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Abstract: Multiplication is a basic arithmetic operation. Multiplication operations such as Fast Fourier Transforms, Multiplication 

and accumulation units, Convolution are some of the computation-intensive arithmetic functions often encountered in Digital Signal 

processing applications. Generally, Logarithm based multipliers are used in these cases which introduce certain errors. These errors are 

approximated by various methods. In this paper a simple architecture of a 16X16 logarithm based multiplier is proposed which uses 

simple combinational and sequential circuits to obtain an exact product. The multiplier has an arbitrary execution time which varies 

from 0 clock cycles to 15 clock cycles (neglecting the combinational delay) and whose mean delay is 7.5 clock cycles. This architecture is 

designed and simulated in ‘ModelSim’ simulation tool. 
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1. Introduction 
 

Logarithmic multiplication is the process which involves 

calculating the product of two operands by converting the 

operands into Logarithmic Number System. The procedure 

for calculating the product involves converting the operands 

into their respective logarithms, adding the logarithmic 

result and computing the anti- logarithm of that result. This 

procedure is simpler as the addition operation replaces 

product operation in Logarithmic Number Systems. 

However, this procedure introduces a setback as the 

logarithms and anti-logarithms cannot be computed exactly. 

So, these methods introduce errors as exact values of 

Logarithms and anti-logarithms cannot be obtained and one 

is obliged to approximate the results of Logarithms and anti-

logarithms. Such a method is Mitchell’s Algorithm based 

multiplier [1], which approximates 𝑙o𝑔2(1+𝑥) as 𝑥, where 𝑥 
represents mantissa of a number.. An iterative architecture 

similar to Mitchell’s Algorithm based multiplier was 

proposed by Patricio Buli´c and his team [3] which models 

the true product as the sum of approximate product and 

error. The error here is in the form of the product of two 

new operands which can be again fed into a similar block 

and whose approximate product can be added to the 

previous result, so as to reduce the overall error. The overall 

error is not reduced through any direct approximation 

technique, which form the principal constituents in most of 

the logarithmic based multipliers, rather provides an 

iterative solution to reduce the error. Some of the direct 

error approximation techniques are segmentation and 

interpolation techniques [6]. The proposed architecture 

follows an algorithm which is similar to the iterative 

algorithm, and achieves an exact result. The rest of the 

paper is organized as follows. Section II is subdivided into 2 

parts (A, B). Part A and B explain Mitchell’s algorithm and 

iterative multiplication algorithm. Section III presents the 

proposed architecture which uses the modified iterative 

block to arrive at the exact results and also explains the 

functionality of each block used in the architecture in detail. 

Section IV provides simulation results. Section V draws 

conclusions. 

 

2. Mitchell’s Algorithm  
 

Any binary integral number can be written as: 

 
Where ‘k’ is the position of the most significant bit 

whose value is ‘1’. ‘Zi’ is the value of the bit in the 

i
th

 position. 
 

The above equation can be further modeled as: 

 
Where X is the mantissa part 

 
Mitchell’s algorithm approximates log2(1+x) with x 

 

So, for any two operands N1 and N2, 

 
From Mitchell’s approximation, 
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The error here is positive as log2(1+x) is always greater than 

or equal to x and the error ranges from 0-11% [2] . Various 

techniques were proposed to reduce this error, some of them 

being Operand Decomposition method [5], using look-up 

tables [4], Segmentation and interpolation methods [6]. Each 

method has its own tradeoffs between architecture 

complexity, accuracy and delay time and is generally used 

where certain errors are tolerable. Such conditions are often 

met in Digital Signal Processing applications. 

 

a) Simple Iterative Logarithmic Multiplier 

This method is similar to Mitchell’s algorithm and uses an 

iterative method which gives a possibility to achieve an 

error as small as one desire and even might achieve an exact 

result. 

 
 

b) Mathematics Involved: 

 
𝑁1 . 𝑁2 = 2k1[ 1 + X1 ]. 2k2[ 1 + X2 ]                               (9) 
𝑁1 . 𝑁2 = 2k1+k2. [ 1 + X1 + X2 ] + 2k1+k2 .[ X1. X2 ]   (10) 

𝑁1 . 𝑁2 = 2k1+k2 + X1. 2k1+k2 +   X2. 2k1+k2 +[ X1. X2 ]. 2k1+k2

  

(11) 

From the initial equation, we can write X. 2k = (𝑁 − 2k) . 
Therefore 

X1.2k1 = (𝑁1−2k1) and X2. 2𝑘2 = (𝑁2 − 2𝑘2)    (12) 

𝑁1 . 𝑁2 = 2k1+k2 + (𝑁1 − 2k1). 2k2 + (𝑁2 − 2k2). 2k1+ (𝑁1 − 
2k1) . (𝑁2 − 2k2) (13) 

 
Ptrue = 𝑁1 . 𝑁2 

Ptrue = Pappx + E 

 

Where Ptrue is the exact product, Pappx is the approximate 

productand ‘E’ is the error. 

Pappx = 2k1+k2  +(𝑁1−2k1).2k2+(𝑁2−2k2). 2k1   (14) 

E. = (𝑁1 − 2k1) . (𝑁2 − 2k2)  (15) 

 

The error here is again a product of two operands for which 

the same arithmetic can be followed and subsequently 

adding the results will give the more accurate value of the 

product. On further following the same procedure 

repeatedly, the accurate product can be achieved at some 

point. The below block diagram is the architecture to 

achieve the above results. The architecture of a 16x16 bit 

iterative block uses Leading One Detectors (16 bit), Priority 

encoders (16 x 4), Barrel Shifters (32 bit), Ripple Carry 

Adders (4 bit and 32 bit), Decoders (5 x 32) and XOR 

banks (16 bit). 

 
Figure 1: Architecture of the iterative block. 

 

c) Algorithm: 

 

Step 1: Inputs are given to the Leading One Detectors 

(LOD’s) Outputs of which will be 2
k
1 and 2

k
2 . 

 

Step 2: With inputs as 2
k
1 and 2

k
2 , priority encoders 

computethe values of k1 and k2. 

 

Step 3: (𝑁1 − 2
k
1) and (𝑁2 − 2

k
2) are the outputs of XOR 

banks whose inputs are the Operands and outputs from 

Leading one detectors. 

 

Step 4: Barrel shifters compute the values of (𝑁1 − 2k1). 2k2 

and (𝑁2 − 2k2). 2k1 .  
 

Execution time = (number of iterations – 1)*(clock period) 

(17) 

 

Step 5: The results of the two barrel shifters are added to 

obtain the sum (𝑁1 − 2k1). 2k2 + (𝑁2 − 2k2). 2k1 . 
 

Step 6: The values of k1 and k2 obtained in step 2. are added 

and the result is given as an input to a Decoder, which gives 

the value of 2k1+k2 as output. 

 

Step 7: The results obtained in step 5. and step 6. are added 

to give 2k1+k2 + (𝑁1− 2k1). 2k2 + (𝑁2− 2k2). 2k1 as output. 
 

Step 8: The error operands are the outputs of the XOR 

banks. 

 

3. Proposed Method 
 

We have to note that each error operand in the above 

algorithm is the result of removing the most significant bit 
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with the value ‘1’ from the input operands to the iterative 

block. So by successive iterations (and adding the 

approximate products of each iteration) at least one of the 

error operands becomes ‘0’ at some point, which means that 

the error is ‘0’ at that point, and the accurate product is 

obtained. The question here is, how to detect that instance 

when the accurate product is achieved. 

 

For explaining this more clearly we shall take an example, 

here we will concentrate only on the errors after each 

iteration. 

 
Let 𝑁1 = 1001010011 𝑎𝑛𝑑 𝑁2 = 10000101 
 

We know that error = (𝑁1 − 2k1). (𝑁2 − 2k2) 
 
We should note that (𝑁1 − 2k1) is the value after removing 

MSB from the operand. 

 

Therefore after 1
st
 iteration, the error will be equal to 

(1010011). (101) 
 

After 2
nd

 iteration, the error will be equal to (10011). (1) 
 

After 3
rd

 iteration, an error will be equal to (11). (0) which 

is ‘0’ that means, at this instant accurate product is obtained. 
 

Therefore we can state that the number of iterations to obtain 

an accurate product is equal to the minimum of the number 

of 1’s in the two operands 
 

Let n1 and n2 be the number of 1’s in the input operands N1 

and N2. Then, 

𝑛𝑢𝑚𝑏e𝑟 of i𝑡e𝑟𝑎𝑡io𝑛𝑠 = Min [𝑛1 , 𝑛2 ]             (16) 

 

Modified iterative block: 
 

 
Figure 2: Modified iterative block 

 

The Iterative block uses 16x4 priority encoders for which 

16’b0 is an invalid input. So, the block does not perform as 

expected. So we modified the iterative block by including a 

combinational logic circuit which bypasses the case of the 

inputs being 16’b0, to act as expected (the iterative block is 

expected to give a 16’b0 as output even if any one of its 

operands is 16’b0). 
 

 

Concept of the proposed architecture: 

 

To address the question of detecting the instance at which 

the accurate product is obtained we use a check block which 

checks whether any of the error operands is ‘0’. Check block 

takes the error operands as input, gives a ‘High’ output when 

no operand is ‘0’ and gives ‘Low’ output when any one of 

the operands is ‘0’. 

 

We have to note that a transition from ‘High’ to ‘Low’ 

happens when the error becomes ‘0’. We use this condition 

to detect the instance at which error becomes zero or 

accurate product is achieved. The architecture should not 

allow new inputs or the initial inputs while the iterations are 

in progress, this is controlled by a control block which takes 

the input from the check block. 

 

The control block allows the error operands as inputs to the 

iterative block when the output of the check block is ‘High’. 

This block keeps on allowing the error operands until NOR 

Bank Iterative block NOR Bank MUX 0 the output of the 

check block is ‘High’. The output of the check block being 

‘Low’ means that the final result is achieved and there is no 

need of iterating the error operands further (since at least one 

of the error operands will be zero at this point and error 

becomes ‘0’). At this point, new inputs can be accepted. The 

control and check blocks are simple and can be constructed 

using logic gates, Multiplexers, and registers. These blocks 

are explained in detail in further discussions. A buffer 

register is used to store the temporary results of successive 

additions of products after each iteration. 
 

 
Figure 3: Block diagram of the Proposed Architecture 

 

The register which stores the final product is driven by the 

output of the check block which serves as a negative edge 

clock to the register. So the values in the register change 

only at the instances when the transition from ‘High’ to 
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‘Low’ occurs. 

Check Block: 

 

 
Figure 4: Block Diagram of the Check Block 

 

As discussed earlier the check block takes error operands as 

inputs and gives a ‘High’ output when no operand is ‘0’ and 

‘Low’ output when any one of the operands is ‘0’. This is 

done by bit wise ‘OR’ operation of every digit of the 

operands individually and subsequently using an ‘AND’ 

gate. This check block is a typical zero detector. 

 

Control Block: 

 

 
Figure 5: Block diagram of Control Block 

 

The Control block controls the inputs to the modified 

iterative block. It does not allow new inputs or initial inputs 

while the iterations are in progress. The selection line in the 

above block is taken from the output of the check block. 

When the output of the check block is ‘High’ (happens when 

no error operands is ‘0’) the selection line will be ‘High’ and 

allows the error operands for further iterations and blocks the 

initial inputs or new inputs. Selection line becomes ‘0’ when 

any of the error operands is ‘0’, then new inputs can be 

allowed. 

 

4. Result Analysis 
 

 
Figure 6: Simulation result 

 
N1 N2 Result Expected result 

5010 

(20496) 

3000 

(12288) 

0f030010 

(251854864) 

0f030000 

(251854848) 

76cd 

(30413) 

0123 

(291) 

00870f01 

(8851201) 

00870b07 

(8850183) 

ffff 

(65535) 

ffff 

(65535) 

fffe0001 

(4294836225) 

fffe0001 

(4294836225) 

2301 

(8961) 

4fc6 

(20422) 

0ae064a0 

(182477984) 

0ae861c6 

(183001542) 

ffff 

(65535) 

fffe 

(65534) 

fffd0003 

(4294770691) 

fffd0002 

(4294770690) 

Fffd 

 (65533) 

ffff 

(65535) 

fffc0004 

(4294705156) 

fffc0003 

(4294705155) 

 

5. Discussions 
 

The architecture is tested on ModelSim simulation tool. As 

we have discussed earlier the delay is arbitrary and depends 

on the minimum of the number of 1’s in both the operands, 

which can be observed from the simulation results. The wire 

‘w5’ shows the delay caused in execution for different 

inputs. The mean delay is 7.5 clock cycles. 

 

6. Conclusion 
 

The architecture is tested on ModelSim simulation tool. As 

we have discussed earlier the delay is arbitrary and depends 

on the minimum of the number of 1’s in both the operands, 

which can be observed from the simulation results. The wire 

‘w5’ shows the delay caused in execution for different 

inputs. The mean delay is 7.5 clock cycles. 
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