
International Journal of Scientific Engineering and Research (IJSER)

ISSN (Online): 2347-3878

Impact Factor (2022): 7.741

Volume 10 Issue 6, June 2022

www.ijser.in

Licensed Under Creative Commons Attribution CC BY

Efficient Logarithmic Multiplier by Iterative

Mitchell’s Algorithm Implemented in Verilog

Charan Kumar G.
1
, Satya Narayana S.

2
, Seren Anish P.

3
, Shafath Abdul Nabi K. M.

4
, Dr. S. Rajasekharan

5

1Electronics and Communication Engineering, Madanapalle Institute of Technology and Science (MITS), Madanapalle, India

Email: charang[at]mits.ac.in

2Electronics and Communication Engineering, Madanapalle Institute of Technology and Science (MITS), Madanapalle, India

Email: 18691A04G9[at]mits.ac.in

Electronics and Communication Engineering, Madanapalle Institute of Technology and Science (MITS), Madanapalle, India

Email: 18691A04H0@mits.ac.in

Electronics and Communication Engineering, Madanapalle Institute of Technology and Science (MITS), Madanapalle, India

Email: 18691A04H1@mits.ac.in

Electronics and Communication Engineering, Madanapalle Institute of Technology and Science (MITS), Madanapalle, India

Email: srsmeae[at]gmail.com

Abstract: Multiplication is a basic arithmetic operation. Multiplication operations such as Fast Fourier Transforms, Multiplication

and accumulation units, Convolution are some of the computation-intensive arithmetic functions often encountered in Digital Signal

processing applications. Generally, Logarithm based multipliers are used in these cases which introduce certain errors. These errors are

approximated by various methods. In this paper a simple architecture of a 16X16 logarithm based multiplier is proposed which uses

simple combinational and sequential circuits to obtain an exact product. The multiplier has an arbitrary execution time which varies

from 0 clock cycles to 15 clock cycles (neglecting the combinational delay) and whose mean delay is 7.5 clock cycles. This architecture is

designed and simulated in ‘ModelSim’ simulation tool.

Keywords: logarithmic multiplication, mitchell's algorithm

1. Introduction

Logarithmic multiplication is the process which involves

calculating the product of two operands by converting the

operands into Logarithmic Number System. The procedure

for calculating the product involves converting the operands

into their respective logarithms, adding the logarithmic

result and computing the anti- logarithm of that result. This

procedure is simpler as the addition operation replaces

product operation in Logarithmic Number Systems.

However, this procedure introduces a setback as the

logarithms and anti-logarithms cannot be computed exactly.

So, these methods introduce errors as exact values of

Logarithms and anti-logarithms cannot be obtained and one

is obliged to approximate the results of Logarithms and anti-

logarithms. Such a method is Mitchell’s Algorithm based

multiplier [1], which approximates 𝑙o𝑔2(1+𝑥) as 𝑥, where 𝑥
represents mantissa of a number.. An iterative architecture

similar to Mitchell’s Algorithm based multiplier was

proposed by Patricio Buli´c and his team [3] which models

the true product as the sum of approximate product and

error. The error here is in the form of the product of two

new operands which can be again fed into a similar block

and whose approximate product can be added to the

previous result, so as to reduce the overall error. The overall

error is not reduced through any direct approximation

technique, which form the principal constituents in most of

the logarithmic based multipliers, rather provides an

iterative solution to reduce the error. Some of the direct

error approximation techniques are segmentation and

interpolation techniques [6]. The proposed architecture

follows an algorithm which is similar to the iterative

algorithm, and achieves an exact result. The rest of the

paper is organized as follows. Section II is subdivided into 2

parts (A, B). Part A and B explain Mitchell’s algorithm and

iterative multiplication algorithm. Section III presents the

proposed architecture which uses the modified iterative

block to arrive at the exact results and also explains the

functionality of each block used in the architecture in detail.

Section IV provides simulation results. Section V draws

conclusions.

2. Mitchell’s Algorithm

Any binary integral number can be written as:

Where ‘k’ is the position of the most significant bit

whose value is ‘1’. ‘Zi’ is the value of the bit in the

i
th

 position.

The above equation can be further modeled as:

Where X is the mantissa part

Mitchell’s algorithm approximates log2(1+x) with x

So, for any two operands N1 and N2,

From Mitchell’s approximation,

Paper ID: SE22516200314 12 of 16

mailto:charang@mits.ac.in
mailto:18691A04G9@mits.ac.in
mailto:18691A04H0@mits.ac.in
mailto:18691A04H1@mits.ac.in
mailto:srsmeae@gmail.com

International Journal of Scientific Engineering and Research (IJSER)

ISSN (Online): 2347-3878

Impact Factor (2022): 7.741

Volume 10 Issue 6, June 2022

www.ijser.in

Licensed Under Creative Commons Attribution CC BY

The error here is positive as log2(1+x) is always greater than

or equal to x and the error ranges from 0-11% [2] . Various

techniques were proposed to reduce this error, some of them

being Operand Decomposition method [5], using look-up

tables [4], Segmentation and interpolation methods [6]. Each

method has its own tradeoffs between architecture

complexity, accuracy and delay time and is generally used

where certain errors are tolerable. Such conditions are often

met in Digital Signal Processing applications.

a) Simple Iterative Logarithmic Multiplier

This method is similar to Mitchell’s algorithm and uses an

iterative method which gives a possibility to achieve an

error as small as one desire and even might achieve an exact

result.

b) Mathematics Involved:

𝑁1 . 𝑁2 = 2k1[1 + X1]. 2k2[1 + X2] (9)
𝑁1 . 𝑁2 = 2k1+k2. [1 + X1 + X2] + 2k1+k2 .[X1. X2] (10)

𝑁1 . 𝑁2 = 2k1+k2 + X1. 2k1+k2 + X2. 2k1+k2 +[X1. X2]. 2k1+k2

(11)

From the initial equation, we can write X. 2k = (𝑁 − 2k) .
Therefore

X1.2k1 = (𝑁1−2k1) and X2. 2𝑘2 = (𝑁2 − 2𝑘2) (12)

𝑁1 . 𝑁2 = 2k1+k2 + (𝑁1 − 2k1). 2k2 + (𝑁2 − 2k2). 2k1+ (𝑁1 −
2k1) . (𝑁2 − 2k2) (13)

Ptrue = 𝑁1 . 𝑁2

Ptrue = Pappx + E

Where Ptrue is the exact product, Pappx is the approximate

productand ‘E’ is the error.

Pappx = 2k1+k2 +(𝑁1−2k1).2k2+(𝑁2−2k2). 2k1 (14)

E. = (𝑁1 − 2k1) . (𝑁2 − 2k2) (15)

The error here is again a product of two operands for which

the same arithmetic can be followed and subsequently

adding the results will give the more accurate value of the

product. On further following the same procedure

repeatedly, the accurate product can be achieved at some

point. The below block diagram is the architecture to

achieve the above results. The architecture of a 16x16 bit

iterative block uses Leading One Detectors (16 bit), Priority

encoders (16 x 4), Barrel Shifters (32 bit), Ripple Carry

Adders (4 bit and 32 bit), Decoders (5 x 32) and XOR

banks (16 bit).

Figure 1: Architecture of the iterative block.

c) Algorithm:

Step 1: Inputs are given to the Leading One Detectors

(LOD’s) Outputs of which will be 2
k
1 and 2

k
2 .

Step 2: With inputs as 2
k
1 and 2

k
2 , priority encoders

computethe values of k1 and k2.

Step 3: (𝑁1 − 2
k
1) and (𝑁2 − 2

k
2) are the outputs of XOR

banks whose inputs are the Operands and outputs from

Leading one detectors.

Step 4: Barrel shifters compute the values of (𝑁1 − 2k1). 2k2

and (𝑁2 − 2k2). 2k1 .

Execution time = (number of iterations – 1)*(clock period)

(17)

Step 5: The results of the two barrel shifters are added to

obtain the sum (𝑁1 − 2k1). 2k2 + (𝑁2 − 2k2). 2k1 .

Step 6: The values of k1 and k2 obtained in step 2. are added

and the result is given as an input to a Decoder, which gives

the value of 2k1+k2 as output.

Step 7: The results obtained in step 5. and step 6. are added

to give 2k1+k2 + (𝑁1− 2k1). 2k2 + (𝑁2− 2k2). 2k1 as output.

Step 8: The error operands are the outputs of the XOR

banks.

3. Proposed Method

We have to note that each error operand in the above

algorithm is the result of removing the most significant bit

Paper ID: SE22516200314 13 of 16

International Journal of Scientific Engineering and Research (IJSER)

ISSN (Online): 2347-3878

Impact Factor (2022): 7.741

Volume 10 Issue 6, June 2022

www.ijser.in

Licensed Under Creative Commons Attribution CC BY

with the value ‘1’ from the input operands to the iterative

block. So by successive iterations (and adding the

approximate products of each iteration) at least one of the

error operands becomes ‘0’ at some point, which means that

the error is ‘0’ at that point, and the accurate product is

obtained. The question here is, how to detect that instance

when the accurate product is achieved.

For explaining this more clearly we shall take an example,

here we will concentrate only on the errors after each

iteration.

Let 𝑁1 = 1001010011 𝑎𝑛𝑑 𝑁2 = 10000101

We know that error = (𝑁1 − 2k1). (𝑁2 − 2k2)

We should note that (𝑁1 − 2k1) is the value after removing

MSB from the operand.

Therefore after 1
st
 iteration, the error will be equal to

(1010011). (101)

After 2
nd

 iteration, the error will be equal to (10011). (1)

After 3
rd

 iteration, an error will be equal to (11). (0) which

is ‘0’ that means, at this instant accurate product is obtained.

Therefore we can state that the number of iterations to obtain

an accurate product is equal to the minimum of the number

of 1’s in the two operands

Let n1 and n2 be the number of 1’s in the input operands N1

and N2. Then,

𝑛𝑢𝑚𝑏e𝑟 of i𝑡e𝑟𝑎𝑡io𝑛𝑠 = Min [𝑛1 , 𝑛2] (16)

Modified iterative block:

Figure 2: Modified iterative block

The Iterative block uses 16x4 priority encoders for which

16’b0 is an invalid input. So, the block does not perform as

expected. So we modified the iterative block by including a

combinational logic circuit which bypasses the case of the

inputs being 16’b0, to act as expected (the iterative block is

expected to give a 16’b0 as output even if any one of its

operands is 16’b0).

Concept of the proposed architecture:

To address the question of detecting the instance at which

the accurate product is obtained we use a check block which

checks whether any of the error operands is ‘0’. Check block

takes the error operands as input, gives a ‘High’ output when

no operand is ‘0’ and gives ‘Low’ output when any one of

the operands is ‘0’.

We have to note that a transition from ‘High’ to ‘Low’

happens when the error becomes ‘0’. We use this condition

to detect the instance at which error becomes zero or

accurate product is achieved. The architecture should not

allow new inputs or the initial inputs while the iterations are

in progress, this is controlled by a control block which takes

the input from the check block.

The control block allows the error operands as inputs to the

iterative block when the output of the check block is ‘High’.

This block keeps on allowing the error operands until NOR

Bank Iterative block NOR Bank MUX 0 the output of the

check block is ‘High’. The output of the check block being

‘Low’ means that the final result is achieved and there is no

need of iterating the error operands further (since at least one

of the error operands will be zero at this point and error

becomes ‘0’). At this point, new inputs can be accepted. The

control and check blocks are simple and can be constructed

using logic gates, Multiplexers, and registers. These blocks

are explained in detail in further discussions. A buffer

register is used to store the temporary results of successive

additions of products after each iteration.

Figure 3: Block diagram of the Proposed Architecture

The register which stores the final product is driven by the

output of the check block which serves as a negative edge

clock to the register. So the values in the register change

only at the instances when the transition from ‘High’ to

Paper ID: SE22516200314 14 of 16

International Journal of Scientific Engineering and Research (IJSER)

ISSN (Online): 2347-3878

Impact Factor (2022): 7.741

Volume 10 Issue 6, June 2022

www.ijser.in

Licensed Under Creative Commons Attribution CC BY

‘Low’ occurs.

Check Block:

Figure 4: Block Diagram of the Check Block

As discussed earlier the check block takes error operands as

inputs and gives a ‘High’ output when no operand is ‘0’ and

‘Low’ output when any one of the operands is ‘0’. This is

done by bit wise ‘OR’ operation of every digit of the

operands individually and subsequently using an ‘AND’

gate. This check block is a typical zero detector.

Control Block:

Figure 5: Block diagram of Control Block

The Control block controls the inputs to the modified

iterative block. It does not allow new inputs or initial inputs

while the iterations are in progress. The selection line in the

above block is taken from the output of the check block.

When the output of the check block is ‘High’ (happens when

no error operands is ‘0’) the selection line will be ‘High’ and

allows the error operands for further iterations and blocks the

initial inputs or new inputs. Selection line becomes ‘0’ when

any of the error operands is ‘0’, then new inputs can be

allowed.

4. Result Analysis

Figure 6: Simulation result

N1 N2 Result Expected result

5010

(20496)

3000

(12288)

0f030010

(251854864)

0f030000

(251854848)

76cd

(30413)

0123

(291)

00870f01

(8851201)

00870b07

(8850183)

ffff

(65535)

ffff

(65535)

fffe0001

(4294836225)

fffe0001

(4294836225)

2301

(8961)

4fc6

(20422)

0ae064a0

(182477984)

0ae861c6

(183001542)

ffff

(65535)

fffe

(65534)

fffd0003

(4294770691)

fffd0002

(4294770690)

Fffd

 (65533)

ffff

(65535)

fffc0004

(4294705156)

fffc0003

(4294705155)

5. Discussions

The architecture is tested on ModelSim simulation tool. As

we have discussed earlier the delay is arbitrary and depends

on the minimum of the number of 1’s in both the operands,

which can be observed from the simulation results. The wire

‘w5’ shows the delay caused in execution for different

inputs. The mean delay is 7.5 clock cycles.

6. Conclusion

The architecture is tested on ModelSim simulation tool. As

we have discussed earlier the delay is arbitrary and depends

on the minimum of the number of 1’s in both the operands,

which can be observed from the simulation results. The wire

‘w5’ shows the delay caused in execution for different

inputs. The mean delay is 7.5 clock cycles.

References

[1] Mitchell, J. N. (1962). Computer multiplication and

division using binary logarithms. IRE Transactions on

Electronic Computers, (4), 512-517.McLaren, D. J.

(2003, September). Improved Mitchell-based

logarithmic multiplier for low002Dpower DSP

applications. In SOC Conference, 2003. Proceedings.

IEEE International [Systems-on-Chip] (pp. 53-56).

IEEE.

[2] McLaren, D. J. (2003, September). Improved Mitchell-

based logarithmic multiplier for low002Dpower DSP

applications. In SOC Conference, 2003. Proceedings.

IEEE International [Systems-on-Chip] (pp. 53-56).

IEEE.

[3] Agrawal, R. K., & Kittur, H. M. (2013, April). ASIC

based logarithmic multiplier using iterative pipelined

architecture. In Information & Communication

Technologies (ICT), 2013 IEEE Conference on (pp.

362- 366). IEEE.

[4] Bulić, P., Babić, Z., & Avramović, A. (2010, October).

A simple pipelined logarithmic multiplier. In Computer

Design (ICCD), 2010 IEEE International Conference on

Paper ID: SE22516200314 15 of 16

International Journal of Scientific Engineering and Research (IJSER)

ISSN (Online): 2347-3878

Impact Factor (2022): 7.741

Volume 10 Issue 6, June 2022

www.ijser.in

Licensed Under Creative Commons Attribution CC BY

(pp. 235- 240). IEEE.

[5] Mahalingam, V., & Ranganathan, N. (2006, January).

An efficient and accurate logarithmic multiplier based

on operand decomposition. In VLSI Design, 2006. Held

jointly with 5th International Conference on Embedded

Systems and Design., 19th International Conference on

(pp. 6-pp). IEEE.

[6] Selina, R. R. (2013, April). VLSI implementation of

piecewise approximated antilogarithmic converter. In

Communications and Signal Processing (ICCSP), 2013

International Conference on (pp. 763-766). IEEE

Paper ID: SE22516200314 16 of 16

