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Abstract: Unmanned Aerial Vehicle (UAV) inspection has replaced most manual tasks to perform transmission line image capture. 

However, analyzing these images still relies heavily on manual labor, which is time-consuming and prone to errors. Defect bolts detection 

is an important part of transmission line inspection, but due to the small size of bolts and the difficulty in defects identifying, automated 

transmission line inspection faces challenges. Therefore, we propose a deep neural network called FG R-CNN (Fine Grained R-CNN) to 

detect defective bolts in transmission lines. First, to distinguish the bolts that are highly similar between classifications, we introduce the 

convolutional binary tree branch to carry out fine-grained recognition of RoI features. Secondly, we introduce classification consistency 

loss to constrain the differences between multiple classifiers of the tree structure to promote mutual feature learning. Finally, we add the 

feature pyramid network (FPN) to enable our network more suitable for small bolts detection. Our experimental results on a transmission 

line inspection image dataset show that our model has a 6.98% higher bolts AP and a 12.02% higher defect bolts AP than the commonly 

used object detection network Faster R-CNN. 

Keywords: detective bolts detection, fine-grained recognition, mutual learning, Faster R-CNN.  

 

1. Introduction 

In recent years, more and more unmanned aerial vehicles 

(UAVs) have been used domestically and internationally to 

replace manual inspection of transmission lines, effectively 

reducing labor costs and work hazards, and improving the 

efficiency and accuracy of inspection results[1]. As a result of 

the high volume and low value density of aerial images 

obtained during inspections, relevant working personnel are 

faced with a significant data amount. This can lead to 

subjective experience and fatigue affecting their ability to 

maintain consistent judgment standards, resulting in more 

errors and potential safety hazards[2]. However, massive data 

is not difficult for deep learning methods and can make the 

model more robust. Therefore, using appropriate deep 

learning algorithms and computer technology to handle 

defects detect tasks of inspection can help overcome the 

shortcomings of manual drone inspection. Among the various 

challenges in transmission line defect detection, detecting 

defective bolts has emerged as a crucial issue. The small scale 

of the objects and the difficulty in distinguishing defects pose 

significant challenges in this area. The goal of this task is to 

accurately detect the position of each bolt from the inspection 

image of the transmission line and classify it as a defective 

bolt. For a more intuitive display, Figure 1 depicts the result 

of bolts detection, with green bounding boxes representing 

normal bolts and red ones indicating defective bolts. 

 

 
Figure 1: Bolts detection result of an inspection image 

Researchers have proposed many methods and systems for 

identifying and detecting transmission lines and components 

they contain. Among them, early research mainly relied on 

traditional image processing and machine learning methods 

for feature extraction of inspection images. The extracted 

features mainly include LBP features, HOG features, and 

Canny operators. Yao et al. [3] applied SVM to classify 

transmission lines by extracting LBP features of transmission 

lines and backgrounds to calculate changes in local grayscale 

values. And locate the transmission line using the image edge 

features extracted by the Canny operator. Mao et al.[4] 

obtained the morphological gradient information of 

transmission lines by extracting HOG features, and used PAC 

dimensionality reduction to select features with different 

contributions for transmission line classification. Due to the 

limitations of the designed feature extractors, these traditional 

methods can only extract low-level features such as color 

changes and edge information, making it difficult to fully 

consider the factors of accurate classification and object 

localization. When complex backgrounds and other situations 

arise, the model is prone to failure. In addition, these methods 

are only suitable for large objects with obvious features such 

as transmission lines, while their recognition ability for small 

objects such as bolts is limited. 

 

In recent years, methods based on deep convolutional neural 

networks have achieved outstanding results in the fields of 

machine vision and computer vision. Compared with 

traditional machine learning methods, object detection 

methods based on deep learning do not require a single 

manually designed feature extractor, but instead automatically 

learn and extract task related features through deep neural 

networks, resulting in higher detection accuracy and stronger 

generalization performance. Therefore, researchers are 

gradually applying deep learning methods in transmission line 

inspection scenarios. Regarding the detection of bolt defects 

in transmission lines, relevant personnel have found in their 

research that the main reason for affecting the accuracy of bolt 
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recognition is the representation of features related to 

classification and positioning tasks. At this point, the deep 

features of deep convolutional neural networks can lead to a 

decrease in the distinguishability between bolts and other 

objects in the background region[5]. Therefore, better object 

feature learning has become one of the research focuses of 

bolts defect detection. Xiao et al.[6] used a small-scale 

convolutional neural network to obtain regions of interest (RoI) 

in images and automatically selected features that 

significantly contributed to better bolt recognition to construct 

a cascade feature pyramid, achieving feature enhancement for 

bolt recognition. Zhao et al.[7] found that the shooting angle 

affects the extraction of bolt shape features. Therefore, they 

proposed an unsupervised clustering method based on bolt 

shape, which introduces morphological prior information into 

the network to enhance feature representation. Jiao et al.[8] 

considered that the position of the bolts on the tower has a 

certain pattern, so they integrated the characteristics of the 

bolts and the context of the surrounding background to 

increase the differentiation between the bolts and the bolts in 

the background. Although the transmission line defective 

bolts detection methods based on deep learning have achieved 

higher accuracy than traditional ones, the feature selection and 

fusion are greatly affected by hyperparameter, and the feature 

construction method lacks robustness. Therefore, the actual 

application effect still needs to be improved. 

 

To obtain a more effective feature representation for bolts 

recognition, we propose an improved method for detecting 

defective bolts, called FG R-CNN. This method aims to solve 

the problem of fine-grained identification within the defect 

bolts class. Based on the universal object detection network 

Faster R-CNN[9], we perform fine-grained recognition of RoI 

features and introduce mutual learning constraints to ensure 

consistency in multi-classifier feature learning. In addition, 

the introduction of feature pyramids enables the network to 

extract multi-scale features, making it more suitable for small 

object detection. The experimental results show that our 

method has better recognition performance in detecting 

transmission line defect bolts compared to several object 

detection models. 

2. Materials and Methods 

2.1 Network Framework 

Our model FG R-CNN is improved based on the universal 

object detection network Faster R-CNN, of which the model 

architecture is shown in Figure 2. It consists of four parts: the 

backbone network ResNet-50[10] and the connected feature 

pyramid (FPN[11]), the region proposal network (RPN), the 

convolutional binary tree branch for object classification and 

the bounding box regression branch for object location. From 

the perspective of the network processes, firstly, Due to the 

small size of bolts in the image, we added the feature pyramid 

network after the backbone to fuse multi-scale features. This 

allows the network to integrate shallow features such as 

texture and edges with deep features, thereby improving the 

representation of small objects features of bolts. Secondly, the 

network extracts regional proposals from multi-scale features 

through RPN. We modified the original RoI pooling method 

in Faster R-CNN and replaced it with RoI Align[12]. RoI 

Align extracts more accurate image features using bilinear 

interpolation technology, which is vital for precise bounding 

box regression of small objects. Thirdly, we introduce the 

convolutional binary tree branch to optimize the object 

classification of RoI features and achieve fine grained 

recognition within the class. Finally, since the final prediction 

of the convolutional binary tree is the weighted voting of the 

leaves as sub-classifiers, we apply the mutual learning 

strategy to constrain the prediction differences of multiple 

sub-classifiers. Based on the optimization improvement of the 

tree structure, by introducing the classification consistency 

loss, the leaves learn from each other during training, reducing 

the phenomenon of prediction confrontation and further 

improving recognition precision of our model.  

 

 
Figure 2: The network framework of FG R-CNN 

 

 

Paper ID: SE23513182557 58 of 63 

file:///C:/Users/yujim/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/


International Journal of Scientific Engineering and Research (IJSER) 
ISSN (Online): 2347-3878 

Impact Factor (2022): 7.741 

Volume 11 Issue 5, May 2023 

www.ijser.in 

Licensed Under Creative Commons Attribution CC BY 

2.2 Fine-grained RoI Feature Learning 

Transmission lines have different types and usages of bolts, 

some of which are used to support wires and some are used to 

connect insulators. In addition, different types of bolts may be 

damaged differently, such as the bolts that support the wires 

being more susceptible to corrosion and oxidation due to the 

influence of static electricity, and the bolts that connect the 

insulators being more susceptible to tension and torque due to 

greater stress. Therefore, defective bolts have various forms, 

with the main classification shown in Figure 3. Figures (a-d) 

represent the defects of single nut bolts, including missing 

cotter bolt (Figure 3a), corroded bolt (Figure 3b), deformed 

cotter bolt (Figure 2c), and loose cotter bolt (Figure 3d). The 

defects of the double nut bolt in sub image e-h include missing 

cotter bolt (Figure 3e), corroded bolt (Figure 3f), bolt with 

loose nut (Figure 3g), and bolt with missing nut (Figure 3h). 

Although these defective bolts are classified into the same 

class during inspection, there are significant differences in 

appearance and semantics between these defects. Therefore, 

we propose a defective bolts detection method based on fine-

grained RoI feature learning technology, which can allow the 

network to learn different subcategories of defect bolts on its 

own without predicting subcategories. There are significant 

differences in the appearance and semantics of defective bolts, 

but the two-layer fully connected layer and Softmax classifier 

of initial Faster R-CNN simply fitted these different defective 

samples into the same class, resulting in blurry boundaries for 

determining whether the object is a defective bolt. The method 

based on fine-grained RoI feature learning can learn the subtle 

differences between different types of defective bolts. We 

introduced sub-classifiers for fine-grained classification, 

which can better obtain feature representations of different 

defect types in network learning, thereby improving the 

accuracy and robustness of detection. 

 

 
 

  

 

 

(a) (b) (c) (d) 

    

(e) (f) (g) (h) 

Figure 3: Different forms of defective bolts 

 

Similar to the problem of fine-grained feature learning in 

defective bolts detection, fine-grained image classification 

and recognition focus on distinguishing subtle differences 

between different subcategories of a certain type of research 

object. Recently, related researchers have applied attention 

mechanisms to the recognition of fine-grained objects in 

unstructured areas of images[13][14]. Inspired by Ji et al. [15], 

we separated the classification and regression branch of Faster 

R-CNN, and implemented object classification by replacing 

the original full connection layer with a convolutional binary 

tree, as shown as in Figure 4.  

 

 
Figure 4: Structure of attention binary tree of FG R-CNN 

 

In our network, the convolutional binary tree structure is 

generally the same as that proposed by Ji et al., but considering 

our task different from image classification, the size of RoI 

features is smaller than that of the whole image in fine-grained 

classification. To address the issue of increased feature 

channel numbers due to the feature fusion operation of the 

feature pyramid network, we made some modifications to the 

attention module of the attention transformer in the original 

convolutional binary tree structure. More specifically, we 

removed the fully connected bypass that caused redundant 

computing and replaced it with the SE-Node, which extracts 

channel attention to establish channel information interaction 

of multi-scale features. Figure 5 shows all the modules in the 

tree structure. 

 

 
Figure 5: Different modules of convolution binary tree, 

including Branch Routing Module, SE-Node and Leaf Node. 

 

Among them, the branch routing module determines the 

weighted calculation path of the class confidence from root to 

leaf. Different nodes in the same layer share a common parent 

or ancestor node, but with different classification features. 

This enables our model to gain the feature learning ability 

from coarse to fine. The final prediction is calculated by taking 

the weighted mean of the confidence scores of all leaves, 

resulting in a maximum vote to determine the final predicted 

class. As is shown in Figure 6, the extraction of RoI feature 

channel attention by SE-Node is divided into two steps. The 

first step is the compression operation, which compresses the 

features of each channel into a numerical value representing 

the importance of each channel through global average 

pooling. The second step is the excitation operation, which 
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converts the compressed value into a channel weight 

coefficient vector through a fully connected layer, and applies 

this vector to each channel of the original feature[16]. That is, 

by channel weighting, the network pays more attention to 

important channels and suppresses unimportant channels. 

 

 
Figure 6: Squeeze and excitation of SE-Node 

 

In the tree structure, the weight of the 𝑖-th leaf node or branch 

routing module of the ℎ-th layer is calculated using Equation 

1: 

𝑟𝑖
ℎ(𝑥) = {

𝑟𝑖
2

ℎ−1(𝑥) ∙ 𝑤𝑖
ℎ−1                   2|𝑖, ℎ ≠ 1   

1                                              ℎ = 1      
𝑟(𝑖+1) 2⁄

ℎ−1 (𝑥) ∙ (1 − 𝑤𝑖
ℎ−1)     𝑜𝑡ℎ𝑒𝑟𝑠      

(1) 

We define 𝑝𝑖(𝑥) the prediction of the 𝑖-th leaf node of RoI 𝑥. 

ℎ is the depth of the convolutional binary tree, of which we 

find 3 is the best value. 𝑟𝑖
ℎ(𝑥) is the cumulative weight of the 

RoI 𝑥 from the root of the tree structure to the 𝑖-th node on the 

ℎ-th layer. 𝑤𝑖
ℎ−1(𝑥) is the weight passed from the node to its 

right child. The final prediction is the weighted mean of all 

leaves’ predictions on confidence, as shown in Equation 2: 

𝑝(𝑥) = ∑ 𝑝𝑖 (𝑥)𝑟𝑖
ℎ(𝑥)

2ℎ−1

𝑖=1
(2) 

Equation 3 shows the classification loss which is the weighted 

sum of the final predicted classification loss and classification 

losses of all leaves: 

𝐿𝑐𝑙𝑠(𝑥) = 𝐿𝑓𝑖𝑛𝑎𝑙(𝑥) + 𝜆𝐿𝑙𝑒𝑎𝑣𝑒𝑠(𝑥) (3) 

We found that the optimal value of 𝜆 is 0.4. Among them, the 

classification losses of final prediction and all leaves are 

negative logarithmic likelihood losses, as shown in Equation 

4 and Equation 5: 

𝐿𝑓𝑖𝑛𝑎𝑙(𝑥) = − ∑ log 𝑝(𝑥𝑛)

𝑁𝐶

𝑛=1

(4) 

𝐿𝑙𝑒𝑎𝑣𝑒𝑠(𝑥) = − ∑ ∑ log 𝑝𝑖 (𝑥𝑛)

𝑁𝐶

𝑛=1

𝑁𝐿

𝑖=1

(5) 

In the equations above, 𝑁𝐶  is the number of all classes 

including background. 𝑁𝐿 is the number of all leaves, which 

is 4 in our best model. 𝑝(𝑥𝑛) represents the confidence of the 

𝑛-th class in the network’s final prediction of RoI 𝑥. While 

𝑝𝑖 (𝑥𝑛)  is the confidence on the 𝑛 -th class of 𝑝(𝑥𝑛) . 

Convolutional binary tree branch decides the final prediction 

by max voting the results of multiple classifiers of leaves. 

2.3 Mutual Learning of Classification Consistency 

Convolutional binary tree branch in FG R-CNN introduces 

multiple sub-classifiers through leaves to carry out fine-

grained RoI feature learning. In the process of network 

optimization, the prediction of classifiers will gradually 

become different. More specifically, if a particular sub-

classifier, denoted as C, achieves higher accuracy in 

predicting certain classes compared to other classifiers that 

have lower accuracy for those classes, the final classification 

results may not be accurately guided by C due to the sum of 

weights of the other sub-classifiers being greater than the 

weight of C. Hence, in the training process of sub-classifiers, 

it is essential not only to enhance their individual 

classification performance but also to facilitate other sub-

classifiers' learning[17]. This view is known as mutual 

learning in the field of machine learning. Inspired by semi 

supervised deep learning, we introduced KL divergence and 

designed classification consistency loss to promote mutual 

learning among sub-classifiers. KL divergence is a concept in 

information theory used to measure the distance or difference 

between two probability distributions. The definition of KL 

divergence is as follows: 

 

Assuming P and Q are two probability distribution functions, 

where P represents the true distribution and Q represents the 

model distribution, then the KL divergence of P relative to Q 

is shown in Equation 6: 

𝐷𝐾𝐿(𝑃||𝑄) = ∑ 𝑃(𝑖) log
𝑃(𝑖)

𝑄(𝑖)𝑖
(6) 

When KL divergence is used as a measure of similarity 

between classifiers, it can measure the similarity and 

difference between classifiers, making the interaction between 

classifiers more targeted and efficient. Consequently, we 

proposed a classification consistency loss, denoted as 𝐿𝑐𝑐 , 

based on KL divergence, to evaluate the consistency of 

predictions made by each leaf with other leaves., as shown in 

Figure 7 and Equation 7: 

 

 

Figure 7: KL divergence between 1-th leaf and others 

 

𝐿𝑐𝑐(𝑥) = ∑ ∑ 𝑝𝑖
−(𝑥𝑛) log

𝑝𝑖
−(𝑥𝑛)

𝑝𝑖 (𝑥𝑛)

𝑁𝐶

𝑛=1

𝑁𝐿

𝑖=1

(7) 

In the equation above, 𝑝𝑖
−(𝑥)  is the mean of the leaves’ 

predictions on RoI 𝑥 except for the 𝑖-th leaf. While 𝑝𝑖 (𝑥) is 

the prediction of the 𝑖 -th leaf on RoI 𝑥  while 𝑝𝑖
−(𝑥𝑛) 

represents the mean predicted on the 𝑛-th class by other leaves 

except for the i-th leaf, as shown in formula 8. During network 

training, the loss of classification consistency is added as an 

auxiliary loss term to perform end-to-end optimization in the 

multi task of FG R-CNN, as shown in Equation 9. Among 

them, 𝒘𝟐𝑳𝒅𝒆𝒕  represents the sum of losses in the original 

Faster R-CNN, except for object classification losses. As the 
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consistency loss is computed and summed up over multiple 

leaf nodes, it is crucial to ensure that there is no significant 

difference in the magnitudes. To achieve this, the loss weight 

parameters 𝑤1 and 𝑤2 are set to 0.5 and 1.0, respectively. 

𝑝𝑖
−(𝑥𝑛) = ∑

𝑝𝑗(𝑥𝑛)𝑟𝑗
ℎ(𝑥)

1 − 𝑟𝑖
ℎ(𝑥)

𝑁𝐿

𝑗=1,𝑗≠𝑖

(8) 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑐𝑙𝑠 + 𝑤1𝐿𝑐𝑐 + 𝒘𝟐𝑳𝒅𝒆𝒕 (9) 

3. Results and Discussion 

In order to evaluate the detection ability of FG R-CNN's defect 

bolts, we conducted a series of experiments using an image 

dataset containing bolts constructed from real transmission 

line inspection images captured by UAVs. 

3.1 Dataset and Evaluation Metrics 

Defective bolts are rusted bolts or bolts with loose or missing 

bolts. As far as we know, there is currently no publicly 

available image dataset suitable for the task of our study. 

Therefore, we use numerous typical images captured by 

UAVs to construct our own image dataset. Figure 8 shows one 

of the inspection images and zooms in on the area where the 

bolt is located. It can be seen that the proportion of bolts in the 

image is very small, so we cropped the original image when 

constructing the training set, which is conducive to faster 

network convergence. 

 

 
Figure 8: An annotated UAV image including defective bolts 

 

To train and test our model, each bolt in the original UAV 

image is manually annotated with bounding boxes and binary 

class labels. There are an indefinite number of bolts in each 

inspection image. The bolts are then classified into two kinds: 

normal bolts and defective bolts. Usually, a single bolt appears 

in images taken from multiple different perspectives. Among 

the 36307 images in the dataset, 64682 samples of normal 

bolts and 16632 samples correspond to defective bolts. The 

original size of images captured by UAVs is 5472×3678 

pixels. Due to limitations in graphics memory of our 

computing device, it is not possible to directly train our model 

using original images. Therefore, we cropped all the images 

to 1024×1024 pixels. Then we set the ratio of training set, 

validation set and testing set to 100:1:2.  

 

In object detection tasks, average precision (AP) and mean 

average precision (mAP) are two commonly used evaluation 

metrics. They were also applied in our study to measure 

accuracy of our model. The value of AP is the area under the 

precision-recall curve, where P and R represent precision and 

recall, respectively. Typically, a better classifier has a higher 

value of AP[18]. In our task, mAP is the mean AP value across 

two classes: normal bolts and defective bolts. 

3.2 Experiment Setups 

The experimental hardware platform utilized in our study is 

the NVIDIA GeForce GTX TITAN V GPU, equipped with 

12GB of graphics memory and operating on the Linux system 

Ubuntu 18.04. The deep learning framework PyTorch 1.12 is 

used for training, evaluating and testing of corresponding 

dataset. All models and experiments were implemented based 

on the MMDetection[19] object detection toolbox developed 

by SenseTime to ensure fairness in comparison. We used a 

unified set of hyperparameters for training in all experiments. 

The model optimizer was stochastic gradient descent with an 

initial learning rate of 0.0005, learning rate decay of 0.001 and 

momentum decay of 0.9. We used only the five-layer feature 

maps P2 to P6 output by FPN, excluding P6, with P2 to P5 

used for training. The batch size was set to 4, and the model 

was trained and tested on a single GPU for 16 epochs. The 

following two methods are used to prevent our model from 

overfitting while training: (1) Up-down and horizontal 

flipping of images. (2) Model initializing using pre-trained 

weights from the ImageNet[20] dataset. 

3.3 Results and Analysis 

Figure 9 presents the detection effect of an image of the test 

dataset, in which (a) is the result of baseline model Faster R-

CNN while (b) is that of our model. From the comparison of 

results, it can be seen that the model proposed in this article 

can significantly reduce the confusion between defective bolts 

and normal bolts. 

  
(a) (b) 

Figure 9: Comparison of detection effect between Faster R-

CNN and FG R-CNN 

 

To demonstrate the superiority of our model, we compared it 

with several advanced object detection models, including 

Faster R-CNN, PANet[21] and YOLOv4[22]. During the 

training period, all compared models are based on the same 

training set and validation set. In addition, we perform the 

same data augmentation for all models. Comparison was 

conducted in the same test set, on which the experiment results 

are shown in Table 1. As shown in Table 1, FG R-CNN 

outperformed the comparative model in all metrics, with an 

mAP of 85.77%, 6.98% higher than the baseline model Faster 

R-CNN and 3.68% higher than the suboptimal PANet. The 

defect bolts AP of Faster R-CNN is only 70.07%, while our 

model reaches 82.09%, a relative increase of 12 percentage 
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points, which proves that our proposed model significantly 

improves the accuracy of defective bolts detection and solves 

the problem of defect bolts detection in transmission line 

inspection through fine-grained recognition and mutual 

learning methods. 

Table 1: Comparison with other methods of object detection 

on mAP 

Methods Defective 

bolts (%) 

Normal 

bolts (%) 

mAP (%) 

Faster R-CNN 70.07 87.51 78.79 

PANet 74.84 89.35 82.09 

YOLOv4 58.81 86.92 72.56 

FG R-CNN 82.09 89.47 85.77 

 

For further analysis, we calculated the model precision and 

recall rate on the test set by class based on a confidence 

threshold of 0.5, as shown in Table 2. Precision is the ratio of 

true positive samples to the total samples predicted as positive 

by the model. It is used to measure the prediction accuracy of 

a classification model, as shown in Equation 10. Recall is the 

proportion of true positive samples that are correctly predicted 

as positive, as shown in Equation 11.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑ 𝑇𝑃𝑖

𝑛
𝑖

∑ (𝑇𝑃𝑖 + 𝐹𝑃𝑖)
𝑛
𝑖

(10) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑ 𝑇𝑃𝑖

𝑛
𝑖

∑ (𝑇𝑃𝑖 + 𝐹𝑁𝑖)
𝑛
𝑖

(11) 

Table 2: Comparison with the baseline model in practical 

applications (classification score>0.5) 

Methods Defective bolts Normal bolts 

Precision 

(%) 

Recall 

(%) 

Precision 

(%) 

Recall 

(%) 

Faster R-CNN 57.57 72.48 88.44 87.05 

FG R-CNN 

w/o 𝐿𝑐𝑐 

79.87 74.96 90.43 89.26 

FG R-CNN 80.10 76.14 93.05 89.91 

 

Compared with the baseline model Faster R-CNN, the 

precision of FG R-CNN defect bolts detection reaches 80.1%, 

and the normal bolts detection reaches 93.05%, which meets 

the requirements of practical applications. FG R-CNN also 

improved recall to a certain extent, with defective bolts 

reaching 76.14%, which can locate the vast majority of 

defective bolts. The method FG R-CNN w/o 𝐿𝑐𝑐 in Table 1 

stand for the model that only the convolutional binary tree 

structure is introduced to baseline while the classification 

consistency loss is not applied, which indicates that the model 

achieves a detection precision of nearly 80% for defect bolts 

without introducing mutual learning, but there is a certain gap 

in recall compared to the final model. This shows that mutual 

learning can significantly improve recall, which means a 

reduction in missed detections for bolts in RPN stage and 

misclassified as background class. This is more important for 

inspection tasks of transmission lines, as detection is more 

difficult than classification. However, it can be seen that even 

if only fine-grained recognition improvement is conducted, 

the bolts detection precision can be greatly improved, but 

compared with the final model, the AP of defective bolts is 

5.06% lower, which shows that the mutual learning of sub 

classifiers can improve the final detection precision, proving 

the effectiveness of mutual learning for the promotion of the 

tree structure. 

3.4 Further Discussion 

In this paper, we improve the representation of RoI features 

by introducing a convolutional binary tree structure to perform 

fine-grained RoI feature learning without any prior 

subcategory annotation. However, the spatial attention 

mechanism of the convolutional binary tree is limited to local 

RoI areas, which lacks global context information from the 

whole image. Although we integrated feature pyramids to the 

backbone to extract multi-scale features, the features are only 

fused on the channel and lacked spatial correlation, which 

makes it difficult for the network to recognize bolts with the 

help of the spatial structure and object semantics in the image 

and around the RoI. This is crucial for bolts detection, as bolts 

with similar RoI characteristics usually have different criteria 

for determining whether they are defective bolts due to their 

location on transmission lines. Therefore, we plan to integrate 

the spatial correlation information of the region proposal and 

other regions of the image into the fine-grained recognition 

network in the following work, so as to enable the network to 

obtain more comprehensive information from images during 

recognition of bolts. 

 

Moreover, there is still significant room for improvement 

regarding our proposed mutual learning strategy. Specifically, 

the final prediction confidence of the convolutional binary tree 

is the weighted mean of the sub-classifiers of leaves, we 

simply sum the loss terms of all leaves when calculating the 

classification consistency loss. Although this approach is 

effective enough, it may not be the optimal strategy. We think 

that by summing the loss term with different weights and 

treating these weights as parameters for network learning and 

testing, it may achieve better results. This approach has been 

effective in the field of semi-supervised learning, but it has not 

been explored extensively in the field of supervised learning, 

which suggests there is a lot of research space to investigate 

the method further. 

4. Conclusion 

This article concludes that the identification of defective bolts 

is not just a simple binary object detection problem through 

the study of the types of bolt defects. We propose a new bolts 

detection method based on deep learning, which takes the 

convolutional binary tree as the object classification branch, 

and carries out fine-grained recognition of the RoI features of 

bolts without fine classification of the bolt defects in advance. 

In addition, we introduce the classification consistency loss, 

so that the sub-classifiers of leaves can learn from each other 

during training, which further improves the classification 

accuracy. We conducted experiments on real transmission line 

inspection image datasets, and the experimental results 

showed that our model's multiple evaluation indicators were 

significantly better than the baseline model and higher than 

the optimal object detection model. This proves that our 

proposed model has certain application value in the field of 

intelligent inspection of transmission lines. 
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