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Abstract: Grid Refinement Method has been developed to solve linear systems developed from partial differential equations along with 
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1. Introduction 
 

Groundwater problems [1, 2] have always been around our 

daily lives. Contamination of the groundwater source can 

cause serious environmental hazards. Regions with sink 

holes can be particularly susceptible to the groundwater 

contamination. Once water enters a sinkhole, it receives 

litter filtration or chance for degradation of the chemicals. 

Then the water will migrate down to the groundwater table 

where it will disperse in the groundwater and migrate in the 

direction of the groundwater flow.  

 

Grid Refinement methods [8, 9] have been used to solve 

large linear systems developed from partial differential 

equations. In this research, we study a problem that arises 

from the traveling of groundwater flow [1, 2] and the 

method to estimate how fast the contaminant disperses 

around the sinkhole in geological sciences. Suppose there is 

a rectangular domain where the boundary conditions are 

given and the initial contamination value at the sinkhole is 

also known, we would like to know the values in the region 

around the sinkhole. Researchers have been using the model 

“MODFLOW” to solve the problem by a two-step 

procedure. The major drawback of this two-step method is 

the computational time and the inconvenience of the 

interpolation process due to the two linear systems generated 

from procedure, as well as considerably more computational 

time to solve the systems.  

 

Grid Refinement methods improve the above method by 

generating only one system of linear equations, which 

contains the information of all points that we are interested 

in, with the consideration of the treatments of the interface 

boundary points. In the existing two-step scheme, the 

approximations for interface boundary points are obtained 

by the interpolation technique, while the grid refinement 

method uses a simple “modified” finite difference scheme. 

 

2. Grid Refinement Method 
 

In this section, we describe a grid refinement method for 

solving a partial differential equation of the form:  

A(x, y)uxx + C(x, y)uyy + D(x, y)ux + E(x, y)uy +

F(x, y)u = G(x, y)(2.1) 

where A,C,D,E,F are functions of x and y, with Dirichlet 

boundary conditions[11] on a rectangular region. 

 

The basic idea of the grid refinement method is to 

decompose the original spatial domain into several sub-

domains. For simplicity, we describe the method using two 

subdomains, namely interested domain and less interested 

domain. The coarse grids are put on the less interested 

domain; therefore it is also referred to as coarse grid domain. 

And the fine grids are put on the interested domain which is 

then also referred to as fine grid domain. Once the grids are 

placed, one linear system is generated. Then we are able to 

solve both subdomains simultaneously. We note that the fine 

grid subdomain could be formed in a rectangular shape or in 

other shapes, such as L shape or circular shape. In this 

research, we focus on rectangular shape. We also note that 

the fine grid subdomain could be placed anywhere within 

the original region to fit physical needs; again for simplicity, 

we assume in this research that the fine-grid subdomain is 

located in the center of the region, see Figure 2.1. 

 
Figure 2.1 

 

Once the linear system is generated according to the above 

grid pattern, we proceed with the solving the linear system 

in iterative methods [6, 7], such as Richardson’s Method 

[10], Jacobi Method [3] and Gauss-Seidel [4] with 

Successive Over Relaxation Method [5]. The iterative 

algorithm produces a sequence of approximations {x
(i)

}to the 

exact solution of the linear system (2.1), it is necessary to 

have a stopping procedure to determine whether the 
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approximation is accurate enough to terminate the iterative 

procedure. In this paper, if the exact solution is known, 

then it would be reasonable to accept the approximate 

solution x
(i)

 if 

                            (2.2) 

where is a preset small tolerance, say 10
-6

. We call the test 

(2.2) an exact stopping test. 

 

3. Multi-Layer Scheme in Grid Refinement 

Method 
 

It would be very interesting to apply the grid refinement idea 

to a telescoping refined domain, inside which there are one 

or more refined regions, see Figure 3.1. 

 

 
Figure 3.1: Grid pattern for the three-layer scheme 

 

We call this scheme a multiple-layer scheme. In this 

research we extend the grid refinement technique into a 

three-layer domain. The three-layer domain consists of three 

different grid sizes, namely, coarse, fine and finest grid size. 

The regions covered with coarse grids, fine grids and finest 

grids are referred to as the first layer, the second layer and 

the third layer, respectively. It is assumed that the third layer 

is the inner most region and the first layer is the outer most 

region. 

 

The treatments of the interface between the first and the 

second layers were described in the previous chapter. The 

same treatments can also be used on the interface between 

the second and the third layers. Therefore, this three-layer 

scheme should be also of first order. Table 4.9 shows the 

results on the interested region which is the third layer. In 

this experiment, the third layer with a mesh size h is located 

at [0.4, 0.6] × [0.4, 0.6]; the second layer with a mesh size 

h2 is located within [0.3, 0.7]×[0.3, 0.7], and the outside is 

the third layer covered by coarse grids with mesh size H. 

When H, h2 and h are halved, the error is reduced by 

approximately 1/2. 

 

4. Numerical Experiment 
 

We now attempt to apply the three-layer scheme of the grid 

refinement method to the following model problems for 

investigation of its accuracy and efficiency.  

4.1 Model Problem 1 (MP1) 

0xx yyu u 
 

over the region Ω= [0, 1] × [0, 1]. The boundary conditions 

are given by  

(0, ) cosu y y
,

1(1, ) cos ,u y e y
 

( ,0) xu x e
,

( ,1) cos1.xu x e
 

The exact solution isu = e−xcos y. In this paper, we use the 

stopping criteria (2.2). 

 

Table 4.1 shows the results on the interested region which is 

the third layer. In this experiment, the third layer with a 

mesh size h is located at [0.4, 0.6] × [0.4, 0.6]; the second 

layer with a mesh size h2 is located within [0.3, 0.7] × [0.3, 

0.7], and the outside is the third layer covered by coarse 

grids with mesh size H. When H, h2 and h are halved, the 

error is reduced by approximately 1/2. 

 

Table 4.1: Error on the interested domain with various H, 

h2, h for MP 1 

H h2 h 
Error on Interested 

Domain for MP11 

1/10 1/20 1/40 5.7478E-04 

1/20 1/40 1/80 3.2757E-04 

1/40 1/80 1/160 1.8158E-04 

1/80 1/160 1/320 9.8135E-05 

 

Next we investigate the effectiveness of the three-layer scheme 

compared with the uniform grid scheme. 

 

Table 4.2 shows the comparison of computation time and 2-

norm error with various H, h2 and h for the model problem. 

When h is very small, the experiments show that the uniform 

grid scheme obtained much better accuracy than that of the 

three-layer scheme. However, the time spent on the uniform 

grid scheme is about six times more than the time used in the 

multi-layer scheme. 

 

Table 4.2: Computation time and the 2-norm error with various 

H, h2, h for MP1 (The three-layer scheme vs. the uniform grid 

scheme) 

 
 

Both the two-layer scheme and the three-layer scheme took 

much less computation time than the uniform scheme. We 

now investigate the effectiveness of the three-layer scheme 

that is compared with the two-layer scheme. 

 

The following Table 4.3 shows the error of the third layer 

located at [0.4, 0.6] × [0.4, 0.6], and the computation time 

for both the two-layer scheme and the three-layer scheme.  

 

Table 4.3: Computation time and the 2-norm error with 

various H, h2, h for MP1 (The three-layer scheme vs. the 
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two-layer scheme) 
 

 
 

For all the experiments, we let the interested area be [0.4, 

0.6] × [0.4, 0.6]. In the above tables, we also consider two 

different second-layers that are [0.3, 0.7] × [0.3, 0.7] and 

[0.2, 0.8] × [0.2, 0.8]. Of course, the matrix size is larger 

when the second layer is larger. In our experiments, the two 

different second-layers give us a slight difference in the 

matrix size when h2 is relatively large. But when h2 is 

small, the matrix size may differ by 30% and the 

computation time may have a significant difference. 

 

There are two different coarse grid sizes in the two-layer 

scheme. One is the same as the coarse grid size H of the 

three-layer scheme; the other is the same as the grid size h2. 

As expected, the larger linear system which corresponds to 

finer mesh size produces the better accuracy but requires 

more time. In the table, there is a “split time” column which 

contains the matrix generation time on the top of the 

iteration time. The following figures show the comparisons 

of the computation time with n =
1

10h
. 

 

 
Figure 4.1: Total time vs. n for MP1 (second layer: [0.3, 

0.7] × [0.3, 0.7]) 

 

 
Figure 4.2: Total time vs. n for MP1 (second layer: [0.2, 

0.8] × [0.2, 0.8]) 

 

 
Figure 4.3: Log(error) vs. n for MP1 (second layer: [0.3, 

0.7] × [0.3, 0.7]) 
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Figure 4.4: Log(error) vs. n for MP1 (second layer: [0.2, 

0.8] × [0.2, 0.8]) 

 

5. Conclusions 
 

In this paper, we have discussed the three layer scheme of a 

grid refinement scheme for solving a partial differential 

equation over a rectangular domain with Dirichlet boundary 

conditions. A model problem is conducted. The solutions 

obtained by the multi-layer scheme are more efficient than 

that of the uniform grid scheme. When compared with two 

layer scheme, it is hoped that the multi-layer scheme might 

produce better improvement; our experimental outcome does 

not show the desired results. In our experiments, the two-

layer scheme is more economical, and the optimal 

performance is obtained when the mesh ratio between the 

coarse grid and the fine grid equals to 2. 
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