
International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 4, April 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Analysis and Designs of Algorithms: A Critical

Comparison of Different Works on Algorithms

Pranal Dhamdhere
1
, Akash Dhamdhere

2
, Aishwarya

3

1 MCA-DS, School of Engineering, Ajeenkya DY Patil University

Email: pranaldhamdhere436[at]gmail.com

2 MCA-DS, School of Engineering, Ajeenkya DY Patil University

Email: akashdh7777[at]gmail.com

3Professor, School of Engineering, Ajeenkya DY Patil University

Email: aishwarya[at]inurture.co.in

Abstract: The research examines the six main textbooks on algorithm design and analysis through an analytical presentation, a critical

context, and an integrative conclusion. A set of precise rules for solving a problem, known as an algorithm, can be used to swiftly and

precisely produce the intended result from any legitimate input. Algorithms can be viewed as procedural approaches to problems where

the focus is on effectiveness and precision. Numerous problem categories include those involving sorting, searching, string processing,

graph problems, combinatorial issues, geometrical concerns, and numerical difficulties. Breaking a problem into multiple smaller

subproblems of the same kind and nearly the same size, solving each of them recursively, and then merging their solutions to solve the

bigger problem is referred to as the "divide-and-conquer" algorithm design technique.

1. Analytical Exposition

The research examines the six main textbooks on algorithm

design and analysis through an analytical presentation, a

critical context, and an integrative conclusion. The mind of a

computer is an algorithm.

General Science

Simply described, an algorithm is a set of instructions for

carrying out a task that are detailed enough for a computer to

comprehend. A set of explicit instructions for solving a

problem are employed in an algorithm, according to Leviton,

A. (2011, p. 3), to produce the desired outcome for any valid

input in a finite amount of time. In many cases, algorithms

offer procedural answers to issues. In a similar spirit, Mount,

D.M. (2003, p.2) states that an algorithm is any well-defined

computational process that accepts some values as input and

outputs some values as output. The kinds of issues they

resolve design principles on which they are founded.

The Stable Matching issue, an algorithmic issue that aptly

illustrates many of the themes in Algorithm Design, was

introduced in Chapter One of Kleinberg, The book on

algorithm design by J. and Taros (2005, p. 1). According to

Kleinberg, J., and Taros, E. (2005, p. 4), matching's and

perfect matching's naturally occur in modelling a wide range

of algorithmic challenges and are discussed frequently

throughout the book. The self-enforcing requirement to

create a college admissions procedure or a hiring process

gave rise to the Stable Matching Problem. The main issue is

how to assign candidates to employers so that for every

employer E, and every applicant A who is not scheduled to

work for E, at for a given set of preferences among

employers and applicants.

Kleinberg, J., and Tardos, E. proposed the Gale-Shapley

problem (2005, p. 4). The definition of a perfect match is

simply a means of pairing the men with the women such that

everyone gets married to someone, and nobody gets married

to more than one person, preventing both polygamy and

singledom. We frequently conduct the studies listed below

on algorithms used with any instance of size a:

 The worst-case scenario (the most steps)

 The very bare minimum (best case scenario)

 An average situation (with an average number of steps)

 A series of operations on an input with a size that are over

time, an average are called amortisation.

A data structure is a specific method of grouping linked data

pieces (Levitin, A., 2011, p. 25). The topic of data

architecture is essential for effective algorithmic problem

solving since algorithms depend on data to function. The

binary tree, the stack, the queue, the graph (via its adjacency

matrix or adjacency lists), the array, and the linked list are

among the more abstract data structures that can be

represented by the most crucial elementary data structures

set. An abstract collection of items having a variety of

operations that can be applied to them is referred to as an

abstract data type (ADT) (Levitin, A., 2011, p. 39). Classes

are used in contemporary object-oriented languages to

implement ADTs.

The main objective of algorithm design is to find efficient

answers to computer problems. According on page 33 of

Kleinberg, J., and Tardos, E. (2005), an algorithm runs with

a polynomial time, provides qualitatively superior worst-case

analytical performance compared to brute-force search, and

runs swiftly on actual input cases. A measure of time

complexity referred to as time efficiency illustrates how

quickly An algorithm executes. complexity, also known as

space efficiency, is a measure of how many memory In

addition to the space required for its input and output, the

method also requires units (Levitin, A., 2011, p. 42).

Counting the number of times the procedure is used to

identify the time complexity.

The asymptotic order of function growth that represent the

effectiveness of algorithms are designated and compared

Paper ID: SE23423013719 75 of 79

mailto:Pranaldhamdhere436@gmail.com

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 4, April 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

using the notations O,, and. Without losing generality, it is

possible to organise various algorithms' Efficiency can be

categorised broadly into the following groups: constant,

logarithmic, linear, linearithmic, quadratic, cubic, and

exponential (Levitin, A., 2011, p. 95).Although setting up a

sum and figuring out the order in which it grows is the

primary method for figuring out the number of executions of

a nonrecursive algorithm's basic operation, setting up a

recurrence relation and figuring out the solution's order of

growth is the primary method for figuring out the number of

executions of a recursive algorithm's basic operation.

If a function t (n) is bound above by a constant multiple of

g(n) for all huge n, that is, if there are certain positive

constants c and non-negative integers n0 such that t (n) cg(n)

for all n n0, then the expression t (n) O(g(n)) is used (Levitin,

A.

If a function t (n) is limited below by a positive constant

multiple of g (n) for any large n, or if a positive constant c

and a non-negative integer n0 exist such that t (n) cg(n) for

all n n0, then the expression t (n) (g(n)) is said to be in (g(n).

If there are some positive constants c1 and c2 and some non-

negative integer n0 such that c2g(n) t (n) c1g(n) for every n

n0, then a function t (n) is said to be in (g(n) and is denoted t

(n) (g(n).

A recursive algorithm's inefficiency may be covered up by

its brevity, according to Levitin (2011). When each element

is the product of its two immediate predecessors, a series of

integers known as the Fibonacci numbers is created. There

are numerous methods for calculating the Fibonacci

sequencev, many of which have quite varied processing

speeds. Algorithm visualisation refers to the use of images to

send important algorithmic information (Levitin, A., 2011, p.

95). Algorithm visualisation comes in two flavours: static

algorithm visualisation and dynamic algorithm visualisation,

also referred to as algorithm animation.

Using brute force to solve a problem is a simple method that

frequently relies on the problem statement and the definitions

of the concepts at stake (Levitin, A., 2011, p.97). The brute-

force approach is recognised for its ease of use and broad

applicability, but it has a drawback in the form of its subpar

effectiveness. The if after sorting two equal items are still in

the same relative position, the technique is stable (Mount,

D.M., 2003, p. 8).

The algorithms mentioned below can be used as examples

of the brute force method:

Using a definition-based method, perform a sequential search

after matrix multiplication and selection. Simple string

matching algorithm.

The exhaustive search is a brute-force method for resolving

combinatorial puzzles. After choosing those that meet all the

conditions, it creates each and every combinatorial item in

the problem until the appropriate thing is found and others

The assignment problem, the knapsack problem, and the

travelling salesman problem can all be solved using

exhaustive-search algorithms (Levitin, A., 2011, p. 130). It

has been found that, with a few exceptions, most cases

render a comprehensive search impractical. The two main

graph-traversal algorithms, depth-first search (DFS) and

breadth-first search (BFS), are better alternatives. To put it

into the form of is the simplest way to study a number of

important aspects of a graph.

A general algorithm design method known as "decrease-and-

conquer" makes use of the connection between a remedy for

one particular manifestation of a problem and a fix for a

different, more minor instance of the same issue. To further

benefit from the relationship, top down (usually in recursive

fashion) tactics can be employed (Levitin, A., 2011, p.167).

The three primary decrease-and-conquer versions are as

follows:

 reduce-by-a-constant, most frequently by one (for

example, insertion sort)

 drop by a constant factor, typically by a factor of two

(binary search, for example) (For instance, Euclid's

algorithm) variable-size-decrease

The decrease-(by one)-and-conquer technique is easily

applied to the sorting problem using insertion sort (Levitin,

A., 2011, p.167). Insertion sort is a (n2) method both in the

worst case and the average case, while the average case is

almost twice as fast. On almost sorted arrays, the approach

works well.

A graph with orientations along its edges is referred to as a

digraph (Levitin, A., 2011, p.168). The goal of the

topological sorting problem is to arrange a digraph's vertices

so that each edge starts at a different vertex than the vertex it

points to. If and only if a digraph is a directed acyclic graph,

or does not contain directed cycles, then this problem has a

solution. The topological sorting problem can be resolved

using either of two approaches: a direct use of the decrease-

by-one strategy or a depth-first search approach. It makes

sense to employ the minimal-change algorithms in the

decrease-by-one method.

Create algorithms for generating fundamental combinatorial

things.

When searching in a sorted array, the Binary search strategy,

which is based on a decrease-by-a-constant-factor algorithm,

is especially effective (Levitin, A., 2011, p.168). A balance

scale can be used to detect fake currency, and other examples

include the Josephus problem, Russian peasant

multiplication, exponentiation by squaring, and the Josephus

issue. The size reduction varies from one algorithm iteration

to the next for several decrease-and-conquer algorithms.

Examples of such variable-size decreasing methods include

Euclid's method, the partition-based solution to the selection

problem, interpolation search, and searching and insertion in

a binary search tree.

A broad algorithm design strategy known as "divide-and-

conquer" splits a larger problem into a number of smaller

sub-problems of the same sort, solves each one iteratively,

and then combines the solutions to arrive at the answer to the

larger problem (Levitin, A., 2011, p. 198). This method

serves as the foundation for many efficient algorithms

despite its limitations and inadequacy to more obvious

Paper ID: SE23423013719 76 of 79

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 4, April 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

automated answers. Several divide-and-conquer algorithms

have running times T (n) that satisfy the recurrence T (n) =

aT (n/b) + f (n). The sequence of the solutions to the Master

Theorem will develop is predetermined. Divide and conquer

is a well-known three-step strategy that is employed by both

Mergesort and Quicksort, according to Erickson, J. (2019, p.

29).

Organise the provided instance of the problem into a number

of separate, smaller cases that are precisely the same.

Send the Recursion Fairy each smaller instance. Combine the

smaller instance solutions to get the complete instance

solution.

A divide-and-conquer sorting algorithm called merge sort

sorts an input array by splitting it into two equal halves,

sorting them repeatedly, and then combining the two sorted

halves to sort the original array (Levitin, A., 2011, p.198).

The number of key comparisons is extremely near to the

theoretical minimum, and the procedure is always in (n log

n) time. The main disadvantage is the large additional

storage space needed. The divide-and-conquer algorithm

known as MergeSort operates recursively. The array is split

into two roughly equal-sized sub-arrays, which are then

sorted iteratively before being combined n times (Mount,

D.M., 2003, p.9). Merge sort is a dependable sorting

algorithm. The only one is the MergeSort algorithm, though.

Make two sub-arrays from the input array, both roughly the

same size. Every sub-array is mergesorted iteratively.

Combine the newly sorted sub-arrays to create a single

sorted array.

The efficient heap data structure, This is a priority queue

data structure implementation, is the foundation of the heap

sort algorithm. a component with a modest key value is

eliminated as a result of the priority queue's support for key

insertion operations. The creation of a heap for n keys and

retrieval of the minimal key can both be done in (log n) time

and (n) time, respectively (Mount, D.M., 2003, p.9). Despite

being an in-place sorting method, HeapSort is unstable A

heap's k smallest values can be removed in n + k log n time,

according to Mount (D.M., 2003, p.9). A heap is

advantageous in situations when an element's priority varies

since each priority change (key value) may be handled by

Quicksort, a divide-and-conquer sorting algorithm that

divides incoming elements based on how important they are

in relation to a chosen element (Levitin, 2011, p.168). As one

of the bestQuicksort is a well-known technique for sorting

randomly ordered arrays because it has a quadratic worst-

case efficiency. According to Mount, D.M. (2003, p. 8),

Quicksort divides the array into components that are lower

and higher than the pivot after first choosing a random "pivot

value" from it. Then, Quicksort recursively sorts each

component. On contemporary processors, QuickSort is

frequently cited as the quickest rapid sorting algorithm.

Quicksort's inner loop compares each element to a single

pivot value that is easily accessible and may be stored in a

register. Two elements in the array are compared using the

other algorithms. Quicksort is an in-place sorting algorithm

that doesn't utilise any other array storage, but Mount, D.M.

As not stable (p. 8). The following are the crucial processes

for Quicksort, according to Erickson, J. (2019, p. 27):

Choose a key element from the list.the pivot element, the

pivot element's smaller and larger counterparts, and the pivot

element are separated into three sub-arrays.

Recursively quick sort the first and last sub-arrays.

The traditional binary tree traversals (preorder, inorder, and

post order) and similar algorithms, which call for recursive

processing of both left and right sub-trees, are an example of

the divide-and-conquer strategy (Levitin, A., 2011, p.168).

Whole a given tree's empty subtrees can be replaced with

one-of-a-kind external nodes.

The divide-and-conquer method requires approximately

n1.585 one-digit multiplications to multiply two n-digit

numbers. By employing the divide-and-conquer technique,

Strassen's approach, which generally requires two 2 2

matrices must be multiplied by seven times, can multiply two

n n matrices with about n2.807 multiplications. According to

Levitin, A. (2011, p.198), the convex-hull problem and the

closest-pair issue are two key computational geometry issues

that the divide-and-conquer technique can be used to.

A heap is a binary tree in which one key is assigned to each

of its nodes, provided that the two conditions below are

satisfied (Levitin, A., 2011, p. 227):

Simply put, the binary tree is full (shape characteristic).

The key of each node must be greater than or equal to the

keys of its offspring, according to the parental dominance or

heap attribute.

The fourth broad algorithm design (and issue-solving)

strategy addressed by Levitin, A. (2011, p. 250), is known as

transform-and-conquer and refers to a set of methods based

on the idea of transforming a problem into one that is simpler

to solve.

The transform and-conquer approach comes in three main

versions, which are:

Through instance simplification, a problem is changed from

one instance to another with a particular a feature that makes

it easier to tackle the problem. Effective examples of this

technique include rotations in AVL trees, list presorting, and

Gaussian elimination.

The term "representation change" refers to the process of

switching from one instance of a problem representation to

another. Using a 2-3 tree, heaps and heapsort, as well as

Horner's rule for evaluating polynomials, and two binary

exponentiation algorithms are examples of this category.

Problem reduction is the process of transforming a given

problem into a different problem that can be addressed by a

well-known method. Reductions to linear programming and

reductions to graphing issues are two examples of this

technique.

Paper ID: SE23423013719 77 of 79

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 4, April 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

A heap, according to Levitin (2011), p. 250, is a binary tree

with keys (one per node) that satisfy the parental dominance

requirement and is essentially complete. The efficient

implementation of priority queues depends on heaps, which

are binary trees that are frequently implemented as arrays.

Heaps also form the basis of heapsort. Theoretically

significant sorting procedure known as "heapsort" entails

storing array members in a heap and then repeatedly

eliminating the largest element from the heap that is left. The

approach is in-place and executes in O(n log n) in both the

worst case and average case (Levitin, A., 2011, p. 250). AVL

trees are binary search trees that preserve the balance to the

extent that it is possible for a binary tree to do so.

By transforming systems of linear equations into analogous

systems with upper-triangular coefficient matrices that are

straightforward to solve using back substitutions, the process

known as "Gaussian elimination" may be utilised to solve

systems of linear equations (Levitin, A., 2011, p. 251).

Gaussian elimination requires about [n3 /3] multiplications.

the only

The best method for polynomial evaluation without

coefficient preprocessing is Horner's rule, which requires n

multiplications and n additions to evaluate an n-degree

polynomial at a specific position. The synthetic division

method is one of Horner's rule's many advantageous side

effects.

Optimising a linear function of several variables that is

subject to restrictions in the form of linear equations and

linear inequalities is the goal of linear programming. If the

variables are not needed to be integers, there are efficient

methods that can solve very large instances of this issue with

thousands of variables and restrictions. The latter are a far

more challenging set of issues and are known as integer

linear programming.

Critical Context

A linear programme, in general, entails the maximisation or

minimization of a linear function of some variables while

taking into account linear restrictions on those variables. One

of the most prevalent issues that can be resolved in

polynomial time is linear programming. Numerous

optimisation issues can be solved in polynomial time by

immediately converting them into polynomial-size linear

programmes (Khuller, S., 2012, p.83). The simplex

algorithm, invented by Dantzig, is the most popular

technique for solving linear programmes. By introducing

slack variables, the approach first transforms the linear

inequalities into equality constraints. Combinatorial

optimisation issues can be solved using the Primal-Dual

Method (Khuller, S., p.138).

Optimisation concerns are frequently dynamic programming

issues, according to Mount, D.M., 2003, p.

(Assuming various limitations, determine the least expensive

or most expensive solution). The strategy separates a larger

issue in a way comparable to divide-and-conquer.

Into easier issues that are then routinely solved. Due to

dynamic programming problems' slightly different nature,

divide-and-conquer tactics are frequently useless. In general,

dynamic programming can be used to solve optimisation

problems if the original problem can be divided into smaller

subproblems and the recursion among the subproblems has

the condition of optimum substructure.

This implies that the best answers to the sub-problems can be

added to get the best answer to the main issue. A dynamic

programming technique typically enumerates all conceivable

division methods, in contrast to the conventional divide-and-

conquer strategy. the fundamentals of structure within the is

breaking the problem down into smaller (and ideally simpler)

sub-problems and describing the answer to the larger

problem in terms of solutions to the smaller problems.

A table-based layout where the solutions to the subproblems

are kept at a table because they are frequently reused.

Bottom-up computing combines the answers to smaller

subproblems with those to bigger subproblems to solve them.

According to Erickson, J. (2019, p. 190), a (simple) graph is

formally defined as a pair of sets (V, E), where V is a freely

chosen non-empty finite set and E is a set of pairs of V's

elements, which we refer to as edges. According to Mount,

D.M. (2003, p. 30), a graph is a group of nodes (sometimes

called vertices) connected by a group of edges. For many

application issues, graphs offer a very versatile mathematical

model. The vertices or nodes of a directed graph (or digraph)

G = (V,E) and the edges of G are made up of a finite set V

and E, respectively. E can be thought of as a simple binary

relation on V (Mount, D.M., 2003, p.30). the collection E

containing distinct, unordered pairs of vertices that make up

a graph that is not directed G = (V,E) is made up of the edges

and a limited collection V of vertices. The Digraph and

Graph, respectively, are shown in Figure 1 below.

Figure 1: Digraph and Graph

Splay trees are an effective way to show the strength of

amortised analysis because they work as search trees without

requiring any explicit balancing criteria (Khuller, S., 2012, p.

7). A splay operation takes O(log n) time to amortise

(Khuller, S., 2012, p. 10).

A planar embedding is a mapping of a graph's vertices and

edges to the plane where no two edges intersect. A graph is

referred to as being planar if it has a planar embedding

(Khuller, S., 2012, p.58). Another way to think of planar

graphs is as graphs that are planarly embedded on a globe. A

planar graph is helpful as they are used in the VLSI design

Paper ID: SE23423013719 78 of 79

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 4, April 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

context. K5 and K3,3 are the smallest non-planar graphs

(Khuller, S., 2012, p. 62).

A programme that completes It is considered to have

polynomial time if it completes in a period of time O(nk),

where k is an independent constant for n. If a problem can be

solved by an algorithm in polynomial time, that problem is

said to be polynomially solvable (Mount, NP-completeness:

We can state that issue Q is NP-complete if we can show

both (a) Q N P and (b) X N P X Q.p. 75; S. Khuller, 2012).

We define the following problem classes in this context:

P: All decision-making tasks that can be finished in a

polynomial amount of time are included in this set. These

tasks are typically referred to as "easy" or "efficiently

solvable" tasks (Mount, D.M., 203, p.58).

P is a subset of NP, which is the set of all decision problems

that can be verified in polynomial time (Mount, D.M., 2003,

p. 59). There are many There are NP class issues that are

considered to be quite simple, but there are also some that

are very difficult.NP stands for "nondeterministic polynomial

time," not "not polynomial."

This issue is NP-hard. If we could resolve this issueWe

would be able to in polynomial time resolve all NP-hard

issues as well (Mount, D.M., 2003, p. 59). It should be noted

that an issue need not belong to the class NP in order to be

NP hard. However, it is generally accepted that no NP-hard

problem can be solved in polynomial time because it is

widely held that all NP problems cannot be solved in that

amount of time.

If a problem is both (1) in NP and (2) NP-hard, it is said to

be NP-complete. NPC is therefore NPNP-hard.

The most frequent method utilised while creating algorithms

is reduction. Writing an algorithm for X that employs an

algorithm for Y as a black box or subroutine is referred to as

reducing one problem X to another problem Y (Erickson, J.,

2019, p.921). Importantly, the functionality of the resulting

algorithm for Y cannot in any way influence how correct the

method for X is. According to J. Erickson (2019, p. 22),

when we create algorithms, we might not be fully aware of If

it is finished in time O(nk), where k is a constant that is

independent of n, then it is said to have polynomial time. If

there is a formula that applied as a foundation to address

even more complex issues. Recursion is a very potent type of

reduction, and Erickson, J. (2019, p. 22) suggests that it can

be loosely characterised as follows:

Solve the problem directly if it can be done for the particular

case that has been given.

If not, simplify it into one or more variants of the original

issue.

Integrative Conclusion

A process known as planar embedding assures that no two

edges cross by mapping a graph's vertices and edges to the

plane. Apparently, S.

A graph is deemed to be planar if it has a planar embedding,

according to Khuller (2012), on page 58. Another way to

think of planar graphs is as graphs that are planarly

embedded in a sphere. Planar graphs are useful for VLSI

design because they are applicable. The smallest non-planar

graphs, according to S. Khuller (2012), are K5 and K3,3.

Any algorithm with a polynomial time specification

completes in O(nk) time, where k is an independent variable

from n. If a Using a polynomial time algorithm resolve a

problem, it is regarded as having been resolved in

polynomial time. (Mount, Divide-and-conquer is a general

algorithm design strategy that entails breaking a larger

problem into several smaller sub-problems that are all

roughly the same size and type, solving each of them

recursively, and adding the solutions to the solution of the

initial problem (Levitin, A., 2011, p. 198).Although many

efficient algorithms are built using this approach, it can

occasionally be ineffective and inferior to more

straightforward algorithmic solutions. The mergesort divide-

and-conquer sorting technique is used to divide an input

array.information about publishing.

Acknowledgement

We appreciate Professor Aishwarya's important advice and

assistance during the research process. His knowledge

These insights were crucial in determining the emphasis and

direction of our research. We are also appreciative of

Ajeenkya DY Patil University's MCA Data Science

programme for giving us the tools and assistance we required

to finish this research.

References

[1] Algorithms, J. ERICKSON, 2019, paperback, Creative

Commons, ISBN 978-1-792-64483-2, Copyright 2019.

Available at

http://jeffe.cs.illinois.edu/teaching/algorithms/ is Jeff

Erickson's work under a Creative Commons Attribution

4.0 International Licence.

[2] E. Taros and J. Kleinberg (2005). Algorithm Design,

2006. Paper, ISBN 0-321-29535-8, Pearson Education,

Inc.

[3] (2012) S. KHULLER. University of Maryland's

Department of Computer Science course notes from

January 26, 2012, "Design and Analysis of Algorithms"

[4] LEVITIN, A. Third Edition, 2015, Pearson, New York,

ISBN-13: 978-0-13-231681-1, ISBN-10: 0-13-231681-

1. a description of algorithm creation and research.

[5] Mount, D.M. (2003). Design and Analysis of Computer

Algorithms, Department of Computer Science,

University of Maryland, Fall 2003.

[6] M.A. WEISS (2014). Florida International University,

Fourth Edition, Data Structures and Algorithm Analysis

in C++, ISBN-13: 978-0-13-284737-7 (all. paper),

ISBN-10: 0-13284737-X (all. paper),

QA76.73.C153W46 2014.

Paper ID: SE23423013719 79 of 79

