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Abstract: Collisions that are inherently colinear in nature or that can be modeled as such represent a common configuration 

encountered in accident reconstruction practice.  When mathematical models, based upon the relationship between the time parametric 

collision force and deflection response are utilized, they tend towards simplicity, based, in part, upon the typical scope and extent of 

evidence that is readily available following such collisions under field and subsequent conditions.  Within the boundaries of these 

limitations, one may readily posit models of greater complexity, which in turn allow for the modeling of additional collision associated 

phenomenon.  Presented in the subject work, predicated upon the admittance and force-current analogies, is a generalized solution for 

the determination of the Laplace domain transfer function, with simultaneous determination of the Laplace domain forcing functions 

secondary to initial conditions.  Furthermore, the generalized solution is appropriate for both the closure and the separation phases of a 

collision.  This generalized solution is appropriate for uniaxial collision modeling for a system consisting of two discrete masses 

connected in series at a massless interface by means of linear springs and linear dampers.  The general solution is validated by 

comparing the results generated for four distinct cases against the results, for each case, based upon evaluation of the underlying 

differential equations of motion and force balance constraint equation. 
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1. Introduction 
 

Efficacious mathematical modeling of physical phenomenon 

serves as a method by which the complexity of the latter is 

reduced to tractability while retaining saliency in regards to 

the relevant system input parameters, output parameters and 

interrelationships.  One common approach, utilized across 

multiple engineering domains, is that of lumped parameter 

modeling.  Conceptually, this modeling approach involves 

(a) determining a finite set of domain specific and relevant 

system variables, (b) reducing the degrees of freedom to a 

finite set, (c) assigning the domain specific and generally 

distributed set of model parameters to a discrete set of model 

elements and (d) relating the model parameters to the system 

variables. 

 

As a very simple example, one may consider the case of an 

idealized simple harmonic oscillator.  This example is 

chosen for two reasons.  The first is that one has a reasonable 

expectation that most readers will have an  a priori 

familiarity with the model given its inclusion in introductory 

physics courses (covering mechanics), introductory single 

variate calculus courses and introductory differential 

equations courses.  The second reason is that the example 

allows for the introduction of translational mechanics 

domain specific and application specific terminology.   

 

The idealized simple harmonic oscillator is a constrained 

form of a slightly more complex system formulation.  We 

first note that the problem is uniaxial, in translation, and 

collinear, as applicable.  This is followed by noting that all 

coordinate axes are aligned at the temporal start of 

consideration (i.e. at t = t0 = 0).  These two considerations 

reduce the generally time-varying direction cosine matrices 

that relate vector components between different frames of 

references to time-invariant identity matrices.  This, in turn, 

means that all system translational mechanics variables are 

referenced with respect to the inertial frame of reference.   

 

Shown in Figure 1 is an idealized model consisting of two 

discrete masses (m1 and m2) that are connected to each other 

by means of massless elements (denoted as k1 and k2) at a 

massless node.  Vectors are shown in boldface font and 

simple time derivatives are denoted using the standard 

overdot notation.  The time-varying displacements of the two 

masses are respectively denoted as ua(t) and uc(t).  The time-

varying displacement of the massless interface is denoted as 

ub(t). 

 

 
Figure 1: Idealized two degree of freedom system consisting 

of two lumped masses (m1 and m2) connected by means of 

two massless elements (denoted as k1 and k2) at a massless 

interface. 

 

The force generated within each massless element is 

modeled as being a linear function of the relative 

displacement between the nodes that represent the endpoints 

of the element.  When this relative displacement results in a 

change in length of the element, the term deflection is apt.  

Finally, we note that each such element has a reference 

length at which it carries zero force.  For this example the 

length of each element at time t = to is the reference length.  

The time-varying force developed in each element is thusly 

expressed as the following: 
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This slightly more complex example is covered in greater 

detail in a subsequent section.  For now, it is sufficient to re-

duce it to the case of the idealized simple harmonic 

oscillator.  This is done by noting that the object represented 

by m2 and k2 is an ideal fixed, rigid, massive barrier 

(FRMB).  In this idealization the relationship of k2 >> k1 can 

be viewed as k2 → infinity.  This rigidity means that ub|c(t) = 

0.  Because the ideal wall is fixed and massive, uc(t) = 0, 

which as per the previous statement means that ub(t) = 0.  

For this case, the common massless interface is simply the 

face of the wall.  Finally, based on (1), 1(t) = ua|b(t) = ua(t) – 

0 = ua(t).  Thusly, for this case, the deflection experienced by 

the element k1 is equal to the displacement experienced by 

the mass m1.  This finding does not hold for the general case 

in which the object represented by k2 and m2 is deformable, 

displaceable or both.  The force experienced by m1 can 

readily be determined by applying Newton‟s second and 

third laws. 

      1 1 1 1 1m t t k t   u F u  (2) 

 

Rewriting (2) by algebraic rearrangement and by noting that 

1, the circular frequency, is equal to the square root of 

k1/m1, leads to the operative second order linear differential 

equation of motion for the idealized simple harmonic 

oscillator. 

    2

1 1 1t t u u 0  (3) 

 

This equation is subject to the initial conditions of zero 

initial acceleration, finite non-zero initial velocity and zero 

initial displacement. 

      1 o 1o 1 o 1o 1 o 1ot t t       u u 0 u u u u 0  (4) 

 

There are a number of ways to solve (3), subject to the initial 

conditions shown by (4).  The preferred method in regards to 

the subject work, and a method that is employed 

ubiquitously in this work, is the use of the unilateral (i.e. 

one-sided) Laplace transform.  This integral transform, for a 

function f(t), for t ≥ 0, results in a function F(s), which is 

defined by (5). 

     st

0

F s f t e dt



   (5) 

A utility of this transform is that it converts linear differential 

equations into algebraic equations.  The Laplace transform 

for the first and second time derivatives of a function f(t), 

which is assumed to differentiable and of the exponential 

type, are given in (6). 
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One may readily find tables that detail the Laplace transform 

of various functions along with the corresponding inverse 

Laplace transforms.  Applying (6) to (3) while making use of 

(4) leads to the following result after algebraic 

rearrangement. 

   1o

1 2 2
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s
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
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u
u  (7) 

 

The inverse Laplace transform of (7) yields the time domain 

solution for the displacement u1(t).  This solution can be 

differentiated, with respect to time, to yield the time domain 

velocity solution and differentiated with respect to time, 

again, to yield the time domain acceleration solution. 
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The kinematic response for the idealized simple harmonic 

oscillator is obviously oscillatory.  The frequency of 

oscillation is given by f = 1/(2) and the period of 

oscillation is given by T = 1/f = (2)/1.  This oscillatory 

nature can also be appreciated by examining the operands of 

the sine and cosine functions.  Both the displacement and 

acceleration are zero valued when the operand of the sine 

function is n, where n is any integer value.  The peak 

positive displacement and peak negative acceleration 

magnitudes occur when the operand of the sine function 

reduces to 0.5.  The converse holds when the operand of 

the sine function reduces to 1.5.  The velocity is 0.5 

radians out of phase with respect to the displacement.  The 

peak positive value of the velocity occurs when the operand 

of the cosine function reduces to zero.  The peak negative 

value of the velocity occurs when the operand of the cosine 

function reduces to n, wherein n is an odd integer.  The 

velocity solution is zero valued at 0.5n, where n is an odd 

integer.  The absolute values of the peaks, for each kinematic 

response, are equal. 

 

One may consider the question of the utility of such a model 

when it comes to modeling collisions.  In order to do so, one 

must first introduce some additional terminology.  We define 

a collision as a physical event in which two or more discrete 

objects or discrete regions of the same object attempt to 

contemporaneously occupy the same region of physical 

space.  Collisions occur over a finite, albeit generally short, 

temporal duration.  For certain collisions, however, one may 

employ mathematical models that are based upon a single 

time step approach.  For the purpose of the subject work, the 

collisions of interest are first limited to those for which the 

mass of the collision partners is time-invariant, those in 

which the materials constituent within the colliding objects 

experience no phase change and collisions in which 

substantial thermal effects are negligible.  Furthermore, the 

collisions of interest are further limited to those that are 

ubiquitously uniaxial and collinear.   

 

Excluding sideswipe type collisions, which may partially fit 

this characterization, the collisions of interest are temporally 

divisible into an initial closure phase followed by a 

subsequent separation phase.  The former initiates at the first 

moment the collision partners come into contact and 

terminates at the moment when the collision partners achieve 

a common velocity (at time t = tc).  The latter initiates 

contemporaneously with the terminus of the closure phase 
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and terminates at the first moment that the collision force 

returns to zero magnitude (at time t = ts).  During the closure 

phase, internal work is absorbed (IWA) by the collision 

partners.  During the separation phase, typically only a 

portion of the IWA is recovered (IWR) and with the 

remainder being dissipated (IWD). 

 

Returning to the question that was asked in the previous 

paragraph, it can clearly be stated that the idealized simple 

harmonic oscillator, en toto, is inappropriate as a collision 

model simply due to its ad infinitum oscillatory nature. If the 

full, unmodified model is inappropriate, would a temporally 

limited model be appropriate?  It can readily be stated that a 

full period model would be inappropriate secondary to the 

occurrence of one full oscillation and with a return of the 

initial conditions.  A half period model is appropriate for a 

very idealized collision – one for which the IWR equals the 

IWA and thusly provides for a unity (absolute) valued 

coefficient of restitution (ratio of the separation velocity to 

the closing velocity).  A further temporal restriction, that 

being the first quarter period, for modeling the closure phase 

alone, for certain collisions, greatly expands the scope of 

potential applicability for the model.  The reference to 

certain collisions clearly refers to the case in which a 

collinear impact occurs between the end of an object, such as 

a motor vehicle, and a FRMB.  Such an impact aptly 

describes the collision configuration utilized in the United 

States (US) Federal Motor Vehicle Safety Standard 

(FMVSS) 208 dynamic (208D) front impact compliance 

testing protocol, high speed front impact New Car 

Assessment Program (NCAP) testing protocol and other 

similar testing conducted for research purposes, test 

development purposes or both.  Furthermore, such a model is 

apt when (a) a single degree of freedom (SDOF) is sufficient 

and (b) when the peak collision force and peak deflection 

occur within the vicinity of the terminus of closure phase of 

the collision.  The reasoning for the first caveat is patent 

given that the model is a SDOF model.  The reasoning for 

the second can be seen from the following.  The modeled 

time at which the closure phase terminates is tc = /(21).  

This solution derives from the fact that the common velocity 

is zero given the nature of the FRMB.  The operand of the 

cosine function first reaches a zero valuation at the above-

noted value.  The ratio of the collision force to the deflection 

experienced by the front of the test vehicle during the closure 

phase can readily be seen from (1) or calculated from (2) and 

(8).  From (1), it can readily be seen that the collision force 

is a linear, monotonically increasing, function of deflection.  

It should also be clear that the model, for the closure phase, 

is a single parameter model.  When working with data from 

any given collision test, the time at which the velocity of the 

test vehicle reaches a zero valuation is readily determinable.  

This allows for the direct determination of the time at which 

closure terminates, which in turn allows for one method of 

determining 1 by 1 = /(2tc).  Since the initial velocity of 

the test vehicle is measured, one can determine modeled 

values for the peak deflection and peak acceleration 

magnitude at the terminus of closure.  One may also evaluate 

the problem in the following manner.  The IWA, irrespective 

of the force-deflection model used, for a collinear collision, 

can be shown to be the following (where vc is the closing 

velocity, which is the difference in the velocities of the 

collision partners at the start of the closure phase) [1]. 

 2o
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IWA m m
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The IWA is also equal to the integral of the dot product of 

the collision force and the differential of its work conjugate 

displacement (here, du = d1 = du1 – du2 = du1).  For the 

linear closure phase model, this can readily be calculated as 

the following (where Fc is the collision force at the terminus 

of the closure phase): 

 
2

1c c 1c

1 1
IWA k

2 2
  F  (10) 

 

One may use the known initial velocity and determined value 

for 1c to solve for 1 from the displacement solution under 

(8) and to solve for a modeled value for Fc by equating (9) 

and (10) and solving.  This linear model for the closure 

phase has been used almost ubiquitously in the accident 

reconstruction engineering literature [2-4]. 

 

The next question that logically follows is can this model, 

under the aforementioned caveats, be used for modeling the 

separation phase?  Clearly, one would want a model with 

differing parameter (i.e. stiffness and circular frequency) 

valuations due to the fact that a model with the same closure 

phase parameter valuations would simply provide the second 

quarter of a half period idealized simple harmonic oscillator 

response with full energy recovery and a coefficient of 

restitution magnitude of unity.  Thusly the separation phase 

values are denoted using the overbar notation.  Secondly, one 

would rather not have t – tc within the parenthetical time 

dependance.  Thusly, for the sake of clarity, a new temporal 

variable,  = t – tc, is introduced for the separation phase.  As 

a result o = tc – tc and s = ts – tc.  Finally, one must consider 

the form of the second order differential equation of motion.  

The solution for all three kinematic responses must be 

continuous at t = tc from both the closure phase and 

separation phase approaches.  This is achieved by rewriting 

(3) as follows: 

    2 2

1 1 1 1c 1 1c     u u u u  (11) 

 

The initial conditions for this equation are the terminus of 

closure phase values. 

      1 o 1c 1 o 1 o 1c       u u u 0 u u  (12) 

 

Taking the unilateral Laplace transform of (11), subject to 

the initial conditions given by (12) and algebraically 

rearranging the results leads to the following Laplace domain 

solution for the displacement. 

  
2

1c 1 1c

1 1c2 2

1

1
s s

ss

 
  

  

u u
u u  (13) 

The time-domain kinematic solutions for the separation 

phase, for this model, can readily be obtained as before (for 

the closing phase model). 
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It can readily be seen that each response correctly predicts 

the terminus of closure phase values at  = 0.  For the 

separation phase, the solution for the time at which 

separation terminates is determined by setting the 

acceleration in (14) equal to zero and solving for . 

 s s c

1 1

t t
2 2

 
    

 
 (15) 

Substitution of the solution from (15) into the displacement 

and velocity solutions from (14) result in the following 

modeled terminus of separation phase results. 

 1c 1c

1s 1c 1s2

11

  


 


u u
u u u  (16) 

For the test type under question and the sign convention 

employed, the terminus of closure acceleration will be 

negatively signed, thereby resulting in u1s < u1c and 

negatively signing the velocity of the test vehicle at terminus 

of separation.  As with the linear closure phase model, the 

linear separation phase model is a single parameter model.  

One may readily solve for s from actual data and then solve 

for the circular frequency using (15).  One may also use 

work-energy relationships.  The IWR, irrespective of the 

force-deflection model used, for a collinear collision, can be 

shown to be the following (where vs is the separation 

velocity, which is the difference in the velocities of the 

collision partners at the terminus of the separation phase) 

[1]. 
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The IWR may also be determined from the linear force-

deflection model in the same way as it was for the closure 

phase. 

    
2

1 1c 1s c 1c 1s

1 1
IWR k

2 2
      F  (18) 

One may readily solve for the model parameters and values 

using the same methods as discussed for the closure phase. 

As an aside, one finds that the linear deflection only closure 

phase model has greater applicability than the linear 

deflection only separation phase model.  The straight line fit 

between the points (1c, Fc) and (1s, 0) generally tends to 

over-predict the IWR.  This is due to the fact that the 

separation phase response, even for the SDOF model, for 

data from high speed collision testing, tends to be highly 

nonlinear (with respect to a straight line fit for the force-

deflection response) with an initial phase of finite but high 

stiffness followed by a second phase of substantially lower 

stiffness.  Methods regarding model parameter estimation 

and the relationship between dynamic modeling and quasi-

empirical residual damage based modeling have been 

addressed elsewhere [4-5] and are not the focus of the 

subject work. 

 

The focus of the subject work can, first, be seen by example 

in the comparison of (7) and (13).  Both equations are in the 

form of an output (the Laplace domain displacement) being 

equal to a Laplace domain function multiplied by an input 

(the Laplace domain forcing function based upon the initial 

conditions of the system).  Both equations can be written in a 

general form based upon the ratio of Laplace domain output 

to the Laplace domain input. 

  
 

 
1 s

H s
s


u

F
 (19) 

 

In (19), H(s) is known as the transfer function.  There are 

two observations of import to the subject work.  The first is 

that the form of H(s) in (7) and (13) is the same for both the 

closure phase and the separation phase (i.e. the inverse of s
2
 

plus the square of the operative circular frequency).  The 

second is that this form remains unchanged irrespective of 

the form of the forcing function.  One may readily consider 

the case, for example, in which a net unbalanced externally 

applied load is applied to m1.  If the function has a Laplace 

transform then the effect on the displacement response can 

simply be obtained by adding the multiple of the same and 

the transfer function to the Laplace domain displacement 

solution.  The objective of the subject work, thusly, can be 

stated as the theoretical development of a methodology for 

generalizing the development of the form of the transfer 

function for certain common model configurations for the 

two collision partner collinear collision case in which each 

collision partner is modeled using basic linear lumped 

element components. 

 

2. Theory 
 

2.1 System Generalization 

 

Systems of the subject type can readily be generalized based 

upon variable pairs whose product is equal to power [6].  

This generalization is applicable to a number of contexts that 

include but are not limited to translational mechanical 

systems, rotational mechanical systems, electrical systems 

and thermal systems.  System variables are classified as 

either being across variables or through variables.  Across 

variables are those that are defined by measuring their 

change across an element while through variables are those 

that are transmitted, unchanged, through an element.  Across 

variables are subject to a compatibility condition, which 

states that the sum of the variables across any number of 

elements in a closed loop is equal to zero.  Through variables 

are subject to a continuity condition, which states that the 

sum of the variable through any number of elements 

connected at a node (i.e. a connection within the system 

topology) is zero.  

 

One may also define two generalized sources [7].  The first 

source, is a generalized across variable source, which 

maintains the value of the across variable irrespective of the 

magnitude of the applied through variable.  The second 

source, a generalized through variable source, maintains the 

prescribed magnitude of the through variable to its 

connected nodes irrespective of the magnitude of the across 

variable that must be generated to maintain the prescribed 

magnitude. 
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Finally, one may define three types of primitive elements that 

consist of two energy storage elements and one dissipative 

element.  A-type elements are those that store energy as a 

function of the across-variable.  Letting  denote a 

generalized through variable,  denote a generalized across 

variable and letting  be a constant, the following 

relationship holds for an A-type element. 

 
d

dt


    (20) 

The second element type, the T-type element, is an energy 

storage element that is a function of a through variable.  

Using the definitions from above leads to the following 

relationship. 

 
d

dt


    (21) 

 

The third element type, the D-type element, is a dissipative 

element (power ≥ 0).  The generalized relationship for this 

element is given as follows. 

    (22) 

 

We may also define the generalized impedance, Z(s), and its 

inverse, the generalized admittance, Y(s), in the following 

manner. 

  
 

 
 

 

 

s s
Z s Y s

s s

 
 
 

 (23) 

 

2.2 Force-current analogy 

 

Moving from generalization to specificity, it is first 

important to consider electrical circuit systems secondary to 

the same serving as an underlying basis for presenting 

analogous mechanical systems [8].  For electrical systems, 

the power conjugate variables (i.e. the variables whose 

product equals power) are voltage drop (V) and current (i).  

If V = Va – Vb is the voltage drop across a capacitor with 

capacitance C (an A-type element), then the current through 

the capacitor is given by the following. 

 
dV

i C
dt

  (24) 

The energy stored by the capacitor is given by the following. 

 

t t

2

0

1
E Vidt CVdV CV

2


     (25) 

If L is the inductance of an inductor and V is the voltage 

drop across the inductor (a T-type element), then the 

relationship between the voltage drop and current is given by 

the following. 

 
di

V L
dt

  (26) 

The energy stored by the inductor is given by the following. 

 

t t

2

0

1
E Vidt Lidi Li

2


     (27) 

Finally, if R is the resistance of a resistor and V is the 

voltage drop across the resistor (a D-type element), then the 

relationship between the voltage drop and the current is 

given by the following. 

 V iR  (28) 

The power dissipated by the resistor is given by the 

following. 

 2P Vi i R 0    (29) 

 

It should be readily apparent that (24) and (26) are invertible 

by multiplying both sides of each equation by the 

differential, dt, and integrating.  For a translational 

mechanical system, the system power conjugate variables are 

force and velocity.  One may analogize the translational 

mechanical system to an electrical system by analogizing 

velocity with current (and thereby force with voltage) [9].  

Alternatively, one may analogize force with current (and 

thereby velocity with voltage) [10].  Both analogies are 

correct but lead to differing formulations.  Great care should 

be taken when comparing sources within the literature to 

ensure that one understands the analogy being used.  For the 

subject work, the force-current analogy is utilized.  As a 

result, mass is analogous to capacitance, linear springs are 

analogous to inductors and linear dampers are analogous to 

resistors.  Because of this choice of analogy, the sum of 

velocity drops around a closed loop (see the next section), is 

the compatibility condition analogous to Kirchoff‟s voltage 

law (KVL).  The continuity condition analogous to 

Kirchoff‟s current law (KCL), is that the sum of forces at any 

node (see the next section), including the d‟Alembert force 

for a mass element, is zero.  The Laplace domain 

impedances for a capacitor, inductor and resistor of 1/(Cs), 

sL and R, respectively, for the force-current analogy, become 

the following impedances for mass, linear spring and linear 

damper elements (where Z(s) = v(s)/F(s) for translational 

mechanical system). 

 m k c

1 s 1
Z Z Z

sm k c
    (30) 

The corresponding admittance values for the same are given 

by the following. 

 m k c

k
Y sm Y Y c

s
    (31) 

For this analogy, (23) can be expressed in the following 

manner. 

  
 

 
 

 

 

s s
Z s Y s

s s
 

v F

F v
 (32) 

The choice of analogy also plays a role in regards to the 

combination of elements in series and parallel.  For the 

force-current analogy, elements in series share the same 

force and the equivalent impedance is the sum of the 

impedances of the elements in series. 

    
n

eq i

i 1

Z s Z s


  (33) 

Elements in parallel, for this analogy, share the same 

velocity and as a result the equivalent impedance is the 

inverse of the sum of inverse of the impedances of the 

elements in parallel. 

 
   

n

i 1eq i

1 1

Z s Z s

  (34) 

The relationships are inverted when one replaces the 

impedance terms with the corresponding admittance terms.  

Finally, we note that for the force-current analogy, forcing 

functions are analogous to current sources and velocity 

sources are analogous to voltage sources. 
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2.3 Line graphs 

 

Line graphs are a simple yet effective tool for visualizing the 

structural architecture and connectivity of dynamic systems 

[11].  Care, again, must be taken in comparing presentations 

of this topic across references secondary to the fact that 

differing authors will use differing conventions.  With this 

fact noted, we define nodes in a line graph as points of 

connectivity, with specifiable velocities (i.e. nodal 

velocities).  The connections between the nodes are referred 

to as branches.   

 

System impedances are shown as being located along the 

branches.  An arrow showing both the presumed direction of 

velocity drop between the connected nodes and force flow, is 

used in conjunction with an indication of the element.  Two 

points need to be noted regarding mass elements.  The first is 

that mass elements always have a branch connected to the 

node serving as the inertial frame of reference.  This is 

because of the specification that all forces and kinematic 

parameters are properly referenced to the inertial frame of 

reference.  The velocity of this inertial frame of reference is 

specified as zero.  The second is that the direction of force 

flow along the branch connecting a mass element towards the 

reference node is always directed towards the reference node 

(due to the sign of the d‟Alembert force in the continuity 

equation).   

 

Force sources, analogous to current sources, are shown as 

circles with a directional arrow for the flow of force, along 

branches.  Velocity sources are not used in the subject work. 

 

The analogies to KVL and KCL were noted previously.  In 

the subject work velocity drops are taken in a clockwise 

manner and sum to zero for any closed loop.  For example, 

for the closed loop defined by the clockwise arranged nodes 

a, b and c, the velocity drops are va|b + vb|c + vc|a = (va – vb) + 

(vb – vc) + (vc – va) = 0.  For the analog to KCL, the sum of 

forces flowing into a node is equal to the sum of forces 

flowing out of a node. 

 

As an example, we first consider a slightly more complicated 

version of the SDOF case that was detailed previously.  

Consider the case of a single lumped mass connected to a 
displacement constraint by means of a linear relative 
displacement and a linear relative displacement rate 
element.  Let k denote the stiffness of the former and let c 
denote the damping coefficient of the latter.  We also 
consider a time-varying force F(t), for which the Laplace 
transform, F(s), exists, acting on the mass.  This is shown 
in Figure 2 along with the corresponding line graph.  

 

 
Figure 2:  Shown on the left is an example of a SDOF 

damped system consisting of a lumped mass (m), stiffness 

(k) and damper (c) with force F(t) acting upon the mass.  

Shown on the right is the corresponding line graph. 

 

The system configuration shown in Figure 2 clearly would 

not be appropriate for a closure phase model due to the fact 

that the presence of the damper would result in the greatest 

force from the same being present at the start of closure (due 

to the velocity difference with the displacement constraint 

being the greatest at that time) and thusly the model would 

predict a non-zero valued force at t = to.  Setting this issue 

aside, the line graph, rather than the standard schematic, 

more clearly shows that the three passive elements of the 

system are in parallel.  The equivalent impedance of these 

three elements can be obtained from using the relationships 

given in (30) and (34). 

 

 
1 1

eq

m k c

2

1 1 1 k
Z s ms c

Z Z Z s

s

ms cs k

 
   

        
  


 

 (35) 

 

The velocity drop across the equivalent impedance is va|b = 

va – 0 = va.  From (32), Zeq(s) = va|b(s)/Feq(s) = va(s)/Feq(s).  

The sum of forces at node (a) yields F(s) = Feq(s) = 

va(s)/Zeq(s).  The relationship between displacement and 

velocity in the Laplace domain is u(s) = v(s)/s.  As a result, 

the transfer function for this example is the following. 

  
 

 

 

 
 a a

eq 2

s s1 1 1
H s Z s

s s s s ms cs k
   

 

u v

F F
 (36) 

 

The result shown in (36) is the expected transfer function for 

a second order damped equation of motion.  One could have 

readily obtained the same result by taking the Laplace 

transform of the time domain second order differential 

equation of motion under the condition of all initial 

conditions being zero valued.  Ideally, however, for the 

subject work, we would like to generate both the transfer 

function and the general form of the forcing function due to 

the initial conditions in a single derivation rather than having 

to determine the latter at a later point.  An approach for 

doing so is shown in the following section. 

 

2.4 Initial conditions 

 

The example shown in Figure 2 is a good example for 

introducing the manner for considering system initial 

conditions.  The following presentation is equally applicable 

to the idealized simple harmonic oscillator discussed 

previously (by setting c equal to zero).  To generalize the 

presentation we expand the definition of the temporal 

variable, , such that  = t – ta.  The time value of t = ta can 

be at any point during the event.   

 

Based upon the prior definition, a = ta – ta = 0.  Furthermore, 

we define b such that a = 0 ≤  ≤ b with the limitation that 

c and k do not change over the temporal duration.  For a 

collision, the temporal limitation means that a and b operate 

over any portion of the closure phase (fully inclusive), any 

portion of the separation phase (fully inclusive) or any other 

temporal region for any other formulation over which the 

model parameters do not change value.  This point is 
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mentioned not because the model form, as presented below, 

changes, but rather to remind the reader that the values used 

for the model parameters are those operative over a given 

phase and the initial conditions are those that exist at a.  

With these caveats noted, we start by writing the second 

order differential equation of motion for the system shown in 

Figure 2.  This form is similar to (11) but includes a term due 

to the damper (also, the displacement ua is change to u and 

the subscript of „a‟ is used to denote the value of the 

corresponding variable at a). 

       a a am c k m c k          u u u u u u  (37) 

 

The system initial conditions are as follows: 

      a a a a a a        u u u u u u  (38) 

 

Taking the Laplace transform of (37), using the initial 

conditions shown by (38) and solving for the Laplace 

domain displacement leads to the following result. 

  
a a a a a a

2

1 1 1
s m c k

s s s
s

ms cs k

     
         

     


 

  u u u u u u

u (39) 

 

A comparison of (39) with (36) clearly shows that the former 

is simply the latter with F(s) specified and multiplied 

through the equation.  The solution for H(s), given by (36), 

as expected, is present on the right of the equality on (39).  

From the form of (39) it can clearly be seen that the initial 

conditions can be treated as forcing functions.  The terms in 

the numerator of (39) have been separated, parenthetically, 

by their associated passive element correspondence.  For 

each element, we posit the view that the Laplace transform 

of the initial conditions can be represented in a line graph as 

a force source in parallel with the branch representing the 

impedance of the corresponding passive source.   

 

For the mass element, the direction of the Laplace domain 

initial conditions force source is in the opposite direction 

(from the inertial node towards the mass-associated node).  

For mass elements, one may also be interested in accounting 

for net unbalanced externally applied loads.  For each such 

load, we posit the view that the Laplace transform of the load 

can be represented as a force source, directed in the 

appropriate direction, in parallel with the branch 

representing the impedance of the corresponding mass 

valued node.  The phrase appropriate direction can be 

interpreted by the following examples: acceleration would be 

directed away from the inertial node and braking would be 

directed towards the inertial node.  The force sources for the 

mass element, irrespective of the number of separate sources 

employed, sum together due to the fact that they are parallel 

secondary to being along branches connected to the same 

nodal pair (i.e. the inertial node and the mass valued node).  

One may thusly redraw all such sources for a mass element 

as a single, equivalent, force source that is in parallel with 

the branch containing the impedance for the corresponding 

mass element. 

 

For the spring and damper element shown in Figure 2, the 

initial conditions can also be represented as force sources.  

Each source is in parallel with the corresponding element.  

These initial condition force sources should not be placed in 

parallel to a mass element unless the corresponding spring or 

impedance is in parallel with the mass element in question.  

If one were to relax the displacement constraint of ub(t) = 0, 

the spring and damper would remain parallel but would be in 

series with the mass rather than in parallel (the 

corresponding equation of motion would change due to the 

fact that one would have to include the displacement and 

velocity at (b) in the solution).  For any number of spring 

and damper elements connected in parallel, we may reduce 

the system to the equivalent impedance (inverse of the sum 

of the inverse of the individual impedances) in parallel with 

a force generator (the sum of the force generators from the 

individual elements).  When a force generator representing 

the Laplace transform of the initial conditions for a spring or 

damper element is connected in parallel to the element and 

with the element nodes consisting of a mass valued node and 

the ground reference node, the direction of the force 

generator is opposite of the direction of the force flow 

through the impedance.  The reasoning for this is due to the 

proper signing of the initial conditions as can be seen in 

Figure 2.  Figure 3 shows a redrawing of Figure 2 to show 

the force generators for each element. 

 
Figure 3: Line graph for the model shown in Figure 2 but 

with the initial conditions for each element shown as 

properly directed force generators for each element. 

 

The correctness of this approach can readily be seen by 

summing the forces at node (a). 

 

     

     

mo co ko

a

m c k

eq

s s s

s s s
Z

  

  

F F F

v
F F F

 (40) 

In (40), the terms on the left side of the first equality are the 

three individual terms shown in the numerator of the term on 

the right of the equality of (39).  It should be readily 

apparent that these equations can be used for modeling both 

the closure and separation phase of a collision for a SDOF 

model simply by changing the values of the initial conditions 

and the values of the stiffness and damping that are 

appropriate for the phase under consideration.  This can be 

done without changing the form of the equations.  This 

simple example covers the SDOF model for a vehicle to 

FRMB collision with the caveats noted above.  In the 

following section we address the two body problem. 

 

3. Applications 
 

3.1 The general two body problem 

 

In the Introduction to the subject work, the simple two body 

collinear collision problem was introduced along with the 

equation of motion for each body as per (1).  The simple 

problem will be addressed, specifically, in the following 
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subsection.  For now, we start the development of the 

general problem by redrawing Figure 1. 

 

 
Figure 4:  Schematic of the general two body problem 

showing the two masses, m1 and m2, along with their 

respective displacements ua(t) and ub(t).  The displacement 

ub(t) represents a massless interface between the two objects.  

Each mass is connected to this interface by the appropriately 

subscripted impedance. 

 

In Figure 4, the impendence Z1(s) denotes any number of 

springs and dampers connected between the first mass and 

the massless interface and Z2(s) denotes any number of 

springs and dampers connected between the massless 

interface and the second mass.  This formulation, again, is 

used, because the impedances are treated as being 

characteristic of the relevant portion of the corresponding 

subscripted object.  We first develop the transfer function for 

this system (under zero initial conditions) so that we can 

check the correctness of the solution developed after 

inclusion of the initial conditions as forcing functions.  The 

line graph for this problem is shown Figure 5. 

 

 
Figure 5: Line graph for the schematic shown in Fig. 4.  The 

mass impedances and associated force generators are as 

labeled.  The object associated (massless) impedances are 

shown as Z1(s) and Z2(s).  The nodal velocities va and vc 

correspond to the two masses.  The nodal velocity vb is for 

the massless interface.  The velocity vd is the reference 

velocity for the inertial frame (zero). 

 

The sum of forces at node (a) leads to the following result. 

 

     

 
    

 
    

          

1 1

1

1

1 m Z

a d

m

a b

1

m 1 a 1 b

s s s

1
s s

Z s

1
s s

Z s

Y s Y s s Y s s

 

 

 

  

F F F

v v

v v

v v

 (41) 

 

The sum of forces at node (c) leads to the following result. 

 

     

 
    

 
    

          

2 2

2

2

2 m Z

c d

m

b c

2

m 2 c 2 b

s s s

1
s s

Z s

1
s s

Z s

Y s Y s s Y s s

 

 

 

  

F F F

v v

v v

v v

 (42) 

The sum of forces at node (b) leads to the following result. 

 

   

 
    

 
    

 
 

   
 

 

   
 

1 2Z Z

a b b c

1 2

1

b a

1 2

2

c

1 2

s s

1 1
s s s s

Z s Z s

Y s
s s

Y s Y s

Y s
s

Y s Y s



  







F F

v v v v

v v

v

 (43) 

Substitution of (43) into (41) and (42) followed by algebraic 

simplification leads to the following results in which vb(s) is 

eliminated from the equations. 

             
11 m red a red cs Y s Y s s Y s s  F v v  (44) 

             
22 m red c red as Y s Y s s Y s s  F v v  (45) 

Where Yred(s) is the expected result of the equivalent 

admittance of the two admittances in series. 

  
   

   
1 2

red

1 2

Y s Y s
Y s

Y s Y s



 (46) 

Equations (44) and (45) may be written in compact vector-

matrix notation. 

 

 

 

     

     

 

 

     

1

2

m red red1

2 red m red

a

b

Y s Y s Y ss

s Y s Y s Y s

s

s

s s s

   
   

     

 
  
 

          

F

F

v

v

F Y v

 (47) 

Assuming that [Y(s)] is non-singular, the inversion of (47) 

leads to the following result (the explicit dependence on the 

Laplace variable is not shown for the admittances for the 

purpose of clarity). 

  
 

 

2

1

1 2 1 2

m red red

red m red

m m red m m

Y Y Y

Y Y Y
s s

Y Y Y Y Y

 
 

  
      

 
v F  (48) 

Using the relationship is u(s) = v(s)/s leads to the following 

result. 

  
 

 

2

1

1 2 1 2

m red red

red m red

m m red m m

Y Y Y

Y Y Y1
s s

s Y Y Y Y Y

 
 

    
       

  
u F  (49) 

In (49), the entirety of the term that premultiplies [F(s)] is 

the transfer function H(s).  This form of the transfer function 

holds when the system architecture is reducible to that shown 

in Figure 5.  We now consider the case of initial conditions 

for this general case.  For the mass valued nodes, the initial 

conditions can be shown as force generators, in parallel with 

the mass impedance branches, with opposite directionality, 
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as discussed previously.  This is because the nodal 

connections for the masses are the same as they were for the 

previously discussed example.  The previous statements 

regarding the additivity of additional forces, such as net 

unbalanced externally applied forces, still holds apt for this 

case.  For the elements connected between the mass valued 

nodes and the massless interface node, we posit that the 

force generator for the initial conditions will be directed 

from the massless interface, towards the mass valued nodes.  

The resultant line graph is shown in Figure 6. 

 
Figure 6: A modified version of Figure 5 showing the 

general forcing functions as being specifically due to the 

initial conditions present for each mass at  = a.  Also shown 

are the branches for the force generators for the initial 

conditions at the same time for each impedance present 

along the branch from the mass valued nodes to the massless 

node. 

 

The presence of the force generators for the impedances 

Z1(s) and Z2(s) clearly lead to an alteration of the sum of 

forces at each of the three salient nodes.  This requires 

rewriting (41), (42) and (43).  For this rewrite, we drop the 

depiction of the explicit dependance upon the Laplace 

variable, for purposes of clarity (the dependance still 

remains).  Rewriting (41) leads to the following. 

    

 

1 1 1 1a

1a

1

1 1a

m a m Z Z

a d a b Z

m 1

m 1 a 1 b Z

1 1

Z Z

Y Y Y

  

    

   

F F F F

v v v v F

v v F

 (50) 

Rewriting (42) leads to the following. 

    

 

2 2 2 2

2

2
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m a m Z Z a

c d b c Z a

m 2

m 2 c 2 b Z a

1 1

Z Z

Y Y Y

  

    

   

F F F F

v v v v F

v v F

 (51) 

Finally, rewriting (43) leads to the following. 

    
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1 2

1 2

Z Z Z a Z a
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1 2

Z a Z a1 2
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1 2 1 2 1 2

1 1
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Y Y

Y Y Y Y Y Y

  

    


  
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F F F F

v v v v F F

F F
v v v

 (52) 

Substitution of (52) into (50) and (51) followed by algebraic 

rearrangement leads to the following results. 

 

 
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Y Y Y Y

Y Y Y

  
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 (53) 

 

 
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Y Y Y

  
 
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F F F

v v

 (54) 

These two equations can again be written into a convenient 

vector-matrix form. 

 

1a1

2 2a

1

2

Zm a 2 1

2 1m a Z1 2

m red red a

ared m red

Y Y1

Y YY Y

Y Y Y

Y Y Y

     
     

         

    
   

     

FF

F F

v

v

 (55) 

Inverting the relationship as before leads to the following 

result. 

  

2

1

1 2 1 2

1a1

2 2a

m red red

red m reda

c m m red m m

Zm a 2 1

2 1m a Z1 2

Y Y Y

Y Y Y

Y Y Y Y Y

Y Y1

Y YY Y

 
 

    
 

  

      
                  

v

v

FF

F F

 (56) 

Using the relationship of u(s) = v(s)/s leads to the following 

result. 

  

2

1

1 2 1 2

1a1

2 2a

m red red

red m reda

c m m red m m

Zm a 2 1

2 1m a Z1 2

Y Y Y

Y Y Y1

s Y Y Y Y Y

Y Y1

Y YY Y

 
 

      
   

   

      
                  

u

u

FF

F F

 (57) 

A comparison between (49) and (57) shows that the transfer 

function shown in the former is exactly the same as that 

generated in the latter.  There are two differences between 

the two equations.  The first, being minor, is that the generic 

forces F1(s) and F2(s) have been specified as being the 

Laplace domain transformed initial conditions that are 

operative on each mass.  We again note that any net 

unbalanced externally applied force acting on either mass 

can be additively included within these terms as before.  The 

second difference is that the second additive term in the 

terminus parenthetical of (57) consists of the Laplace domain 

transformed initial conditions at  = a that are operative on 

the elements that are connected in series at the common 

massless interface.  The validity of (57) can be checked by 

considering specific element compositions for which the 

solution is known. 

 

3.2 Spring-spring connection 

 

For the case in which the two elements connected in series at 

the massless interface are linear springs, one may readily use 

(1) to write the equations of motion for each mass at  = a 

(we again note that the values for k1 and k2 are operative 

from a forward; the double letters in the subscript refers to 

the point followed by the time). 

 
    

    
1 a 1 aa 1 1 1a

2 c 2 ca 2 2 2a

m m k

m m k

    

    

 

 

 

 

u u

u u
 (58) 

The force balance condition at the massless interface can be 

written as follows. 
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      1 1 1a 2 2 2ak k         (59) 

Substitution for the deflections in terms of the corresponding 

relative displacements in (58) and (59), algebraically solving 

(59) for the displacement ub(), substitution of the resultant 

in the two equations under (58) and algebraically rearranging 

the results leads to the following time-domain form. 

 

     

 

     

 

1 a red a red c

1 aa red aa ca

2 c red c red a

2 ca red aa ca

m k k

m k

m k k

m k

     

 

     

 









u u u

u u u

u u u

u u u

 (60) 

 

In (60), the term kred refers to the reduced stiffness and is 

equal to the product of k1 and k2, divided by the sum of k1 

and k2.  Both equations may be written as a single equation 

by employing vector-matrix notation. 

 

 

 

 

 
red red1 a a

red red2 c c

aa red red aa1

ca red red ca2

k km 0

k k0 m

k km 0

k k0 m

        
      

        

       
      

        









u u

u u

u u

u u

 (61) 

 

Writing the matrix of masses as [M], the matrix of stiffnesses 

as [K] and the column vectors of the acceleration and 

displacements at  = a in short form followed by taking the 

Laplace transform and rearranging leads to the following 

result.  

  

       
     

      

a a
1

2

a a

s M M

s s M K 1
M K

s


  
 

      
 





u u

u
u u

 (62) 

 

On the right side of the equality in (62), the first term is the 

transfer function H(s) while the second term (within the 

second parenthetical) is the forcing function secondary to the 

initial conditions.  Substitution of the masses and reduced 

stiffnesses into the matrices of H(s) from (62) and expanding 

the result leads to the following. 

  
  

2

2 red red

2

red 1 red

2 2

red red 1 2

m s k k

k m s k
H s

s m s k m m

 
 

 


 
 (63) 

For this model, the impedances of the masses are 1/(sm1) and 

1/(sm2) and the impedances of the stiffnesses are s/k1 and 

s/k2.  The admittances of the masses are sm1 and sm2.  The 

admittance of the springs are k1/s and k2/s.  The product of 

the spring admittances is (k1k2)/s
2
.  The sum of the spring 

admittances is (k1 + k2)/s.  The reduced spring admittance is 

the product of the spring admittances divided by the sum of 

the spring admittances, which results in a value of kred/s.  

Substitution of these results into the transfer function of (57) 

results in the following. 

  
  

2

2 red red

2

red 1 red

2 2

red red 1 2

m s k k

k m s k
H s

s m s k m m

 
 

 


 
 (64) 

It is clear that (63) and (64) match exactly.  Expanding the 

initial conditions based forcing function from (62) leads to 

the following result. 

 

 

 

1 aa 1 aa 1 aa red aa ca

2 ca 2 ca 2 ca red ca aa

1 1
sm m m k

s s

1 1
sm m m k

s s

 
    

 
    
  

 

 

u u u u u

u u u u u

 (65) 

 

For (57), the initial conditions based forcing functions 

associated with the masses, by definition, are the following. 

 
1 aa 1 aa 1 aa

2 ca 2 ca 2 ca

1
sm m m

s

1
sm m m

s

 
  

 
  
  

 

 

u u u

u u u

 (66) 

 

Evaluation of the terms of the initial conditions based 

forcing functions associated with the stiffnesses leads to the 

following result. 

 
1 1a

aa ca2 1 red

ca aa2 11 2
2 2a

1
k

k k k1 s

k k 1k k s
k

s

 
      

    
      

  





u u

u u
 (67) 

 

The sum of (66) and (67) exactly reproduces the initial 

conditions based forcing function of (65). 

 

3.3 Damper-damper connection 

 

A model consisting of two linear deflection rate dependent 

dampers is clearly not an appropriate closure phase model.  

However, it does provide another crystalized developable 

model against which the general solution can be tested.  The 

underlying model development is presented in abbreviated 

form.  The equations of motion for this case are as follows. 

 
    

    

1 a 1 aa 1 1 1a

2 c 2 ca 2 2 2a

m m c

m m c

    

    

  

  

 

 

u u

u u
 (68) 

 

The balance of forces at the massless interface can be written 

as follows. 

      1 1 1a 2 2 2ac c            (69) 

 

Following the same derivation as with the previous 

instantiated case, the Laplace domain solution for the 

transfer function and initial conditions based forcing 

functions can be written as follows.  The Laplace domain 

displacement solution is the vector-matrix multiplication of 

the latter by the former. 

 

      

  

1
2

2 red red

2

red 1 redred red 1 2

H s s M s C

m s c c1

c m s cs sm c m m



  

 
 

   

 (70) 

 

Paper ID: SE23505200024 15 of 20 



International Journal of Scientific Engineering and Research (IJSER) 
ISSN (Online): 2347-3878 

Impact Factor (2020): 6.733 

Volume 11 Issue 5, May 2023 

www.ijser.in 
Licensed Under Creative Commons Attribution CC BY 

 

 
 

 

 
 

 

aa ca1

aa aa aa 1 red 1

aa ca

ca aa1

ca ca ca 2 red 1

ca aa

s s m c
s

s s m c
s









   
    

   
 

   
         

 
 

 
 

u u
u u u

u u

u u
u u u

u u

 (71) 

 

In (70) and (71) the term cred is the product of the damping 

coefficients divided by their sum.  Turning to the general 

form of (57), we first consider the transfer function.  The 

mass admittances, as before, are sm1 and sm2.  The 

impedances of the damping elements are 1/c1 and 1/c2 with 

corresponding admittances of c1 and c2.  The product of the 

damper admittances is c1c2 and the sum of the same is c1 + 

c2.  Substitution of these values into the transfer function 

portion of (57) followed by algebraic reorganization leads to 

the following solution. 

 

 

  
2 red red

2

red 1 redred red 1 2

H s

m s c c1

c m s cs sm c m m



 
 

   

 (72) 

 

The solution shown in (72) exactly matches the solution 

shown in (70).  For the initial conditions, (66) again provides 

the components that are associated with each mass.  The 

terms associated with the dampers evaluates in the following 

manner. 

 

   

   

1 1a 1 1a
2 1

2 11 2
2 2a 2 2a

1

aa ca aa ca

red 1

ca aa ca aa

1
c c

c c1 s

c c 1c c
c c

s

s
c

s





 
    

  
      

  

   
 

   





 

 

 

 

u u u u

u u u u

 (73) 

 

In (73), the first term to the right of the equality is simply 

cred.  The sum of (66) and (73) exactly match the expected 

result given by (71). 

 

3.4 Spring-damper connection 

 

This model, again, is clearly not appropriate for a closure 

phase model but does provide yet another scenario by which 

the general solution of (57) can be compared with a solution 

derived by other means.  For this model, we arbitrarily 

assign the linear spring element to the first mass and the 

linear damper element to the second element.  The 

underlying model development is again presented in 

abbreviated form.  The equations of motion for this case are 

as follows. 

 
    

    
1 a 1 aa 1 1 1a

2 c 2 ca 2 2 2a

m m k

m m c

    

    

 

  

 

 

u u

u u
 (74) 

 

The balance of forces at the massless interface can be written 

as follows. 

      1 1 1a 2 2 2ak c          (75) 

 

Unlike the previous two cases in which the massless 

interface kinematics could be eliminated in the time domain, 

the continuity condition for this case, given by (75), contains 

both the displacement and velocity of the interface.  The 

process of solving for the interface kinematics requires first 

substituting the relative nodal displacements for the 

deflections and the relative nodal velocities for the deflection 

rates, taking the Laplace transform and solving for the 

Laplace domain displacement ub(s).  This solution is then 

substituted into the Laplace transform of the two equations 

under (74) followed by solving as before.  The transfer 

function for this case is the following.  

 

 

  

2

2 2 1 2 2 1 2 1

2

2 1 2 1 1 1 2 1

2 2

2 red 1 red 2 1 1 2

H s

c m s k m s c k c k

c k c m s k m s c k

s c m s k m s c k m m



  
 

  

  

 (76) 

 

The Laplace domain solution for the initial conditions based 

forcing function is the following. 

 

         

 

 

1

a a a

1

1a 2a 2a2 1

1

1a 2a 2a2 1

M s s M

sc k

ssc k







  

   
 
    

 




  

  

u u u

 (77) 

 

For the general solution given by (57), the mass, damper and 

spring admittances are as before.  The product of the damper 

and spring admittances is (c2k1)/s.  The sum of the damper 

and spring admittances is (sc2 + k1)/s.  The reduced 

admittance of the damper and spring admittances is 

(c2k1)/(c2s + k1).  The matrix term of the transfer function 

shown in (57) evaluates to the following. 

 

2 1 2 1

2

2 1 2 1

2 1 2 1

1

2 1 2 1

c k c k
m s

c s k c s k

c k c k
m s

c s k c s k

 
  

 
 

 
  

 (78) 

 

The term in the denominator of (57), excluding the 

parenthetical 1/s term, evaluates to the following. 

 
 2 1 1 22

1 2

2 1

sc k m m
m m s

c s k





 (79) 

 

Dividing (78) by (79) and multiplying the resultant by 1/s 

exactly reproduces the transfer function of (76).  For the 

initial conditions, the terms associated with the mass are 

again given by (66).  This leaves the terms associated with 

the damper and the spring.  Substitution of the admittance 

terms into the second term of the parenthetical of (57) leads 

to the following result. 

 

 
 

 
 

1 1a
2 1

2 12 1
2 2a 2 2a

2 1 2 1

1a 2a 2a

2 1 2 1

2 1 2 1

1a 2a 2a

2 1 2 1

1
k

sc k1 s

sc k 1sc k
c c

s

c k c k

sc k s sc k

c k c k

sc k s sc k

 
   

  
      

  

 
    
 
 
   

   









 

  

  

 (80) 

The solution given by (80) exactly matches the term 

following the second addition operation in (77). 
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3.5 Parallel spring-damper in series connection 

 

This model, yet again, is inappropriate for the entirety of the 

closure phase but may provide utility when it comes to the 

evaluation of the separation phase.  Regardless, the model is 

again presented in a general format as per the initial values, 

so that it can be utilized for any portion of either phase.  The 

equations of motion for this model are given by the 

following. 

 

    
  

    
  

1 a 1 aa 1 1 1a

1 1 1a

2 c 2 ca 2 2 2a

2 2 2a

m m c

k

m m c

k

    

  

    

  

  

  

 

 

 

 

u u

u u
 (81) 

The balance of forces at the massless interface is the 

following. 

 
     

     

1 1 1a 1 1 1a

2 2 2a 2 2 2a

c k

c k

     

    

 

 

   

   
 (82) 

 

The displacement and velocity terms associated with the 

massless node are once again eliminated by first writing the 

deflections and their rates, in (81) and (82), in terms of the 

displacements and their rates, taking the Laplace transform 

of the resultants, solving for ub(s) from the rewritten and 

transformed version of (82), and substituting the results in 

the two rewritten and transformed versions of the equations 

under (81).  To simplify the presentation the term  is 

defined as follows.  This definition should not be confused 

with any other usage of the symbol. 

 
  1 1 2 2sc k sc k

s c k

 
 

 
 (83) 

 

The resultant transfer function is the following. 

  
  

2

2

2

1

2 2

red 1 2

s m

s m
H s

s m s m m

   
 

  


 
 (84) 

 

The Laplace domain solution for the initial conditions based 

forcing function is the following. 
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 (85) 

 

For the general solution given by (57), the admittances are as 

before.  The admittance of each spring and damper in 

parallel is (sc + k)/s, where c and k carry the appropriate 

subscripts.  The product of these admittances is (sc1 + k1)(sc2 

+ k2)/s
2
.  The sum of these admittances is (s(c1 + c2) + (k1 + 

k2))/s.  The reduced admittance is (sc1 + k1)(sc2 + k2)/(s(s(c1 

+ c2) + (k1 + k2))), which is equal to /s.  Substitution of this 

result along with the mass admittances and the 1/s term into 

the transfer function of (57) exactly reproduces the transfer 

function of (84).  The component of the forcing function due 

to the initial conditions placed upon the masses is again 

given by (66).  The component due to the initial conditions 

placed upon the springs and dampers, again using (57), is the 

following. 
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2 2 1 1 Z
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         

F

F
 (86) 

 

Where the following are the evaluated Laplace domain 

components of the forcing function vector. 
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F
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 (87) 

 

The substitution of (87) into (86)followed by the addition of 

(66) results in the exact same solution given by (85). 

 

4. Discussion 
 

The subject presentation of lumped parameter modeling, for 

use in the modeling of mechanical translational systems, 

differs slightly, in certain aspects, from what one may 

consider a typical presentation within contexts such as 

vibration analysis.  The characterization of the differences as 

being slight derives from the fact that the differences are 

contextual rather than substantive.  The first difference is the 

consideration of non-zero valued initial acceleration for the 

system masses.  This is readily evidenced in the subject work 

by the first term to the right of the equality in (11).  The 

second difference is the development of a consistent 

formulation which allows for the determination of the 

differential equations of motion at any point in time during 

the system response.  This is most concretely manifested by 

the treatment of the response, within the subject translational 

collision context, as being separable into a closure and 

separation phase.  Clearly, such a formulation requires the 

inclusion of the first development as well as the inclusion of 

terms associated with the deflection and deflection rate.  The 

approach taken in the formulation also allows for a change of 

model configuration as well as a change of model parameter 

values, both of which are generally not employed nor 

relevant in a typical presentation. 

 

The four examples considered in the subject work were 

simple examples.  The intention behind using simple 

examples was not one of limiting problem complexity but 

rather for the purpose of having readily developable models 

from which the solutions could be compared to the solutions 

generated by the methodology used in the subject work.  

Each of the four models considered were first developed by 

solving the force balance constraint equation, in the 

appropriate domain, for the relevant kinematic parameter 

associated with the massless collision interface and then 

substituting that solution into the two equations of motion.  

This was done in the time domain for the spring-spring and 

damper-damper cases.  For the other two cases, the unilateral 
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Laplace transform was applied first, in order to change the 

time domain problem, which contained both displacement 

and its time derivative, to one that was reduced to the 

Laplace domain displacement.  The procedural approach of 

converting all equations from the time domain to the Laplace 

domain prior to eliminating the common collision interface 

associated kinematic variable(s) from the equations of 

motion could readily have been used for all four cases.  

Another point that is worthy of note is that the four cases, 

after elimination of the intermediate kinematic variables, 

were solved, using vector-matrix relationships, and with the 

matrices being 2 x 2 and vectors being 2 x 1.  In all cases, 

one could have readily skipped the substitution step and 

solved the three equations for each case using 3 x 3 matrices 

and 3 x 1 vectors.  In such a case, the Laplace domain vector 

of displacements would be the column vector {ua(s), ub(s), 

uc(s)}.  This approach was not used due to the fact that the 

resultant transfer function would have been 3 x 3 and 

because the form of the forcing function vector would have 

differed. 

 

One aspect that may not readily be appreciated unless one 

goes through the derivational process is the time involved 

with deriving the equations starting with the equations of 

motion and the constraint equation.  This is especially the 

case when the constraint equation is used to solve for the 

massless node kinematics, first, followed by substitution into 

the equations of motion.  The use of symbolic mathematics 

software does provide for a substantive increase in speed 

when compared to a manual derivation but may require 

additional processing and time for reducing the form of the 

resultants.   

 

The use of the impedance analogy or admittance analogy, 

coupled with the appropriate relationships for parallel and 

series connections, increases the rapidity at which one may 

develop the Laplace domain transfer function for the 

underlying system. The force-current analogy was employed, 

in the subject work, to allow for the use of line graphs, which 

can readily be generated for mapping the system connectivity 

in terms of nodal velocities and force flows. The line graphs 

require a presumption of the direction of the nodal velocity 

drops, however, the specific direction chosen is immaterial 

to the degree that consistency is retained.  In this regard, the 

requirement is no different than the consistency required 

with a free body diagram after defining a sign convention.  It 

should be noted again, that the relationships for the force-

voltage analogy differ from the force-current analogy and 

care should be taken to establish the analogy being used 

when considering any given source.   

 

The primary contribution, to the literature, of the subject 

work, extends beyond the development of a method for 

calculating the transfer function. Rather, it is the 

development of a method for the contemporaneous 

determination of both the transfer function and the form of 

the forcing function vector due to the initial conditions 

present.  For the force-current analogy, which differs from 

the force-voltage analogy [12], the initial conditions for each 

passive element in the system can be represented by a force 

generator in parallel with the element. For each mass 

element, the force generator that represents the initial 

conditions must have one branch connected to the inertial 

node and with the other branch connected to the same node 

as the mass element.  The most general form of the Laplace 

domain expressed forcing function of the j
th

 mass, connected 

to the p
th

 node (the non-reference node), referenced to time  

= a, is given by the following.  

    
j

1

m a j pa pa paF s m s s j, p    u u u  (88) 

 

Clearly, in (88), one may readily assign a zero valuation, as 

appropriate, to any of the kinematic terms.  Net unbalanced 

externally applied forces, for which a Laplace transform can 

be defined, acting on a given mass, can also be applied as 

force generators that are in parallel with the mass.  For the 

linear spring and linear damper elements, we again note that 

the initial conditions can be represented by a force generator 

that is in parallel with the underlying element.  When the 

underlying elements do not have at least one branch 

connected to a mass associated system node, the admittances 

of the elements can be combined, using the parallel and 

series relationships for the force-current analogy.  Care must 

be taken when considering multiple force sources along a 

single branch due to the fact that the force, analogous to 

current here, cannot have multiple values within a single 

branch.  Force sources, in parallel, on the other hand, are 

additive for the subject analogy.   

 

When a branch, containing either a linear spring or damper, 

is connected to a mass associated node and a massless 

interface node (e.g. Figure 6), the direction of the associated 

force course for the initial conditions is directed from the 

massless interface node and towards the mass associated 

node.  This finding is dependent upon the sign convention 

used in this work in regards to the deflection and deflection 

rates and as a result upon the sign convention used in the line 

diagrams. This sign convention, described using terminology 

that is more befitting of common parlance rather than 

technical succinctness, is one of left to right.  As an example, 

the deflection 1() was defined as ua() – ub().  The former 

is to the left of the latter as shown in Figure 4.  This is then 

manifested as the corresponding velocity drop va(s) – vb(s) 

as shown in Figure 6.  This finding is also manifested in the 

derivation of (57), which was the crowning finding of the 

subject work.  If one considers the branch between nodes p 

(left) and q (right), where one node is mass associated and 

the other is not, the Laplace domain forcing function 

associated with a linear spring (with a stiffness of kpq for  ≥ 

a and with an initial deflection of pqa at  = a) is given by 

the following. 

 

   1

Z pq pqas s k  F  (89) 

 

The sign in (89) is based upon the aforementioned sign 

convention.  Similarly, for a linear damper, the Laplace 

domain forcing function is given by the following. 

 

    1

Z pq pqa pq pqas s c c   F  (90) 

 

A benefit of this approach is that the forms of (89) and (90) 

are consistent with the forms of the Laplace transform of the 

initial conditions corresponding to the linear spring and 
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linear damper, respectively.  Equation (57) can readily 

produce the correct result for combined impedances, as 

shown by the fourth case that was developed above.  Two 

caveats, specific to this point, however, are extremely 

relevant.  The first is that the system architecture must 

consist of only two degrees of freedom, arranged as shown 

above, and must include a single massless, series, interface.  

As noted previously, (57) can readily be used with any 

combination of linear springs and dampers that connect a 

mass valued node to the massless interface node (by 

reduction to an effective admittance coupled with the 

appropriate single forcing function). The addition of 

additional mass valued nodes to the system would clearly 

change the form of (57). 

 

The mention of the inclusion of additional mass associated 

nodes (i.e. additional degrees of freedoms) serves as an 

excellent segue for the discussion regarding the limitations 

of the subject approach and potential considerations for 

future developments.  The inclusion of additional system 

mass associated nodes would clearly require the inclusion of 

a number of equations equal to the number of mass 

associated nodes added and a rewriting of the extant 

equations to the extent that each, individually, is impacted by 

the additional nodes.  This holds for the subject admittance 

analogy approach as well as for the approaches based upon 

the Laplace transform of the coupled differential equations 

of motion.  For a given topology of mass associated nodes, 

however, one may readily derive a generalized solution, 

based upon effective admittance, rather than having to derive 

the response for each specific case, based upon the 

arrangement of linear spring and damper elements, as one 

must do when working with the transformed equations of 

motion.   

 

Both approaches do share a pair of limitations, equally 

applicable, due to their closed-form analytic nature.  The 

first is that the models are uniaxial.  The second is that both 

modelling approaches exhibit a degree of difficulty, in 

regards to implementation, as model complexity increases.  

A large portion of this derives from the fact that the 

underlying equations are formulated to allow for 

differentially valued model parameters based upon whether 

or not the loading, at any given time, for any given modeled 

load path, is compressive or tensile with respect to the 

dynamic reference state of the modeled load path (i.e. the 

deflection rate at  = a).  

 

For the simple two mass problem considered in this work, if 

the collision is modeled using two phases (closure and 

separation), the dynamic reference state of the three nodes 

need only be known at the start of the closure phase and at 

the terminus of the closure phase (i.e. the start of the 

separation phase) to fully cover the necessary reference state 

values for modeling the entire collision.   

 

A slightly more complex model is that of a three mass 

uniaxial collision model for the case of a frontal, inline, full-

width engagement, impact between a test vehicle and a 

FRMB.  The three masses, for such a case, consist of a 

modeled engine mass, a modeled front wheels and 

suspension mass and a modelled mass for the remaining 

aspects of the test vehicle.  This modeling approach derives 

from the fact that these aspects of any given test vehicle are 

instrumented with accelerometer blocks that have one 

sensing axis oriented along the longitudinal axis of the test 

vehicle, in its reference state.   

 

For a fully connected model, there would be a total of six 

pathways that must be considered.  Three of these are 

connections between the masses and the other three are from 

the connection of each mass to the barrier (treated as a fixed 

constraint).  For such a case one may readily define closure 

and separation based upon the dynamic center of mass 

response, but each modeled load path can readily undergo 

multiple transitions from one state to the other.  The 

implementation issue is eased with the used of an 

appropriate, approximate, numerical methods based 

approach, but the trade-off is the loss of a closed-form 

solution.  A third limitation, within the same vein, is that the 

closed form analytic method is limited to formulations and 

functions for which the Laplace transform are determinable.   

 

With these limitations in mind, one can still posit the view 

that there exist additional developments that can be made 

and with the subject work serving as a foundation.  The first 

is the development of the framework, resulting in 

relationships corresponding to (57), for other commonly 

used model configurations.  The second is the extension of 

the model for planar collision analysis.  Finally, the third is 

the consideration of other force-deflection and force-

deflection rate relationships beyond the linear case. 
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