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Abstract: Purpose: Turbulent flows play an important role in industrial equipment. Therefore the study and investigation of flow of 

turbulent nature gains an attention of researchers. Methodology: As a special case of study on oscillatory model is considered for different 

wave lengths and frequencies and need to be interpreted graphically. Findings: The turbulent energy spectrum is investigated and typical 

experimental values are shown for Prandtl Eddie’s, energy containing Eddie’s and energy dissipating. Originality/ value: In this paper the 

author highlighted harmonic of basic frequency and the corresponding fractional length that often arise, taking into account the presence 

of those waves and an undulatory model for turbulent flow is put forward. 
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Nomenclature:   

𝑈  = Flow velocity  

𝑆  = Strouhal number  

𝑑  = Nozzle radius  

𝜆  = Wave length 

𝑓  = Basic frequency  

𝑓   = Puffing Frequency  

𝐸  = Specific mechanical energy  

𝑑∗  = Displacement thickness  

𝑑𝑤   = Wall layer thickness  

𝑢𝑡   = Friction velocity 

𝜐  = Kinematic energy 

𝜆𝑝   = Particle-path wave length 

𝑢  = Local velocity 

𝐶𝑤   = Wave celerity 

𝑓𝑛   = Frequency Eddies 

𝐾  = Energy quanta 

𝑁  = Total number of Eddies 

𝐸𝑚   = Mean energy 

 

1. Introduction 
 

Nature offers many examples of restrained fluid layers that an 

outer flow of velocity U forces to oscillate with a basic 

frequency 𝑓 = 𝑈/2𝜋𝑑  approximately, d being the layer 

thickness.when the oscillations are convected by the current, 

waves of length 2𝜋𝑑  are formed. Harmonics of the basic 

frequency and the corresponding fractional-length waves 

often arise. Taking into account the presence of those waves, 

an undulatory model for the turbulent flow is propounded. As 

an example of its application, a turbulent-energy spectrum is 

obtained through elementary wave- mechanics 

considerations. 

 

2. A Universal Strouhal Law 
 

Roshko [32] analysed the frequency of vortex shedding from 

cylindrical bodies taking into account the width d of the wake 

(i.e., the spacing of the free streamlines delimiting it) and the 

velocity 𝑈 at the point in which these streamlines separate 

from the body, instead of the traditional parameters: body 

width and approach velocity. So the Strouhal number 𝑓𝑑/𝑈 

resulted to be independent of the body shape and flow 

Reynolds number; its average value was found to be    

𝑆 =
𝑓𝑑

𝑈
= 0.16                         (2.1) 

 

It was subsequently proved that the S value remains 

practically the same when the flow is constrained by a central 

splitter plate dividing the wake [32, 2], by parallel walls 

confining the flow [12, 13] or by forcing the cylinder to 

vibrate, in order to change artificially the shedding frequency 

[7]. 

 

Now, this value 0.16 for the Strouhal number is not peculiar 

to the wake vertices. In fact, it is not uncommon to find it, or a 

very near value, associated with other modes of fluid 

oscillations, as well as the value    

𝜆 =
𝑈

𝑓
= 6.2𝑑                         (2.2) 

 

for the length 𝜆  of travelling waves resulting from the 

convection of those oscillations by the main flow. 

 

So for instance Crow and Champagne [4], Observing the 

response of a round turbulent jet to a periodic surging 

imposed to its exit in the form of puffs emitted downstream, 

found that 𝑓 𝑑/𝑈 = 0.15, f being the puffing frequency, d the 

nozzle radius and U the exit speed of the jet. Similarly, from 

Cervantes and Goldschmidth data [3],one infers that a plane 

jet flaps according to the formula 𝑓 𝑑/𝑈 = 0.154, f being the 

flapping frequency, d the jet width and U the center line mean 

velocity at a given section. 

 

Measuring the frequency f of intermittent erect vertices that 

form upstream from a weir set across a rectangular water 

channel, U being the approach mean speed, Levi [16] found 

𝑓 𝑑/𝑈 = 0.154. Here d is the upstream water depth. For the 

frequency of orifice vertices upstream from a screen crossing 

the channel, he found 𝑓 𝑑/𝑈 = 0.176, d being the screen 

submergency. 

 

The length 𝜆  of wind waves produced with minor wind 

speeds U and fetches x appears to satisfy eq.2, d representing 

the thickness of the wind laminar boundary layer. From Sen’s 

laboratory measurements [26] one gets 𝜆/𝑑 = 6.21  for 

U=5.12 m/s, x=54cm, and 𝜆/𝑑 = 6.63  for U=6.52 m/s, 

x=49cm. From Sudolskiy’s field measurements [27], one gets 

𝜆/𝑑 = 5.89, 6.99 and 6.22 for U=5 m/s and fetches of 1, 2 
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and 5km respectively. 

  

Yalin [31] suggests that the length of dunes formed in a 

loose-bed river of depth d is on average equal to 2𝜋𝑑. A 

similar result can be inferred from Thorpe’s measurements of 

the increasing with time length of waves formed at a density 

interface between miscible fluids, provided that the thickness 

of the mixing layer is taken as d [28]. 

 

3. An Oscillatory Model   
 

Birkhoff attempted to justify the value of the wake 

vortex-shedding Strouhal number through an analysis of the 

wake mechanism [2]. However, the validity of eq. 1 for so 

many different flow modes suggests that we are in presence 

of a very general physical law, independent of the specific 

features of each single mode. The following simple reasoning 

[17] will lead us to corroborate this assumption and formulate 

the law. 

 

Let us suppose that a restrained fluid layer of width d is forced 

to osillate with the frequency f by the presence of a 

continuous free flow of speed U, and that this frequency is the 

same that would correspond to an elementary Oscillator of 

length d. The specific mechanical energy of the latter is  

 

𝐸 =
1

2
(2𝜋𝑓𝑑)2                  (3.1) 

 

while the available kinetic energy is 𝑈2/2. Equating both, 

one gets  

 

𝑆 =
𝑓𝑑

𝑈
=

1

2𝜋
                     (3.2) 

 

that is, 0.159, which agrees with eq, 1. Oscillations governed 

by this law, if convected by the flow, will look to a stationary 

observer as undulatory perturbances of wave langth  

 

𝜆 =
𝑈

𝑓
= 2𝜋𝑑                  (3.3) 

 

that agrees with eq. 2. By the way, eq. 4 suggests the 

expedience of preferring the number 𝑆 ′ = 2𝜋𝑆 to the usual 

Strouhal number S, in order that the value 1 should 

correspond to critical conditions, as it occurs for instance for 

Mach and Froude numbers. 

 

4. Evidence of Strouhal-law Validity in 

Turbulent Flows 
 

4.1  Boundary-layer transition.  

 

Three Succesive stages characterize the trasition from 

laminar to turbulent flow [13]: at first a procession of 

longitudinal waves appears, then corss waves, and finally the 

resulting doubly-periodical waves shatter into "hairpin 

eddies" preluding to turbulence. Now, all these stages appear 

to obey the Strouhal law. 

 

The correlation between the length of longitudinal waves and 

the boundary layer thickness d can be deduced from an old 

Tollmien’s result [29]. In fact, he showed that, provided that 

the flow Reynolds number exceeds a certain critical value, the 

minimum wave length of an oscillatory disturbance able to 

compromise the stability of a flat-plate laminar boundary 

layer is equal to (2𝜋/0.36)𝑑∗, 𝑑∗  being the displacement 

thickness. Now, this is about 6d, taking as usual 𝑑 = 2.9𝑑∗. 

 

The transversal periodicity is usually visualized through the 

furrows grooved by the current into a fresh wall coating. Data 

from a relevant NACA technical note [10] give, on an 

average, a furrow spacing of 3.09 d, which agrees with eq. 5, 

because the furrows appear to be the result of an 

accumulation of paint at the nodes of standing transversal 

cross waves, and the node spacing is half the wavelength. 

 

Klebanoff, Tidstorm and Sargent [11], measuring the 

frequency f of hairpineddy production obtained that 

𝑓 𝑑∗/𝑈 = 0.13, U being the free-flow velocity. Since in their 

case 𝑑/𝑑∗ = 2.55, it results that 𝑓 𝑑/𝑈 = 0.33 = 2𝑋0.165. 

This is double the value given by eq. 4, suggesting the 

presence of a first harmonic. 

 

Wall layer: Longitudinal and transversal waves of the same 

length 𝜆𝑤  appear to coexist also within the viscous sublayer, 

but they are much smaller then the transition waves, because 

they scale with the wall-layer thickness 𝑑𝑤 . 

 

Evidence of longitudinal waves can be found in a paper by 

Fage and Townend [6]. when observing by ultramicroscope 

the motion of paricles dragged by a turbulent current, they 

recorded regular oscollations of the particle paths inside a 

layer very near the wall, whose non dimensional thickness 

was about 𝑦+ = 𝑦𝑢𝜏/𝑣 = 0.4, 𝑢𝜏  being the fricion velocity 

and v the kinematic viscosity. Now, if 𝜆𝑝  is the particle-path 

wavelength, it should be to the local velocity u as 𝜆𝑤  is to the 

wave celerity 𝑐𝑤 . Since from Fage data one infers that 

𝜆𝑝
+ = 4.43  and Morrison [18] finds that 𝑐𝑤

+ = 8.2 , taking 

𝑦+ = 0.2 as a mean position for the observed path, we get 

𝑢+ = 0.2 , and the 𝜆𝑤
+ = 182 . On the other hand, since 

𝑑𝑤
+ = 30(12), eq. 5 gives the theoretical value 𝜆𝑤

+ = 2𝜋𝑑𝑤
+ =

188. 

 

Coming now to the low-speed viscous-sublayer longitudinal 

striations, let us suppose that, as the transition ones, they 

correspond to nodes of transversal standing waves. Their 

spacing 𝜆𝑤
′  should then be equal to 𝜆𝑤/2, the theoretical 

value of 𝜆𝑤
′ + being thus 94. In fact an experimental average 

for it is about 97 [22]. 

 

The other typical feature of wall layer is its bursting activity. 

Narahari Rao discovered that the burst frequency f scales 

with outer parameters, i.e., the boundary layer overall 

thickness d and the free-flow velocity U. His measurements 

[19] give for fd/U values between 0.14 and 0.33. More 

precise results are now available. For instance from the 

measurement of wall pressure fluctuations (that are closely 

related to bursting activity) by Schewe [25], one obtains 

𝑓 𝑑/𝑈 = 0.172. 

 

5. Fully developed turbulent flow 
 

Nychas, Hershey and Brodkey [21] pointed out the 

alternation of low-speed and high-speed fluid bodies in the 

region of fully-developed turbulent flow. Wallace, Brodkey 
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and Eckelmann [30], working in a channel of 𝑑 = 22 cm 

width, with a centerline velocity 𝑈 = 21 cm/s, measured the 

time of passage T of a characteristic pattern of the fluctuation 

of the stream wise velocity component, that is likely to 

correspond to the passage of one of those bodies. A typical 

graph in their paper gives T=3.3 s; therefore 2TU/d=6.30, 

2TU being the streamwise width of a low-speed-high-speed 

pair. Comparing with eq. 5, we get that 2𝑇𝑈 = 𝜆, 𝜆 being 

the length of a fundamental wave. This suggests that the 

speed alternation ensues from the passage of the wave, the 

low speed corresponding to the wave outward half-length, the 

high speed to the wallaward half-length (see Fig.1). 

 

 
Figure 5.1: Aletrnation of low-speed and high speed fluid 

bodies and burst-inducing mechanism. 

 

Turbulent structures display a near-periodicity. Badri 

Narayanan and Marvin [32], auto correlating velocity and 

pressure fluctuations across the boundary layer at a wide 

range of Reynolds and Mach numbers, found out that , f being 

the fluctuation frequency, d the boundary-layer thickness and 

U the free-flow velocity. From recent measurement by 

Hofbauer [9] one gets that 𝑓 𝑑/𝑈 = 0.152. 

 

Finally, let us assume [5] that the charaacheristic length 10 

of large eddies in a pipe flow be such that 

 

10 =
𝑢 

𝑓
                        (5.1) 

 

f being their frequency and 𝑢  the turbulent intensity at the 

pipe axis. If those eddies are envisaged as oscillators of length 

𝜋10 and their energy is equated to the one given by eq. 3, one 

gets that 𝜋10 = 𝑑, that is,  

 
10

𝑑
=

1

𝜋
= 0.32                     (5.2) 

 

Therefore, taking into account eqs. 6,7 and 4, one gets  

 
𝑢 

𝑈
=

𝑓𝑑

𝑈

10

𝑑
=

1

2𝜋2
= 0.050 

 

U being the mean velocity at center line. Experimental results 

by Laufer [14] give 𝑢 /𝑈=0.047.  

 

6. A New Turbulence Mode  
 

Let us accept that, as the foregoing results suggest, within a 

turbulent boundary layer of thickness d associated with an 

outer free flow of speed U, oscillations of frequency 

𝑓 = 𝑈2𝜋𝑑  and wave length 𝜆 = 2𝜋𝑑  occur, that mainfest 

themselves in the alternation of low-and high-speed fluid 

bodies of width 𝜆/2. 

 

According to Nychas [21], in the shear layers between these 

bodies transverse vertices arise. They usually move outward, 

and this motion seemingly rouses low-velocity tongues up 

from the viscous-sub layer streaks. As shown else where [15], 

there are good reasons for assuming that the bursts are the 

wakes formed behind those tongues by the circumventing 

faster flow. 

 

Bursts, possessing a velocity component normal to the wall 

inherited by the parent uprising tongue, leave the wall layer 

and spread into the region of fully developed turbulence, 

creating there structures endowed with verticity. 

 

Now, the travelling waves of length 𝜆 = 2𝜋𝑑 are not alone. 

They coexist with shorter waves of length 𝜆/2 ,𝜆/3 ,...., 

carrying the oscillations that correspond to the harmonics 

𝑓2 = 2𝑓 , 𝑓3 = 3𝑓 ,...of the basic frequency 𝑓1 = 𝑓 . A 

progressive wave forces fluid particles to turn with the wave 

frequency, following oval orbits whose size diminishes as the 

wall is approached. It is thus reasonable to expect that, 

through this timing-and-shaping activity, the travelling waves 

control the coherent structures arised from ejected bursts, 

creating eddies of various frequencies (Fig.2). Travelling 

waves should also control cascade processes, shaping into 

higher-frequency eddies the pieces into which a coherent 

structure would ecentually disrupt. 

 

On these premises, it seems reasonable to try to build an 

oscillatory theory of turbulence, that could use the analytic 

tools of wave mechanics. As an advance, we will solve the 

problem of obtaining a turbulent-energy spectrum by 

deterministic means [17]. 

 

7. The Turbulent Energy Spectrum  
 

Let us admit that turbulent eddies of frequencies 𝑓𝑛 =
𝑛𝑓(1,2,3, . ) are able o recieve or emit energy only through 

quanta 𝜖𝑛 . At a certain state of flow, d and U being given, one 

may expect by eqs, 3 and 4 that  

 

𝜖𝑛 = 𝛼𝑆𝑛
2                      (7.1) 

 

𝛼 representing an energetic factor, function of the free-flow 

Reynolds number, and 𝑆𝑛 = 𝑛𝑆 = 𝑛/2𝜋 . Now, let us 

observe that 𝑆𝑛  represents also the ration of the energy 

(𝑓𝑛𝑑𝑈)/2  associated with the frequency 𝑓𝑛  and the total 

kinetic energy 𝑈2/2. In view of the considerable quantity of 

eddies that are present, this fact suggests that the probability 

of finding an eddy of frequency 𝑓𝑛  endowed with a quantum 

of energy has to be proportional to 𝑒−𝑆𝑛 , the probability of 

finding such an eddy endowed with two energy quanta has to 

be proportional to 𝑒−2𝑆𝑛 , and so on. Therefore, the number of 

eddies with frequency 𝑓𝑛  and 𝑘 energy quanta (k=1,2,3,..) 

can be written as 

 

𝑁𝑘 = 𝑐𝑒−𝑘𝑆𝑛  
 

c being a numberical constant. The total number of 

𝑓𝑛 -frequency eddies will then be  
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𝑁 = 𝑁1 + 𝑁2 + 𝑁3+. . . = 𝑐(𝑒𝑆𝑛 + 𝑒2𝑆𝑛 +. . . )
= 𝑐𝑒𝑆𝑛 (1 − 𝑒𝑆𝑛 )−1 

 

As a consequence  

𝑐 = 𝑁𝑒𝑆𝑛  1 − 𝑒𝑆𝑛                                          (7.2) 

 

The total energy 𝐸𝑡  corresponding to all the 𝑓𝑛 -frequency 

eddies will be  

 

𝐸𝑡 = 𝑁1𝜖𝑛 + 𝑁2(2𝜖𝑛)+. . .
= 𝑐𝑒𝑆𝑛 𝜖𝑛(1 + 2𝑒𝑆𝑛 + 3𝑒2𝑆𝑛 +. . . ) 

=
𝑐𝑒𝑆𝑛 𝜖𝑛

(1 − 𝑒𝑆𝑛 )2
 

 that is by eq. 7.2 

𝐸𝑡 =
𝑁𝜖𝑛

(𝑒𝑆𝑛−1)
                            (7.3) 

 Introducing now eq. 8 into eq. 10 and dividing by N, the 

following expression results for the mean energy 𝐸𝑚 = 𝐸𝑡/𝑁 

of the whole of 𝑓𝑛 -frequency eddies: 

 

𝐸𝑚 =
𝛼𝑆𝑛

2

(𝑒𝑛
𝑆 − 1)

 

that is, since 𝑆𝑛 = 𝑛/2𝜋,  

 
𝐸𝑚

𝛼
=  

𝑛

2𝜋
 

2

 𝑒𝑛/2𝜋 − 1 
−1

               (7.4) 

 

Eq. 11 has been plotted in Fig. 7.1, showing 4𝜋2𝐸𝑚/𝛼 as a 

function of the frequency number n. The resulting curve 

agrees qualitatively with energy spectrum deduced on 

dimensional grounds [8]. 

 

To show its quantitative validity, three points have been 

marked on the n-axis, pointing out the typical values that, 

according to Davies[5], correspond, for medium Reynolds 

numbers, to (a) Prandtl eddies (i.e., those whose characteristic 

dimension is the Prandtl mixing length), (b) energy 

-containing eddies, and (c) energy-dissipating eddies. Their 

position has been ascertained according to the following 

consideration. Nikuradse [20], experimenting 

 
Figure 7.1: Energy Spectrum as a function of the frequency 

number n.Typical experimental values of n are shown for (a) 

Prandtl eddies, (b) energy-containing eddies and (c) 

energy-dissipating eddies. 

 

With smooth circular pipes, was able to determine the mixing 

length 1𝑚  as a function of the distance from the pipe wall, 

for different Reynolds number. At values of 105 or more he 

found that, at the pipe axis,1𝑚/𝑅 = 0.16, R being the pipe 

radius. Now if, as suggested before for axisymmetrical flows, 

we take d=R and compare with eq. 7, we find that 1𝑚 =

10/2 , that is, that the Prandtl eddies correspond to n=2. 

Having thus found the location of Prandtl eddies, a simple 

proportion applied to Davies values give n=12 for 

energy-containing eddies and n=39 for energy-dissipating 

eddies. These are the abscissas marked as a, b, c in Fig.7.1. 

Their position with respect to the energy curve agrees with 

accepted beliefs [9]. 
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