of University

Course Scheduling Problem using Particle Swarm

Optimization with Selective Search’, Expert Systems

with Applications, 127, pp. 9–24. 2019, doi:

10.1016/j.eswa.2019.02.026.

[12] S. Susan and A. Bhutani (2019) ‘A novel memetic

algorithm incorporating greedy stochastic local search

mutation for course scheduling’, Proceedings - 22nd

IEEE International Conference on Computational

Science and Engineering and 17th IEEE International

Conference on Embedded and Ubiquitous Computing,

CSE/EUC 2019, pp. 254–259., 2019, doi:

10.1109/CSE/EUC.2019.00056.

[13] T. Thepphakorn, P. Pongcharoen, and C. Hicks, ‘An ant

colony based timetabling tool’, International Journal of

Production Economics, 149, pp. 131–144.,2014, doi:

10.1016/j.ijpe.2013.04.026.

[14] W. Wen-Jing, (2018) ‘Improved adaptive genetic

algorithm for course scheduling in colleges and

universities’, International Journal of Emerging

Technologies in Learning, 13(6), pp. 29–42., 2018, doi:

10.3991/ijet.v13i06.8442.

Paper ID: SE221026031608 21 of 21

