
International Journal of Scientific Engineering and Research (IJSER) 
ISSN (Online): 2347-3878 

Impact Factor (2020): 6.733 

Volume 10 Issue 2, February 2022 

www.ijser.in 
Licensed Under Creative Commons Attribution CC BY 

Segmentation of Cerebral Cortex Based on 3D CNN 
 

Peng Liu
1
 

 
1North China Electric Power University, School of Control and Computer Engineering, No.2 Beinong Road, Changping District, Beijing, 

China 

15210266207[at]163.com 

 

Abstract: Research on the surface of the cerebral cortex is crucial to understanding how the brain works. In this study, a 

three-dimensional full convolution neural network (3D CNN) based on sample equalization mechanism is proposed for MRI cortical 

region segmentation. We implement a deeper network structure through a small kernel, and obtain multi-scale information by integrating 

local and global context information to improve the segmentation accuracy. The algorithm is verified by comprehensive experiments on 

Mindboggle dataset. The results show that compared with other recent methods, this method improves the segmentation accuracy. 
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1. Introduction 
 

When neural image analysis can study the function of brain 

geometric structure and anatomical information. Magnetic 

resonance imaging provides obvious cortical geometry 

information, which plays a very important role in human 

cognition, vision and perception. When studying all aspects of 

the brain, the study of the surface of the cerebral cortex is of 

great significance. The accurate segmentation of the structure 

of the cerebral cortex is very important for the study of various 

brain diseases and the evaluation of brain structural 

abnormalities [1]. So far, some effective neuroimaging 

analysis tools, such as FreeSurfur [2], SPM [3], ants [4] can 

make fine processing of cerebral cortex data. These tools 

usually use multiple image transformation steps, some of 

which require careful fine-tuning of parameters, such as 

convergence threshold, smoothing level or number of 

iterations [5]. In addition, due to extensive numerical 

optimization, such as nonlinear registration, these methods 

have high computational cost and long running time. It takes 

several hours to process a single image, which greatly limits 

large-scale medical research. Automatic segmentation of 

cerebral cortex is a great challenge. Clinicians mainly rely on 

manual marking, which is a very time-consuming process, 

requires professional doctors to mark, and is prone to 

inconsistency [6]. Therefore, there is an urgent need for a fast, 

accurate, repeatable and fully automated method to segment 

the structure of cerebral cortex. 

 

Deep learning method provides a new way to solve cerebral 

cortex segmentation [7], and has great speed advantage. 

Different from the classical model based on Feature 

Engineering, the deep learning model directly learns complex 

features from data, and extracts features through trainable 

convolution kernel and optional pool operation. For example, 

fully convolutional neural network (FCNN) [8] can learn the 

correct feature representation from the image itself in an 

end-to-end manner without complex preprocessing steps. 

These methods can be parallelized effectively on the graphics 

processing unit (GPU), resulting in a huge speed increase. The 

task of whole brain segmentation is particularly challenging 

due to the spatial dependence between complex 3D structures 

and slices, the large number of labels, the limitation of memory 

requirements and the variability of subjects cerebral cortex 

structure. 

At present, there are mainly several methods based on deep 

learning for specific tasks, such as tumor segmentation [9] [10] 

[11], brain injury segmentation [12] [13], image 

reconstruction [14] [15] [16], brain disease prediction [17] 

[18], etc. But so far, only a few teams have achieved more than 

25 categories of cerebral cortex segmentation [19] [20] [21]. 

Most brain segmentation networks are trained on extracted 3D 

slices or 2D slices [7], but these methods will more or less lose 

the spatial information that is crucial to the classification 

results. However, due to the limitation of memory resources, it 

is impossible to construct a full 3D deep neural segmentation 

network trained with whole brain MRI and with a large 

number of labels. Another atlas based method is to align one or 

more anatomical templates with the target image through 

linear or nonlinear registration process, and then transfer the 

segmentation label from the template to the image []. Although 

these methods usually provide satisfactory results, the 

segmentation time is usually long (from minutes to hours), 

which is due to the complexity of the registration step. The 

methods based on point cloud coordinate segmentation usually 

transform the 3D brain data extraction into point coordinate 

form. These methods will save a lot of time, space and memory 

requirements. However, these methods completely ignore the 

spatial information in the transformation process, so the final 

result often loses a lot of context spatial information, which 

will directly affect the experimental results. 

 

Kamnitsas et al, proposed a full 3D method [12], which 

consists of a 3D CNN that generates soft segmentation results 

and a fully connected 3D CRF that applies generalization 

constraints and obtains the final label. The idea of kamnitsas 

[12] is adopted here to realize a deeper architecture by using a 

small kernel. In addition, the connection between local and 

global contexts is established by using a variety of multi-scale 

methods. By embedding the middle layer output in the final 

prediction, this method maintains the consistency between the 

extracted features at different scales, and directly embeds the 

image information of different resolutions in the segmentation 

process []. Different from the previous network structure, the 

global context is modeled using a separate path and 

low-resolution image. Due to the need for detailed 

segmentation of the whole cerebral cortex structure, more 

global and local context information can be collected by fusing 

multiple resolution information, which is of great significance 

for the hint of cerebral cortex boundary region segmentation. 
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In order to verify the effectiveness of our net for cerebral 

cortex segmentation results, a comprehensive experiment was 

carried out on the public mindboggle [24] data set to illustrate 

the learning ability of the experimental method. Mindboggle 

[24] dataset provides the established benchmark and publicly 

available manual label dataset. The segmentation results 

obtained by our method are highly consistent with the 

segmentation results of standard manual label dataset. 

 

2. Method 
 

This section describes the details of our net. Firstly, we 

describes the basic structure of the network (3D FCNN), and 

obtains a deeper network structure combined with the idea of 

small kernel, so that the network can learn more complex 

feature hierarchy and reduce the risk of over fitting. The next 

part focuses on the use of multi-scale strategy to obtain 

multi-scale information from the middle convolution layer to 

improve this architecture and improve the training accuracy. 

The overall structure of the network is shown in Figure 1.  

 

  
Figure 1: Multi-scale 3D CNN based on multi-resolution feature fusion 

 

2.1 3D FCNN network with small kernel 

 

Network depth is the key parameter of the system, and the 

deeper network has stronger recognition ability. Although 

deep networks may be more difficult to train than shallow 

networks [25], using more layers can improve performance. 

One of the limitations of 3D architecture is the harsh 

requirements on memory [26]. When deep network is used, 

pooling layer is usually used to reduce the size of middle layer 

to solve memory constraints. Another key parameter limited 

by memory requirements is the number of filters per layer, 

especially in the network layer with higher dimensions. 

Finally, the size of input and batch processing also needs to be 

suitable for hardware memory. Another limitation of 3D 

networks is that 3D convolution is computationally expensive 

and will multiply the number of parameters. This problem can 

be alleviated by using smaller filters in each convolution layer.  

 

In order to construct a deeper 3D network structure, we use a 

small convolution kernel of 3
3
, which contains fewer weights. 

This design method was previously found to be beneficial to 

the classification of natural images [27], and its effect on 3D 

networks is more significant. If the convolution kernel of 5
3
 is 

used in the basic 3D FCNN network, the network parameter is 

5
3
/3

3
=4.63 times that of 3

3
 convolution kernel. Therefore, by 

using a smaller convolution kernel to replace each layer of the 

basic FCNN network, a deeper network structure can be 

designed.  

 

 
Figure 2: 3D FCNN network structure with small kernel 
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The segmentation method of 3D full CNN (FCNN) 

architecture with small kernel is shown in Figure 2. The 

architecture consists of 8 convolution layers, each layer 

contains several 3D convolution cores. Use ml to represent the 

convolution kernel number of each layer of the network, then 

the output of each layer is:  

 

1
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y ( )
lm

k k n n k

l i l l

n

f W x b





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The feature maps generated by convolution in each layer are 

slightly smaller than their input volume. If the convolution 

kernel size of each layer is 3
3
, the size difference in each 

dimension is equal to the convolution kernel size in this 

dimension minus 2. The network adopts prelu activation 

function, which is defined as follows:  

 

  max( , )i i i if x a x x                      (2)  

 

In the standard CNN, the full connection layer is added to the 

end of the network to encode semantic information. However, 

in order to ensure that the network contains only the 

convolution layer, the method described by deepmedic [12] is 

used here, in which the full connection layer is converted into a 

large 1
3
 convolution set, which allows the network to retain 

spatial information and learn the parameters of these layers, 

just as in other convolution layers. The activation of neurons in 

the last layer corresponds to a specific segmentation class 

label. Finally, it is transformed into normalized probability 

value by softmax function, and the final segmentation result is 

obtained. The probability of each category is as follows:  
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2.2 Cross multiscale fusion features 

 

In CNN, the sequence of layers encodes features representing 

an increasing level of abstraction; the first convolution layer 

usually simulates simple edge information, while the deeper 

convolution layer before the full connection layer directly 

abstracts larger and more complex structures. Combining 

multi-scale features has been found to be beneficial in other 

recent studies [28] [29] in which the whole image is processed 

in the network, a small amount of convolution is applied, and 

then the feature images of different sizes are unified into the 

same proportion by down sampling. According to this 

principle, we further improve the 3D FCNN to include 

multi-scale information in the segmentation results.  

 

The multi-scale version of our segmentation model is shown in 

Figure 1. As shown in the net, there is a single 3D image as the 

input. Here, we use the highest resolution MRI image and 

integrate the feature map from the middle layer of partial 

convolution layer into the full connection layer. Compared 

with other multi-scale methods, this strategy has two important 

advantages, that is the input image is resampled at multiple 

scale resolutions before being input into the network. First, 

because it has a set of convolution filters in each layer, rather 

than one in each path, the features on different scales are more 

likely to be consistent. In addition, because the features of the 

middle layer are injected into the top layer, fine-grained 

information is directly used in the segmentation process.  

 

Because each feature map comes from different middle layers, 

it is necessary to unify the feature maps of different sizes at the 

end of the network, and the middle feature map needs to be 

down sampled to match the size of the feature map of the last 

layer. These feature maps are compatible in size and represent 

different resolutions respectively. In addition, their input 

image receptive fields are also different (that is, the middle 

layer feature map has a smaller receptive field and the last 

layer convolution layer has a larger receptive field. In this way, 

the local information and context information are effectively 

combined to greatly improve the segmentation results.  

 

3. Experiment  
 

In this section, a series of experiments are mainly introduced 

to analyze the influence of experimental methods, and the 

experimental parameters finally adopted in our network are 

introduced. It focuses on the influence of multi-scale training 

on our experimental results.  

 

3.1 Experimental data and environment 

 

We now validate our multiscale learning method. We 

benchmark our experimental performance using Mindboggle, 

a publicly available artificially labeled cerebral cortex data set. 

It included 101 subjects collected from different websites. We 

used 3D MRI images to divide the left and right brain into 31 

regions according to the dkt31 protocol. The experiment was 

conducted on an i7 desktop with 16GB ram and NVIDIA 

geforce GTX 1660ti GPU.  

 

Mindboggle-101 is brain MRI data sets compiled by Arno et 

al. in 2012.101 3D brain MRI images were integrated from the 

existing public data set. All images were taken from healthy 

volunteers and from several independent data sets. The 

vertices of cortical surface were assigned a given label based 

on local surface curvature and average convexity, a priori label 

probability and adjacent vertex labels. In this paper, a total of 

80 images from four data sets are selected for the experiment. 

The specific conditions are shown in Table 1:  

Table 1: Experimental data sheet 

Dataset name 
Number of 

images 
Subject age (mean) 

MMRR-21 21 22-61 (31.8) 

OASIS-TRT-20 20 19-34 (23.4) 

NKI-RS-22 22 20-40 (26.0) 

NKI-TRT-20 20 19-60 (31.4) 

 

The image and label image are shown in Figure 4. The label 

data is the label of cerebral cortex region, which is marked by 

professionals according to DKT protocol. The left and right 

half regions of the brain in the image contain 31 cortical 

regions respectively, a total of 62 cortical regions. 
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Figure 3: MRI image and label image of Mindboggle-101 

 

Since our experiment here only focuses on the thin outer 

cortex of the brain, the relevant information of other brain data 

is not our concern, such as gray matter areas, which need to be 

removed. In addition, there are great differences in the size and 

shape of the original data, so before the experiment, we need to 

accurately preprocess the experimental data, which is directly 

related to the accuracy of our experimental results. The 

processing flow includes image clipping, label continuity, gray 

normalization, ROI region image construction and so on.  

 

3.2 Comparison of experimental results 

 

The final structure of our network is obtained by fusing the 

middle layer information in the last layer of each type of 

network. Three hidden layers are added before the 

classification layer to combine the multi-scale features to 

obtain a network with four types of networks, and the deepest 

degree is 11 layers (see Figure 1). In the first type of network, 

the final feature map is obtained by integrating the network 

outputs of layers 4, 6 and 8 as the input of the full connection 

layer. The feature map from layers 4 and 6 needs to be down 

sampled to match the size of the feature map of layer 8 

network.  

 

Our first experiment focused on comparing the contribution of 

multi-resolution features to the final cerebral cortex 

segmentation. We expand the number of network layers of 3D 

FCNN network to make it have the same number of network 

layers as the network structure in the figure above. By deleting 

the lower layer prediction (i.e. skip-connection), only the core 

network (the network in Fig.1) is left, which we name 

DeepCNN. The following figure shows the comparison of 

experimental results without adding multi-scale information 

and adding multi-scale information. In order to confirm that 

our experimental results are improved due to the adoption of 

multi-scale idea, we conduct experiments by doubling the 

feature map of network layering, increasing the depth of 

network layer (deep++) and fusing more middle layer 

information (skip++). It can be found that the final 

experimental results have not improved, and even there are 

signs of fitting. Moreover, the average dice score decreases 

when more middle layer information is fused, and the 

experimental results are shown in Table 2.  

Table 2: Comparison of experimental results 

 Avg. Dice (%) Avg. Hausdorff (mm) 

DeepCNN 0.8264 1.97 

FreeSurfer 0.8439 2.11 

Our 0.8508 1.82 

Feature map*2 0.8495 1.87 

Deep++ 0.8489 1.88 

Skip++ 0.8312 2.26 

Figure 4 shows the segmentation results obtained by using our 

net, in which different colors represent different types of 

blocks. The left figure is the segmentation results, and the 

figure is the ground truth comparison diagram. It can be seen 

from the figure that the segmentation results obtained by our 

method are highly similar to the ground truth, and the 

segmentation smoothness effect is very good.  

 

    
Figure 4: Segmentation results of cerebral cortex 

 

3.3 Adding residual error and Sample Equalization 

Mechanism 

 

As the depth of the network deepens, it brings another 

problem, that is, the degradation of network performance. 

When the depth deepens, the error rate increases. Here, we use 

the residual proposed by Resnet [30] to design and solve the 

degradation problem. At the same time, it also solves the 

gradient problem and improves the performance of the 

network. Here, the input of layer 3, 5 and 7 of the network 

together with its output are used as the input of the next layer to 

ensure the performance of the network.  

 

In addition, our cortical segmentation task has many 

categories, and the number of each category varies greatly. 

The category imbalance data may lead to better segmentation 

results for the most common category in the final segmentation 

results, while the category with less sample points has poor 

segmentation results. Therefore, the method of counting the 

number of samples is introduced into the loss function, which 

is named lcc loss to ensure that the points with a small number 

of samples are trained. Our loss function consists of cross 

entropy loss function and lcc loss, which are defined as 

follows:  
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               (5)  

Where I is the number of samples, J is the number of 

classifications, and Gij is the one hot code of the ground truth 

of point I, Yij is the output probability of training. The 

comparison with the previous experimental results is shown in 

Table 3:  
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Table 3: Comparison of experimental results 

 Avg. Dice (%) Avg. Hausdorff (mm) 

DeepCNN 0.8264 1.97 

FreeSurfer 0.8439 2.11 

Our 0.8508 1.82 

Our + lcc loss 0.8524 1.78 

 

4. Conclusion 
 

We present an automatic segmentation method of cerebral 

cortex based on full convolution network. The training scheme 

not only has high calculation efficiency, but also ensures the 

training accuracy. By using a small convolution kernel, a 

deeper network with fewer parameters can be obtained, and it 

is less prone to over fitting. In addition, by injecting the output 

of the middle layer into the full connection layer of the 

network, the local and global context information is obtained, 

and the features extracted at different scales have consistency, 

and the local information is embedded in the results to obtain 

good segmentation results. 

 

By describing the network idea and verifying it with the public 

human brain MRI data set, the experimental evaluation shows 

that this method has a good effect on the segmentation of 

cerebral cortex. 
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