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Abstract: State estimation is an effective means to solve the observability of the whole network. Traditional voltage sag state estimation 

usually uses the combination of electrical environmental parameters and mechanism analysis to construct mathematical models. Due to 

the high permeability, dispersion, and dynamic time-varying nature of distributed power sources and nonlinear loads, power quality 

operation scenarios are more complicated and model accuracy is reduced. Data-driven state estimation can avoid the limitations of 

physical models based on mechanism analysis. In this paper, a deep learning method using unsupervised loop generation of 

confrontation is proposed to realize voltage sag state estimation. This method does not require prior knowledge and calculation of 

electrical topology relationships, and uses the coupling relationship between multiple nodes for state estimation, effectively solving the 

influence of the dynamic characteristics of the grid environment on the coupling relationship caused by factors such as line adjustment, 

grid parameter changes, and new energy uncertainties., Improve the generalization ability of the model. The paper tests the model under 

the environment with noise, and verifies the validity of the model. 
 

Keywords: cycle generative countermeasure network, multi-node state estimation, voltage sag, network-wide visibility 

 

1. Introduction 
 

With the rapid development of my country's economic 

construction and power industry, the large-scale application 

of equipment such as high-voltage direct current 

transmission, new energy power generation and variable 

frequency speed regulation motors, the problems of dynamic 

reactive power demand and transient voltage instability in 

large power grids have become more prominent [1], [2] ; the 

number of sensitive electrical equipment with high-tech 

content has greatly increased and the compatibility problem 

has become increasingly complex, and the electricity load has 

entered the era of voltage sensitivity [3], [4]. Voltage sag 

accounts for the highest proportion and causes the greatest 

economic loss, and has become the most serious power 

quality problem [5], [6]. 

 

Source-grid-load power electronics enhance the coupling 

between disturbance sources and highly sensitive loads, and 

the power quality influences a wider range. Due to the 

large-scale access and widespread distribution of pollution 

sources in the entire network, the superimposed effect 

generated by them may lead to serious power quality 

problems in the entire network. Therefore, it is necessary to 

establish a regional power grid-oriented monitoring system to 

realize the global collaborative correlation analysis of 

scattered and superimposed pollution components in the 

power grid, so as to effectively solve the problem of 

comprehensive power quality control [7]-[9]. However, in the 

existing power quality monitoring, in order to reduce costs 

and data redundancy, monitoring devices are only deployed 

at PCC points and some sensitive key locations, which affect 

the observability of the entire network. 

 

State estimation is an effective means to solve the 

observability of the whole network. Existing research relies 

on the mechanism model, electrical distance and grid 

structure parameter model to estimate the state of the 

remaining nodes other than the monitoring point [10, 11], 

forming pseudo-measurement data to complement the actual 

monitoring data, thereby improving the observability. Yao 

Dongfang et al. [12] proposed a real-time monitoring method 

at different voltage levels and outgoing end nodes. However, 

this method has large economic investment, complicated 

installation, long detection period and too large amount of 

data, and the application effect is not ideal. Yang Xiaodong et 

al. [13] proposed a voltage sag random prediction method 

based on an adaptive trust region algorithm. This method can 

consider the influence of power node type and load model, 

but the fixed calculation method is not conducive to the 

design of general calculation programs. Fu Jin et al. [14] 

established a voltage sag state estimation model by imitating 

the electromagnetic algorithm. This method requires that the 

power grid data is perfect and real to perform mathematical 

calculations, but there are many influencing factors in the 

actual power grid data, and the data quality is difficult to 

guarantee. Tang Lin et al. [15] proposed a pattern matching 

algorithm, which uses limited measured values and 

simulation results to perform sag pattern matching, which can 

evaluate the state and level of grid voltage sags, but the data 

results are single and lack flexibility in the face of complex 

grids. 
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The power quality pollution sources of modern power grids 

present high density, dispersion and uncertainty, and the state 

estimation due to mechanism models and high-dimensional 

parameters is quite different from the actual value, which 

cannot really improve the whole network observability of the 

monitoring system. The propagation of voltage sags in the 

power grid causes coupling effects between nodes. 

Monitoring data is a true and objective reflection of the 

system. The change law of index data reflects the coupling 

relationship between disturbances between nodes. Data is the 

representative quantity, and the coupling relationship is the 

essence [17]. All uncertain factors causing complex 

disturbances are concentrated in the monitoring data 

reflecting the coupling relationship. Based on the deep neural 

network model, the use of monitoring data to extract the 

coupling relationship between nodes provides a new idea for 

data-driven state estimation. 

 

Reference [17] proposed to use a data-driven deep learning 

method to extract the coupling relationship between two 

nodes, and use a base node to estimate the state of the target 

node. However, in a complex power grid environment, the 

relationship between two nodes is difficult to summarize all 

the influencing factors. When the dynamic characteristics of 

the grid environment caused by factors such as line 

adjustment, grid parameter changes, and new energy 

uncertainty affect the physical relationship between nodes 

[18, 19], the generalization ability of the model is restricted. 

 

In a complex power grid environment, multiple monitoring 

points generate a coupling relationship with each other. 

Constructing the multilateral relationship of multiple 

monitoring points, when one or a few factors change, the 

multilateral system remains relatively stable, thereby 

improving the generalization ability of the model. Based on 

this idea, this paper optimizes the existing Cycle Generative 

Adversarial Nets (CycleGAN), and studies and proposes a 

voltage sag state estimation method based on multiple 

monitoring points. 

 

2. Cycle Generative Adversarial Networks 

 

Generative Adversarial Networks were first proposed by 

Goodfellow et al. in 2014 [20]. GAN can capture the 

spatiotemporal distribution characteristics and latent features 

of data through adversarial game, both generative network 

and discriminative network. The generative network can 

generate "realistic" sample data, and the discriminant 

network can accurately distinguish the true and false data. 

The two pass the maximum and minimum game, and when the 

Nash equilibrium is reached, the best fitting model of the 

sample is obtained. 

 

Different from many improved GAN models, such as 

conditional generative adversarial networks and deep 

convolutional generative adversarial networks, CycleGAN 

does not add certain conditional constraints on the basis of 

input random noise Z to generate data for a specific single 

target object [21, 22], instead, two GANs are formed into a 

ring network, and the two samples X and Y are respectively 

used as the initial sample input of the two GAN generative 

models. Through two-way cyclic game and confrontation 

feedback, the process loss is reduced and the Convergence 

speed, accurate and efficient extraction of sample features 

and coupling relationships. The basic structure of CycleGAN 

network is shown in Figure 1. The networks G and F are 

generated, and the networks DX and DY are discriminated to 

form two groups of GANs; sample X and sample Y are the 

initial input samples for generating networks G and F, 

respectively. First of all, CycleGAN uses a ring structure, and 

there are two groups of GANs against each other. Compared 

with the ordinary GAN model, the adversarial change of its 

loss function is more obvious, and the model training 

accuracy is better. Second, cycle consistency ensures that the 

generative networks G and F do not overfit. 

 

DX

Sample X

DY

Sample Y

G

F

 
Figure 1: CycleGAN network structure 

 

3. Design of Voltage Sag State Estimation 

Model Based on CycleGAN 
 

3.1 Overall model structure design 

 

CycleGAN consists of two groups of GANs, including two 

generative networks and two discriminative networks. The 

monitoring data of the basic monitoring node and the state 

estimation target node are used as training samples, and the 

corresponding two generating networks are respectively 

input. Through the optimally designed CycleGAN training, 

the coupling relationship between the basic monitoring node 

and the state estimation target node is extracted. After the 

model training is stable, the monitoring device at the state 

estimation node is removed, and the voltage sag state of the 

target node can be estimated based on the monitoring data of 

the basic monitoring node. The basic monitoring node can be 

a single monitoring point or a group of monitoring points. 

 

The overall logical structure of the model is shown in Figure 2 

in: 

 

1) The input data sample X is the data set of the basic 

monitoring node. The input sample data Y is the state 

estimation target node data set; 

2) The purpose of generating network G is to convert the data 

of X into real data like Y as much as possible. That is, to 

find the relationship between the basic monitoring node 

data and the state estimation target monitoring node data, 

so as to realize the transformation; 

3) The purpose of generating network F is to convert the data 

of Y into real data like X as much as possible; that is, to find 

the relationship between the data of the target monitoring 

node and the data of the basic monitoring node, so as to 

perform reverse transformation, so that the data from the 

two The model is trained and optimized by input in each 

direction; 
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4) The purpose of discriminating the network DX is to learn 

the data characteristics of X, and to distinguish whether the 

data is the real data of the data set X; 

5) The purpose of the discriminant network DY is to learn the 

data characteristics of Y, and to distinguish whether the 

data is the real data of the data set Y. 

 

As shown in Figure 2, the state estimation method based on 

CycleGAN, the overall network structure of the model is 

essentially a ring network, mainly composed of two 

generating networks and two discriminative networks. The 

model wants to be able to transform data sample X into data 

sample Y. In order to realize this process, two generation 

networks G and F are required to convert the data of sample X 

and sample Y to each other respectively. The data of sample 

X is generated by generator G to generate data of sample Y, 

and then reconstructed back to the original data input by 

sample X by generator F; the data of sample Y is generated by 

generating network F to generate data of sample X, and then 

reconstructed by generating network G Return the original 

data input by sample Y. The discriminative networks DX and 

DY play a discriminative role. 
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Figure 2: CycleGAN-based voltage sag state estimation 

model 

 

3.2 Model loss function of CycleGAN 

 

There are two groups of GANs in the model, the first group is 

composed of the generative network G and the discriminant 

network DY; the second group is composed of the generative 

network F and the discriminant network DX. The model 

consists of two generative network models G: X → Y and F: 

Y → X. In addition, this paper introduces two adversarial 

discriminative networks DX and DY, where the purpose of 

DX is to distinguish between the real data X and the results of 

the generative network F )(ˆ YFX  ; similarly, the purpose of 

DY is to distinguish the real data Y and the results of the 

generative network G ˆ ( )Y G X , the structure is as follows 

Figure 1. 

 

Based on this structure, the model contains two types of 

losses: adversarial loss, which makes the distribution of the 

generated data closer to the real data; and cycle consistency 

loss, which prevents the learned mappings G and F from 

contradicting each other. Both generative networks are set 

with adversarial losses. The loss function for the generating 

network G and its discriminative network DY is shown in 

formula (1). 

 

GAN , ~ ( )

~ ( )

( , , ) [log ( )]

                            [log(1 ( ( )))]

Y Y Pdata Y Y

X Pdata X Y

L G D X Y D Y

D G X

 

            
(1) 

 

When the generative network G tries to generate the data 

G(X) similar to the sample Y, the discriminant network DY is 

also trying to distinguish the generated data G(X) from the 

real data sample Y. The probability that the generative 

network G wishes to decrease by optimization is opposed to 

the probability that the generative network F wishes to be 

optimized to increase. 

 

Formula (1) is actually exactly the same as the original GAN 

loss function, but it cannot be trained by simply using this 

loss. The reason is that the generative network G can 

completely map all samples X to the same set of data in the Y 

space, invalidating the loss. So design another generation 

network F, which can convert the sample data Y in the Y 

space to the data F(Y) in X. A discriminator DX is also 

introduced for F, so that the loss of a GAN can also be 

defined. The loss function for the generation network F and 

its discriminator DX is shown in formula (2). 

 

GAN , ~ ( )

~ ( )

( , , ) [log ( )]

                                [log(1 ( ( )))]

X X Pdata X X

Y Pdata Y X

L F D X Y D X

D F Y

  

 
        

(2) 

 

The cycle consistency loss is that the generation network G 

can completely map the data of all samples X to the same set 

of data in the Y space, making the loss invalid. As shown in 

Figure 3. 

 

In theory, adversarial training can learn to generate networks 

G and F, and generate outputs with a distribution similar to 

the target datasets Y and X. Strictly speaking; this requires 

that the generation networks G and F should be a random 

function. However, when a dataset has a large enough 

capacity, any randomly permuted input dataset can be 

mapped to an output distribution that matches the target 

dataset. Therefore, there is no guarantee that a generative 

network learned by adversarial loss alone can convert each 

individual input x to the desired y. 

 

However, in the data set of voltage sag, due to the relationship 

of time, each set of data is paired, because the voltage 

transient disturbance data that occurs at the basic monitoring 

node in a certain period of time should also be the target node 

of state estimation. dataset at the same time. Therefore, in 

order to make each group of data correspond to each other, a 

circular consistency requirement is introduced, so that each 
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group of data x in sample X corresponds to each group of data 

y in sample Y in turn. The correspondence of the data is 

guaranteed. 
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Figure 3: Schematic diagram of cyclic consistent loss 

 

To further reduce possible losses, the function should be 

cycle-consistent. As shown in formula (3), each group of data 

x in the data domain X should be able to return x to the origin 

of the translation in the cyclic translation, and vice versa, that 

is, the forward and backward cycles are consistent, as shown 

in Figure 3. Show: 

 

x ( ) ( ( ))

y ( ) ( ( ))

G x F G x x

F y G F y y

  
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(3) 

 

Using the cycle consistency loss as an incentive, there is a 

cycle consistency loss function such as formula (4): 

 

]))(([                 

]))(([),(

1)(~

1)(~cyc

‖‖

‖‖

yyFGE

xxGFEFGL
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



               

(4) 

 

Therefore, the overall loss function has three parts, two parts 

are generated adversarial loss function and one cycle 

consistency loss function, the total loss function formula is as 

formula (5). 

 

),(                          

),,,(                          

),,,(),,,(

cyc FGL

YXDFL

YXDGLDDFGL

XGAN

YGANYX







                       

(5) 

 

where,  controls the relative importance of the two models 

(G, F). 

 

3.3 Model training process 

 

Since CycleGAN runs the input data in both directions. So the 

training process is divided into two parts. 

 

1. Basic monitoring point sample data input 

 

Step 1: Input the data of the basic monitoring point data set 

sample X into the generation network G and the discriminant 

network DX respectively, so that ① the generation network G 

generates samples according to the data of the sample X; ② 

the discriminant network DX learns the data features of the 

real sample X to use Authentication data. 

 

Step 2: Input the data generated by the generation network G 

into the discrimination network DY for discrimination, and 

feed it back to the generation network G. At the same time, 

the input is generated to the network F, and the generation 

network F tries to reversely generate X´=F(G(X )), so that it is 

as close to the original dataset X as possible. 

 

2. State estimation target node sample data input 

 

Step 1: Input the data of the target node dataset sample Y into 

the generation network F and the discriminant network DY 

respectively, so that (1) the generation network F generates 

samples according to the data of the sample Y; (2) the 

discriminant network DY learns the data characteristics of the 

real sample Y to use future identification data. 

 

Step 2: Input the data generated by the generating network F 

into the discriminating network DX, make a judgment, and 

feed it back to the generating network F, so that it can 

generate more realistic data. At the same time, the input 

generation network G is generated, so that the generation 

network G tries to generate Y´=G(F(Y )) in reverse, so that 

the closer Y´=G(F(Y )) is to the original dataset Y, the better. 

  

44..  Experimental Design and Results Analysis  
 

4.1 data acquisition 

 

In this paper, an IEEE 14-node standard power distribution 

network is built on the PSCAD platform for experimental 

data simulation acquisition. The network topology is shown 

in Figure 4. 
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Figure 4: Network structure topology diagram 

 

The power supply reference voltage is 138.0 kV and the 

frequency is 50.0 Hz. Set the target node M of state 

estimation as node 6, take M as the center, select nodes A, B, 

C as a group of basic monitoring points according to the 

principle of electrical distance proximity, which are node 5, 

node 11 and node 12 respectively. A voltage sag event is 

added between node 4 and node 5, which is in line with the 

actual situation of the power grid. Because there is a voltage 

sag event between nodes 4 and 5, the voltage sag state can be 

captured at nodes A, B, C and M, captured by the power 

quality monitoring device and entered into the database. The 

voltage sag state of node M is estimated by monitoring data of 

nodes A, B, and C, and power quality monitoring devices are 

installed at nodes A, B, C and M to collect voltage sag data. 

The specific measurement conditions should meet the 

following two points: ① Nodes A, B, C and M are relatively 

close in geographical and electrical topology diagrams and 

have a relatively close coupling relationship; ② Simultaneous 

measurement of nodes A, B, C and M For data acquisition, at 

least 10 complete cycles of voltage sag data of these 4 nodes 

are acquired for each measurement, and a model training data 

set is established in groups; 

 

The simulation time is 2 s and the sampling frequency is 5 

kHz, considering that the voltage sag amplitude and the 

number of voltage terms in the actual power grid are different. 

Adjust the voltage amplitude, duration, and number of 

voltage terms of the sag event, respectively. A total of 100 

groups of experiments were carried out and collected in the 

form of group data, and a total of 1000 groups of data samples 

were obtained. 

 

4.2 Data preprocessing 

 

The voltage sag data needs to be preprocessed. First, 

normalize the data and map the resulting data values to [0, 1]; 

then, convert the voltages of each phase of the sag sample 

nodes A, B, C and M into 32*32* 1 matrix, and use a 

grayscale image to display single-phase voltage sag, and 

converting 1-dimensional raw data into two-dimensional data 

is conducive to data processing using GAN; The phase 

grayscale image corresponds to the three channels of RED, 

GREEN, and BLUE of the color image, and the three 

grayscale images can be synthesized into a color image 

(32*32*3), as shown in Figure 5(a). The data of node M is 

converted into a two-dimensional grayscale image, as shown 

in Figure 5(b). 
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Figure 5: Voltage sag data preprocessing 

 

4.3 Training process 

 

The training model is implemented by programming on the 

TensorFlow platform. The environment settings are as 

follows: the processor model is AMD Ryzen5 3600X, the 

main frequency of the processor is 3.80 GHz, and the memory 

capacity is 16 GB. When training the model, the method of 

alternating training is adopted, the optimization frequency of 

the discriminator is set higher than that of the generator, and 

the ratio of the update times of the generation network model 

to the discriminant network model is 1:2. The learning rate is 

set to 0.0002, and Adam stochastic gradient descent is used in 

the training process. First, a small learning rate is used to 

learn 100 epochs, and then 100 epochs of learning are 

performed to gradually decay the learning rate. Update the 

model when done. The cycle consistency loss weight is set to 

1, and the adversarial loss is set to 0.1. The network for the 

discriminant model uses cross entropy loss function.  

 

For the data samples collected by the simulation example in 

this paper, 50 sets of data will be reserved as the test set 

before training, and the remaining data will be used as the 

training set. According to the result of adjusting the number 

of groups in the experimental training set, when the 

experimental training set increases again, the model will 

appear overfitting. 

 

The node A, B, C sample training set X is used as the input of 

the generation network, and the node M sample training set Y 

is used as the input of the discriminant network. In the process 

of training the generator network, the weight of the generator 

network is constrained according to the deviation of the 

voltage sag data of the generator network generation nodes A, 

B, C and the real data of the node M, and the discrimination 

result of the discriminant network. In the process of training 

the discrimination network, it is necessary to input the real 

samples and the voltage sag data of the generation network 

generation nodes A, B, C into the discrimination network, and 

the discrimination network determines the probability that the 

input data is the real data of the node M, and updates itself 

according to the discrimination probability. parameter. 
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Input the color map data set into the generation model of the 

model, input the gray image M into the discriminant network 

of the model, and train the generation network and 

discriminant network of CycleGAN alternately. Whether the 

degree map comes from the real training sample grayscale 

map M set, or from the sample generated by the generation 

model G, at this time, the probability of discrimination is 0.5, 

which means the training is completed. The training 

parameters are set as shown in Table 1. 

 

Table 1: Training parameter table 
Parameter Settings 

Training Data 1000 

Batch Size 50 

Batch Round 200 

Cycle Consistency Loss 

Weight 
1 

Adversarial Loss Weights 0.1 

Learning Rate 0.0002 

Gradient Momentum 0.5 

 

After the training is completed, the generated model G is the 

coupling relationship between the grid nodes A, B, C and 

node M. The monitoring device at node M can be removed at 

this point. Take out the successfully trained generative 

network model G. The power quality monitoring devices 

deployed at nodes A, B, and C are used to continuously 

collect new measurement data, and when the data of nodes A, 

B, and C are input to the generation network G, the data of 

node M can be generated through the generation model, so as 

to realize state estimation. 

 

In the training process, a picture class is designed to cache the 

objects of the picture queue. Use this queue for training. By 

using the pictures output by the generator cached in the queue 

to train the discriminator, the stability of the discriminator can 

be maintained and cached. The capacity of the queue is 50, 

that is, the discriminator is trained using the images from the 

first 50 iterations. 

 

4.4 Experimental results and analysis 

 

Based on the characteristics of the experimental data, the 

mean absolute error and the root mean square error are used 

as the evaluation indicators of the model. RMSE is more 

intuitive in magnitude. For example, if RMSE=10, it can be 

considered that the regression effect is 10 different from the 

real value on average. The formula is as follows: 

 





n

i

iiMAE yy
n

L
1

ˆ
1

                             

(6) 

 

 



n

i

iiRMSE yy
n

L
1

2
ˆ

1

                          

(7) 

 

The evaluation index results are in the range [0, +∞), and it is 

equal to 0 when the predicted value is completely consistent 

with the actual value, that is, a perfect model; the larger the 

error, the larger the value. A degree of fit calculation is then 

performed on the data for the true value and the generated 

estimate. The calculated results are then averaged, and the 

result is LMAE=0.0423; LRMSE=0.0562. 

 

In Figure 6, the blue is the real value of the state estimation 

target node M, and the red is the generated estimated value. If 

the two are completely coincident, it means that the error is 

zero. With the increase of training rounds, the method in this 

paper can effectively estimate the voltage sag amplitude of 

node M through the voltage sag data of nodes A, B, and C, 

and obtain an accurate change curve. 

 

 
Figure 6: Data fitting effect chart 

 

4.5 Experimental results and analysis 

 

4.5.1Estimate the optimal number of nodes 

 

The basic monitoring nodes A, B, C, D, and E are selected 

according to the principle of short electrical distance, 

corresponding to nodes 5, 11, 12, 13 and 10 in Fig. 4, 

respectively. The target node M corresponds to the node 6 . 

The state estimation of the target node is performed based on 

the basic monitoring node as follows. 

 

Use node A to estimate node M, and convert the data input to 

node A into a two-dimensional grayscale image. 

 

Use nodes A and B to estimate node M, replace the data of 

nodes A and B with the RED, GREEN and BLUE channels 

respectively, and use the full 255 matrix instead, and then 

input the model for training. 

 

Use the four points A, B, C, D to estimate node M, convert the 

data of the four nodes A, B, C, D into a 32*32*4 matrix, and 

modify the input layer of the model so that it reads directly 

Matrix data for training. 

 

Similarly, if five points A, B, C, D, and E are used to estimate 

node M, the data of five nodes A, B, C, D, and E are 

converted into a 32*32*5 matrix. 

 

The training results are shown in Figure 7. When the number 

of input nodes increases to 3-4, the RMSE value of the model 

tends to be stable. The evaluation indicators corresponding to 

different number of nodes in multi-node estimation are shown 

in Table 2. Considering the topology structure of the power 

grid and the above analysis, when three-node estimation is 

performed, the data can show the intuitive characteristics of 

the data through pictures, and the training effect is excellent, 

which is the most "cost-effective" number of nodes. 
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Table 2: Find the best node experiment 

Estimated number of nodes LMAE (kV) 
LRMSE 

(kV) 

Single Node Estimation 0.1712 0.2034 

Two-node estimation 0.1124 0.1537 

Three-node estimate 0.0423 0.0562 

Four-node estimate 0.0371 0.0447 

Five-node estimate 0.0334 0.0405 

 

4.5.1Test Experiments and Comparative Experiments 

 

The previous part of the experiment realized the state 

estimation of node M by nodes A, B, C, but at the same time 

caused two problems to think about. The actual power grid 

circuit relationship has changed, resulting in a change in the 

coupling relationship between nodes, so that the trained 

model can no longer maintain a high-accuracy state 

estimation. The second question: Since the simulation data is 

used in the training of this experiment, compared with the 

simulation data, the measured data contains some 

interference from irregular factors such as harmonics, noise, 

disturbance and oscillation, which increases the difficulty of 

model training. Therefore, in order to measure the training 

effect of the model, as well as the noise resistance, 

generalization and robustness of the model, the following test 

experiments and comparison experiments are carried out in 

this paper. 

 

In the first test experiment, add 40db Gaussian white noise to 

the data of input node C, and then input the training set of 

nodes A and B and the data of node C with Gaussian ratio 

noise added into the model to test the model by adding noise 

to the data. noise immunity. The data fitting evaluation 

indicators are shown in Table 3. 

 

In the second test experiment, the network topology is 

fine-tuned by modifying the load parameters to test the 

robustness of the model when the structure is changed and the 

coupling relationship between nodes changes slightly. Input it 

into the previously trained generative model, and compare the 

data fitting evaluation indicators as shown in Table 3. 

 

It can be seen from the results of the test experiment that after 

adding 40db of Gaussian white noise, the error of the data 

fitting effect increases by about 0.1. In the case of fine-tuning 

the network topology, the voltage estimation error does not 

exceed 0.17, which proves that the model has good anti-noise 

ability. 

 

Table 3: Test experiment 
Test experimental conditions LMAE (kV) LRMSE (kV) 

The method of this paper 0.0423 0.0562 

Single node plus noise (40db) 0.1228 0.1742 

Fine-tune the network topology 0.1607 0.2192 

 

Reference [17] designed a two-node harmonic state 

estimation network model based on pix2pix. Using the 

network structure characteristics of pix2pix, a data-driven 

harmonic state estimation method is designed and 

implemented. Use the simulation data in this paper to train the 

pix2pix-based network model, then test the training effect and 

add 40db noise to the single node of the model and fine-tune 

the network topology. The comparative experimental results 

are shown in Table 4. 

 

Table 4: Index table compared with pix2pix single node 

estimation method   
Models used & experimental conditions 

tested 
LMAE (kV) LRMSE (kV) 

CycleGAN & three-node estimation 

(method in this paper) 
0.0423 0.0562 

pix2pix & single node estimation + no 

noise 
0.4049 0.5202 

pix2pix & single node estimation + single 

node plus noise 
0.6896 0.7509 

pix2pix & single node estimation + 

fine-tuning network structure 
0.7016 0.8398 

 

The above experiments show that the method in this paper 

can accurately estimate the voltage state of the target node, 

and can also accurately estimate the state for the occurrence 

of sag events. It also has certain anti-noise and robustness to 

noise and fine-tuning topology. Through the selection of the 

optimal number of nodes for multi-node estimation, it can be 

seen that three nodes have better anti-noise performance for 

one node estimation method. Compared with the single-point 

state estimation model based on pix2pix proposed in [17], the 

model in this paper has better noise resistance and stronger 

model generalization. 

 

5. Conclusion 
 

In this paper, GAN in deep learning algorithm is applied to 

voltage sag state estimation, and a multi-node voltage sag 

state estimation network model based on CycleGAN is 

designed. Through the network generation confrontation 

iterative training, the trained generation network can fully fit 

the coupling relationship between multiple nodes, and 

achieve accurate estimation of the voltage state of the target 

node, and realize the data-driven voltage sag state estimation 

method. The specific conclusions are as follows: 

 

1) The multi-node voltage sag state estimation network model 

based on CycleGAN, through two-dimensional grayscale 

image reconstruction and color image reconstruction of 

one-dimensional measurement data, the cycle consistency of 

the model, the CycleGAN used in this model has two Group 

GAN, the loop is characterized by a bidirectional transition 

that will run the input data in two ways. It can effectively 

improve the model learning and training effect. Training one 

set of generative networks while testing another set of GANs 

improves the efficiency of learning relationships between 

data. The two groups of GANs confront each other with 

feedback, which can improve the accuracy of the model. 

 

2) In the verification of the numerical example in this paper, 

considering factors such as electrical topology distance 

between multiple nodes, noise interference and changes in 

topology structure, the noise immunity and robustness of 

Comparative Experiment 1 are obviously inferior to single 

node estimation. Three nodes are used for state estimation, 

and the estimation errors of different models are compared in 

comparative experiment 2. According to the values of MAE 

and RMSE, it is proved that the model designed in this paper 

has good noise resistance and generalization ability. 
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However, when the power grid topology changes greatly and 

the coupling relationship between nodes changes greatly, it is 

recommended to retrain the model. 

 

3) The voltage sag state estimation network model based on 

CycleGAN in this paper is mainly aimed at the coupling 

relationship between monitoring nodes and target nodes with 

close electrical distances. The recent historical data is used 

for model training to achieve state estimation between nodes. 

Realize the visibility of the entire network, spread into a 

network, and use limited node monitoring devices to estimate 

the status of nodes in the entire network. 
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