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Abstract: Any programme or file that purposefully hurts a computer, network, or server is known as malware, or malicious software. 

These harmful programmes steal, encrypt, and destroy private information. To detect malware, antivirus software often relies on a 

signature-based approach. To transmit malware that infects devices and networks, malware developers employ a range of physical and 

virtual methods. On the other hand, the behavior-based approach makes use of suspicious files that are run in a controlled setting, 

observed, and classified as hazardous if their behaviors resemble known malware. Behavior-based analysis may be used to detect new 

malware and malware that use obfuscation techniques; however it is time-consuming and has a high false positive rate. The memory-

based approach is an option that is now gaining favor in malware detection due to the volume of data disclosed in the memory dump that 

may be used to investigate dangerous activities. Future malware is predicted to be more sophisticated. Attackers may utilize cutting-edge 

encryption or obfuscation technologies to render malware detection and analysis nearly difficult. Anti-virus programmes often detect 

malware by looking for well-known signatures. Unfortunately, a simple obfuscation technique may be used to readily avoid this method. 

Both static and dynamic assessments have significant drawbacks. As an alternative, malware may be thoroughly analyzed via memory 

analysis. Malware has a strong ability to conceal its code within the computer system. To finally carry out its operations, malware must, 

however, run its code in memory. This review paper analyses three different methodologies for malware analysis, namely, static, 

dynamic and memory analyses. 
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1. Introduction 
 

Software that is installed on a computer without the user's 

consent is known as malware. By interfering with 

computer operations, stealing data, or getting around 

access rules, it can cause damage to the computer system. 

Malware, sometimes known as harmful software, is 

posing an increasingly serious danger to the computing 

industry. The sheer volume of malware makes it hard for 

human engineers to tackle it. Therefore, malware 

detection systems are used by security researchers to find 

malware. Systems for detection go through two stages: 

analysis and detection. A signature-based technique is 

frequently used by antivirus software to detect malware.  

 

This method is quick and has a low risk of false positives 

for identifying known malware. However, malware that 

employs obfuscation techniques may readily circumvent 

signature-based detection, which fails to find 

undiscovered malware. The behavior-based technique, on 

the other hand, uses suspicious files to be performed in a 

controlled environment, watched, and labeled as harmful 

if their behaviors match those of recognised malware. 

Detecting unknown malware and malware that uses 

obfuscation techniques can be done with behavior-based 

analysis, but it takes a long time and has a high false 

positive rate. 

 

The abundance of data revealed in the memory dump that 

may be utilized to look into harmful activity makes the 

memory-based technique an alternative that is lately 

growing in popularity in malware detection. 

 

The majority of antiviral programmes on the market 

employ a signature-based strategy. This method uses a 

malware file that has been captured to extract a distinctive 

signature that may be used to identify other malware that 

is identical. A file hash or a series of bytes known as a 

signature can be used to recognise particular malware. 

Attackers may easily alter the malware signature to avoid 

being picked up by antivirus software, though. While 

signature-based malware detection is highly quick and 

efficient at catching known malware, it cannot catch 

recently released malware. The signature-based strategy 

for malware detection relies on applying static analysis to 

extract special byte sequences known as marks and 

demonstrates the general signature-based process.  

 

Anomaly or behavior-based detection are other names for 

heuristic-based detection. The actions taken by malware 

while it is running are examined in a training (learning) 

phase of this detection. On the basis of a pattern gleaned 

from the training test, the file is then classified as 

malicious or genuine during a testing (monitoring) phase. 

Heuristic-based methods frequently rely on data mining 

methods to comprehend how running files behave; 

examples of these methods are Support Vector Machine, 

Naive Bayes, Decision Tree, and Random Forest. 

 

2. Static Analysis 
 

Software static analysis is carried out without actually 

running the programme. Opcode sequences (obtained by 

disassembling the binary file), control flow graphs, and 

other information are a few examples of what we may 

learn via static analysis. These feature sets can be 

combined or used singly to identify malware. The authors 

introduced a malware detection method based on control 

flow graphs and static analysis. Their method, which 

focuses on identifying malware's obfuscation patterns, has 

a high degree of accuracy. Malware detection via static 

detection has made use of machine learning approaches. 

Based on collected opcode sequences, metamorphic 

malware is efficiently categorized using hidden markov 

models. Malware detection uses a similar technique using 

Profile Hidden Markov Models and Support Vector 
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Machines. For malware identification, some researchers 

have employed function call graph analysis, while others 

use an opcode-based similarity measure that uses 

straightforward substitution cryptanalysis methods. Both 

API call sequences and opcode sequences are used to 

assess if a section of code resembles any specific 

malware. Based on collected opcode sequences, 

metamorphic malware is efficiently categorized using 

hidden markov models. Malware detection uses a similar 

technique using Profile Hidden Markov Models and 

Support Vector Machines. For malware identification, 

some researchers have employed function call graph 

analysis, while others use an opcode-based similarity 

measure that uses straightforward substitution 

cryptanalysis methods. Both API call sequences and 

opcode sequences are used to assess if a section of code 

resembles any specific malware. With this method, 

Portable Executable files (PE files) are examined without 

being run. To avoid being analyzed, malware frequently 

utilizes binary packers like UPX and ASP Pack Shell. 

Before being analyzed, a PE file has to be unpacked and 

decompressed. A disassembler programme, like IDA Pro 

or OlleyDbg, which shows assembly instructions, 

provides details about the virus, and extracts patterns to 

pinpoint the attacker, may be used to decompile a 

windows executable file. 

 

The detection pattern may be determined using static 

analysis techniques including Windows API calls, text 

signatures, control flow graphs (CFG), opcode (operation 

codes) frequency, and byte sequence n-grams. Windows 

API (short for Application Programming Interface) calls 

are used by almost all programmes to interact with the 

operating system. For instance, the Windows API 

"OpenFileW" in "Kernel32. dll" creates new files or opens 

existing ones. As a result, API calls provide information 

about how programmes behave and may be used to 

identify malware. 

 

For instance, the Windows API calls 

"WriteProcessMemory,” "LoadLibrary" and 

"CreateRemoteThread" are suspected of being utilized by 

malware to inject DLLs into processes, while infrequently 

occurring as a valid set. In the section on memory 

analysis, DLL injection is covered. Strings are a reliable 

sign of malevolent activity. Since strings frequently 

contain essential semantic information, they indicate the 

attacker's intentions and objectives. As an instance, the 

string "This programme cannot be run in DOS mode" 

denotes a malicious file when it is discovered outside of 

the standard PE header, a characteristic of installers and 

droppers.  

 

A control flow graph (CFG) is a directed graph that shows 

how a program's control flow is implemented. Code 

blocks are represented by nodes in the CFG, and control 

flow channels are represented by edges. CFG may be used 

to record a PE file's behavior and extract the programme 

structure during malware detection. 

 

Opcodes are the initial component of a machine code 

instruction, commonly referred to as machine language 

that specify the operation the CPU should do. A complete 

machine language command, such as "move eax 7”, "add 

eax ecx" or "sub ebx 1" is made up of an opcode and, 

optionally, one or more operands.  

 

By analyzing opcode frequency or comparing opcode 

sequences, opcode may be used as a characteristic in 

malware identification.  

 

All consecutive subsequences of a sequence of length N 

are referred to as N-grams [21]. For instance, the word 

"MALWARE, " which consists of a string of seven 

characters, may be broken up into three-gram units called 

"MAL, " "ALW, " "LWA, " "WAR, " and "ARE. " 

NGrams have been used in conjunction with a number of 

detection tools, including API calls and opcodes. Other 

characteristics, such as file size and function length, have 

also been employed in static analysis in addition to the 

ones mentioned above. Static analysis also includes 

networking aspects like TCP/UDP ports, destination IP 

addresses, and HTTP requests. 

 

Kirat and Vigna have conducted some of the most 

important studies on malware signature avoidance 

methods. They were able to gather 78 comparable evasion 

signature approaches from 2810 different malware 

samples. A novel method was put up by Hashemi and 

Hamzeh that turns the executable file's unique opcodes 

into digital images. Then, using one of the most well-

known texture extraction techniques in image processing, 

Local Binary Pattern (LBP), visual characteristics are 

recovered from the image. Finally, malware detection is 

done using machine learning techniques. The accuracy 

percentage for the suggested detection method was 91.9%. 

Additionally, Shaid and Maarof recommended showing 

viruses as pictures. 

 

Their method records malware API requests and 

transforms them into visual clues or graphics. Malware 

variations are recognised using these photos. 

 

The accuracy of the API arguments list, which is 98.4%, 

and the false positive rate, which is roughly 3%, 

demonstrated that it is superior to the other two sets. 

Similar to this, Han et al. used static analysis to extract 

APIs from the IAT table (import Address Table). They 

assessed the similarity between the extracted API 

sequence and another sequence in order to categorize the 

malware family. Han discovered that malware from the 

same family is around 40% identical and that the false 

positive rate is 16%. To find malware that uses shellcode, 

some people have used the WinDbg programme to 

analyze native API sequences and used Support Vector 

Machine. They had a 94.37% accuracy rate despite using a 

too-small training set. False negative rate, on the other 

hand, was as high as 44.44%.  

 

3. Dynamic Analysis 
 

Dynamic analysis can provide details about API calls, 

system calls, instruction traces, registry changes, memory 

writes, and other things. The authors create fine-grained 

models that are intended to capture malware's system call-

based behavior. The resultant behavior models are 

Paper ID: SE23515123724 52 of 56 



International Journal of Scientific Engineering and Research (IJSER) 
ISSN (Online): 2347-3878 

Impact Factor (2020): 6.733 

Volume 11 Issue 5, May 2023 

www.ijser.in 
Licensed Under Creative Commons Attribution CC BY 

represented as graphs, where system calls are represented 

by the vertices, and dependencies between calls are 

represented by the edges. 

 

The API calls' parameters and return values make up the 

geographical information, while their ordering makes up 

the temporal information. For the purpose of detecting 

malware, this data is utilized to create formal models that 

are fed into industry-standard machine learning 

techniques. Again, malware detection uses API sequences. 

Frequency analysis of API call sequences is used to 

analyze malware. 

 

The conversion of dynamic instruction sequences into 

abstract assembly blocks is logged. A classification model 

is created using data mining methods and feature vectors 

that are taken from this data. Some people employ 

executables' instruction trace logs, where this data is 

dynamically gathered. These traces are then analyzed as 

graphs, with the instructions acting as the nodes, and 

transition probabilities are computed using statistics from 

the instruction traces. The actual categorization is made 

using Support Vector Machines. 

 

Another name for it is behavior analysis. In this study, 

suspicious files are run and watched in a supervised 

setting like a virtual machine, emulator, or simulator. The 

basic reason why the infected files must be examined in a 

covert environment is that certain malware is backed by 

anti-virtual machine and anti-emulator capabilities. When 

malware recognises such an environment, they perform 

properly and do not engage in any nefarious behavior. 

 

Dynamic analysis is more efficient than static analysis 

because it can analyze an infected file without having to 

deconstruct it. Additionally, malware that is both known 

and unknown can be found through dynamic analysis. 

Additionally, malware that is polymorphic and disguised 

cannot avoid dynamic detection. Dynamic analysis 

requires a lot of time and resources, though. 

 

Several methods, including function call monitoring, 

function parameter analysis, instruction traces, and 

information flow tracing; can be employed with dynamic 

analysis. According to a review of the assessed articles, 

network characteristics, file systems, Windows registries, 

and system calls are all often used in malware dynamic 

analysis. 

 

Zeus malware was categorized by Mohaisen et al. using a 

variety of machine learning methods. The classifier was 

trained using artifacts including registry, file system, and 

network information.1980 samples of the Zeus Banking 

Trojan made up the dataset, and accuracy was close to 

95%. 

 

Mohaisen et al. then suggested AMAL, an automated and 

behavior-based malware analysis and labeling system, in 

their subsequent study. 

 

AutoMal and AutoLabel are the two halves of AMAL. To 

analyze malware samples, Automal makes use of file 

systems, network activity logging, and registry monitoring 

functions. Additionally, AutoLabel groups malware 

samples into families according to their behavior. Over 

115, 000 malware samples were utilized by AMAL, and a 

99% detection rate was attained. 

 

The majority of dynamic approaches employed API calls 

to simulate malware behavior. Following that, linked API 

requests with similar semantic goals are organized into 

sequences. Using a decision tree, they were able to attain a 

maximum accuracy of  97.19%.  

 

The method has a 99.8% accuracy rate and zero false 

positives. Only 80 APIs were chosen for the experiment, 

and utilising Decision Tree and Naive Bayesian methods, 

the identification rate approached 95%. Dynamic analysis 

uses malware that is executed in a safe setting to watch 

how dangerous files behave in real time without getting 

yourself into trouble. There are several kinds of control 

environments, including virtual machines, emulators, 

debuggers, and simulators. Next, we describe each sort of 

malware and the methods it employs to look for a 

controlled environment. An emulator is a controlled 

environment that is used to manage how a malicious 

programme is executed. The CPU, hard drive, and 

resources are all under the control of a comprehensive 

emulation system. Emulators can be distinguished based 

on the portion of the running environment that is under 

control. The BitBlaze project's TEMU, a comprehensive 

emulation system that provides dynamic binary analysis 

by keeping track of elements including network activity, 

memory locations, function calls, processes, modules, and 

API calls, was presented in 2008. Another form of 

emulator, TTAnaylze, uses the free source machine 

emulation QEMU and offers an automated malware 

analysis module that logs native and Windows APIs. The 

bulk of viruses can, however, recognise a simulated 

environment. Malware can carry out operations that 

function outside the mimicked environment when just 

partial emulation is used to determine if it is executing in a 

controlled environment. Additionally, malware may still 

identify the traits and consequences of a whole 

environment system, such as identifying flawed CPU 

features and contrasting system characteristics (i. e. the 

user who is now signed in).  

 

Another kind of controlled environment is a debugger, 

which is a programme that monitors and investigates the 

operation of other binary programmes. Debuggers like 

WinDbg, OllyDbg, and GDB may be used to track the 

execution behavior of questionable binaries down to the 

individual instruction level. WinDbg further enables 

kernel debugging, unlike OllyDbg. Additionally, the built-

in debugger in IDA Pro, a static analysis tool, is less 

powerful. However, the easiest way for malware to detect 

that it is being debugged is to leverage the Windows API. 

The API calls "IsDebuggerPresent", 

"CheckRemoteDebuggerPresent", and 

"OutputDebugString" can all be used to prevent 

debugging.  

 

Malware will also examine registry keys, files, and 

directories for indications that a debugging tool has been 

installed on the system. Additionally, malware can 
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leverage there are a number of methods, such as 

exceptions and interrupts, to stop a programme from 

running while it is being debugged.  

 

Simulator is a software programme that mimics an 

operation so that it may be watched by the user without 

actually conducting it. Virus may run in a regulated virtual 

environment with the help of simulator programmes like 

CWSandbox, Norman Sandbox, and Detours, which also 

record the behavior of the virus. DLL injection is 

accomplished with Detours to intercept function calls 

made by a process to any DLL, and API hooking is 

accomplished with CWSandbox to record calls to 

Windows APIs made by malicious software.  

 

Conversely, Norman Sandbox replicates the host 

machine's Windows operating system, LAN, and Internet 

access. Malware searches for certain sandbox products by 

checking for their presence in the registry, files, or 

processes in order to perform anti-simulation. The 

execution time is another method for sandbox and virtual 

environment detection since controlled environment 

instruction execution takes longer than real-world 

instruction execution.  

 

Virtual machines (VMs) are the most popular controlled 

environment. The computer programme known as VM 

runs both an operating system and applications. These 

programmes are kept separate from the host system. As a 

result, executing files or programmes within a virtual 

machine cannot affect the host computer. Applications for 

virtual machines include VirtualBox, Parallels, and 

VMware.  

 

Software that creates operates, and controls virtual 

machines are known as a virtual machine monitor 

(VMM). It is also in charge of designating hardware for 

virtual machines. Malware, on the other hand, looks for 

artifacts that installed VM tools leave in the file system, 

registry, and process listing to determine whether a virtual 

machine (VM) is present on a system. In order to detect 

the presence of VM tools, malware may also search for 

specific instructions that may be called in user mode, such 

as "sidt,” "sgdt” and "sldt”. Additionally, hardware traits 

and features may contribute to the presence of virtual 

machines. Malware can test certain bits to see if they are 

operating within a virtual machine, such as the CPUID 

hypervisor bit, which is set to zero in the actual system. 

Additionally, because the majority of debuggers and 

virtual machines produce files and drivers specific to that 

tool, malware can search for these artifacts to determine 

whether virtual machines or debuggers are present.  

 

4. Memory Analysis 
 

In recent years, memory analysis has gained popularity as 

a method for malware analysis due to its effectiveness and 

accuracy. Malware researchers are drawn to memory 

analysis because it provides a thorough examination of 

malware by looking into malicious hooks and code 

outside of the function's typical scope. It employs memory 

images to analyze data about the operating system, open 

programmes, and overall health of the machine. Memory 

forensics investigations go through two stages: memory 

analysis and memory acquisition. Tools like Memoryze, 

FastDump, and DumpIt are used in the memory 

acquisition to dump the target machine's memory in order 

to generate a memory picture. Using software like 

Volatility and Rekall, the memory analysis stage involves 

examining the memory picture in search of harmful 

activity. 

 

Numerous studies on memory forensics methods have 

been put out. Through the use of API trigger-based 

memory dump technology, which enables Cuckoo to 

dump memory at any desired API call. In order to identify 

malware, researchers have examined three elements taken 

from memory images: imported libraries, registry activity, 

and API function calls. Their maximum accuracy, 

utilizing SVM and registry activity data, was roughly 

96%. A method that uses the process handles to determine 

if the suspected sample is malicious or benign has been 

suggested by some. 

 

The investigation has shed information on the primary 

handle types that malicious processes frequently employ, 

including section handles, process handles, and mutants. 

Rootkits can leave behind memory artifacts at the kernel 

level, including: drivers, modules, SSDT hooks, IDT 

hooks, and callbacks. Callback functions, changed drivers, 

and connected devices are the kernel-level operations that 

the experiment has shown to be the most dubious. The 

outcomes of the publications surveyed that used memory 

analysis in their malware detection techniques.  

 

5. Analysis 
 

One of the main problems is that modern antivirus 

software relies on signature-based detection methods, 

which are ineffective given the daily creation of hundreds 

of new malwares and the ease with which malware 

authors may alter the malware signature. Obfuscation 

methods including dead-code insertion, register 

reassignment, and subroutine reordering are a problem 

with signature-based approaches. The tiny false positive 

rate with signature-based detection is another problem.  

 

The problem with heuristic or behavior-based approaches 

is the high probability of false positives and excessive 

monitoring time. Additionally, hundreds of extracted 

characteristics are being reduced, their similarities are 

being assessed, and malware activity is being watched, all 

of which have a direct impact on the capacity to identify 

zero-day malware. 

 

The capacity to identify zero-day malware assaults is also 

directly impacted by the reduction of thousands of 

extracted characteristics, comparison of their similarities, 

and monitoring of malware activity.  

 

API calls are a crucial indicator for malware identification 

in static analysis since they show programme behavior. 

For example, the Windows API calls 

"WriteProcessMemory", "LoadLibrary", and 

"CreateRemoteThread" are suspected of being utilized by 

malware to inject DLLs into processes, while infrequently 
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occurring as a valid set. Strings are a reliable way to spot 

nefarious activity. Since strings frequently contain 

essential semantic information, they indicate the attacker's 

intentions and objectives. For instance, the phrase "This 

programme cannot be run in DOS mode" denotes a 

malicious file when it is discovered outside of the standard 

PE header, which is a characteristic of installers and 

droppers.  

 

A better technique to use since static analysis required 

disassembling of information such as opcode and N-grams 

and dynamic analysis is resource consuming would be to 

use resource efficient data mining approaches during 

dynamic analysis or to send a pre-worked image of the 

possible marks in the malware using historical data that 

could be found to minimize the workload of the dynamic 

analysis process. Another method would be to use 

“insertion” techniques in dynamic analysis to insert pre-

written code in the malware to check if it reacts to give a 

certain known behavior outcome which would also reduce 

the false positive rate since this would not be a shot in the 

dark but rather an interaction with the malware.  

 

6. Conclusion 
 

We face a serious danger from malware to our computer 

systems, internet, and data. Malware authors present many 

difficulties for anti-virus software and security researchers 

by creating complex malware that frequently modifies its 

signature to evade detection and by releasing more 

sophisticated versions of malware that use new 

obfuscation techniques. In this article, we provide a quick 

overview of malware detection techniques and malware 

kind. Static, dynamic, and hybrid malware analysis 

methodologies have all been studied. We also spoke about 

how memory forensics may be used to locate malware 

artifacts. We also talked about the potential of memory-

based analysis for malware identification.  

The use of obfuscation, attacking, and anti-analysis tactics 

by malware to avoid detection has also been examined. 

Finally, this article has examined the future course of 

malware development as well as the primary malware 

dataset sources.  

 

7. Future Directions 
 

Many security specialists think that malware's future is 

still up in the air. Future malware creation will face a 

variety of difficulties that security companies and 

researchers should take into account. The automation of 

malware variant creation is the first cause for concern. 

 

Attackers can create automated systems that can generate 

hundreds of different malware samples each day by 

researching the most recent malware detection techniques 

and utilizing machine learning. Second, malware groups 

may rent or sell such malware automation technologies, 

opening the door for unskilled groups and amateur 

hackers to enter the realm of malware.  

 

Third, the functionality and structure of malware are 

always changing. The majority of the surveyed 

approaches learned and tested the behaviors (the 

classifier) on a single malware dataset.  

 

RAM that is volatile retains its data until the device is 

turned off. As a result, examining the RAM can provide 

information about system activity. Running processes, 

Dynamic Link Library (DLL), files, registry keys, 

services, sockets and ports, and active network 

connections are just a few examples of the valuable live 

information that may be found in memory. Thus, memory 

analysis is a potential method that is anticipated to gain 

popularity in malware detection alongside data mining and 

machine learning methods. Collecting malware samples is 

crucial for researchers to investigate malicious tactics and 

strategies. Using honeypots, a special machine set up to 

draw attackers so they may observe their attacking 

methods, is one approach to gather samples. Additionally, 

researchers may employ known harmful URLs. 

 

References 
 

[1] H. Sun, X. Wang, R. Buyya and J. Su, "CloudEyes: 

Cloud-based malware detection with reversible sketch 

for resource-constrained Internet of Things (IoT) 

devices", Softw. Pract. Exper., vol.47, pp.421-441, 

Mar.2017.  

[2] M. Noor, H. Abbas and W. B. Shahid, "Countering 

cyber threats for industrial applications: An 

automated approach for malware evasion detection 

and analysis", J. Netw. Comput. Appl., vol.103, 

pp.249-261, Feb.2018.  

[3] S. Sharmeen, S. Huda, J. H. Abawajy, W. N. Ismail 

and M. M. Hassan, "Malware threats and detection 

for industrial mobile-IoT networks", IEEE Access, 

vol.6, pp.15941-15957, 2018.  

[4] O. A. Waraga, M. Bettayeb, Q. Nasir and M. A. 

Talib, "Design and implementation of automated IoT 

security testbed", Comput. Secur., vol.88, pp. 1-17, 

Jan.2020.  

[5] R. Kumar, X. Zhang, R. U. Khan and A. Sharif, 

"Research on data mining of permission-induced risk 

for Android IoT devices", Appl. Sci., vol.9, no.2, pp. 

1-22, Jan.2019.  

[6] P. K. Sharma, J. H. Park, Y. -S. Jeong and J. H. Park, 

"SHSec: SDN based secure smart home network 

architecture for Internet of Things", Mobile Netw. 

Appl., vol.24, no.3, pp.913-924, Jun.2019.  

[7] Y. -S. Jeong and J. H. Park, "IoT and smart city 

technology: Challenges opportunities and solutions", 

J. Inf. Process. Syst., vol.15, no.2, pp.233-238, 

Apr.2019.  

[8] T. Lei, Z. Qin, Z. Wang, Q. Li and D. Ye, "EveDroid: 

Event-aware Android malware detection against 

model degrading for IoT devices", IEEE Internet 

Things J., vol.6, no.4, pp.6668-6680, Aug.2019.  

[9] P. K. Sharma, J. H. Ryu, K. Y. Park, J. H. Park and J. 

H. Park, "Li-Fi based on security cloud framework for 

future IT environment", Hum. -Centric Comput. Inf. 

Sci., vol.8, no.1, pp.1-13, Aug.2018.  

[10] J. Kang, S. Jang, S. Li, Y. -S. Jeong and Y. Sung, 

"Long short-term memory-based malware 

classification method for information security", 

Comput. Electr. Eng., vol.77, pp.366-375, Jul.2019.  

Paper ID: SE23515123724 55 of 56 



International Journal of Scientific Engineering and Research (IJSER) 
ISSN (Online): 2347-3878 

Impact Factor (2020): 6.733 

Volume 11 Issue 5, May 2023 

www.ijser.in 
Licensed Under Creative Commons Attribution CC BY 

[11] A. Souri and R. Hosseini, "A state-of-the-art survey 

of malware detection approaches using data mining 

techniques", Hum. -Centric Comput. Inf. Sci., vol.8, 

no.1, pp.1-22, Jan.2018.  

[12] R. Tahir, "A study on malware and malware detection 

techniques", Int. J. Eng. Educ., vol.8, no.2, pp.20-30, 

Mar.2018.  

[13]  B. Yu, Y. Fang, Q. Yang, Y. Tang and L. Liu, "A 

survey of malware behavior description and analysis", 

Frontiers Inf. Technol. Electron. Eng., vol.19, no.5, 

pp.583-603, May 2018.  

[14] R. Sihwail, K. Omar and K. A. Z. Ariffin, "A survey 

on malware analysis techniques: Static dynamic 

hybrid and memory analysis", Int. J. Adv. Sci. Eng. 

Inf. Technol., vol.8, no.2, pp.1662-1671, 2018.  

[15] C. -W. Tien, J. -W. Liao, S. -C. Chang and S. -Y. 

Kuo, "Memory forensics using virtual machine 

introspection for malware analysis", IEEE Conf. 

Depend. Secure Comput, Aug.2017.  

[16] J. Landage and M. P. Wankhade, "Malware and 

malware detection techniques: A survey", Int. J. Eng. 

Res. Technol., vol.2, no.12, pp.61-68, Dec.2013.  

[17] D. Ucci, L. Aniello and R. Baldoni, "Survey of 

machine learning techniques for malware analysis", 

Comput. Secur., vol.81, pp.123-147, Mar.2019 

[18] M. Rhode, P. Burnap and K. Jones, "Early-stage 

malware prediction using recurrent neural networks", 

Comput. Secur., vol.77, pp.578-594, Aug.2018.  

[19] K. Han, B. Kang and E. G. Im, "Malware analysis 

using visualized image matrices", Sci. World J., 

vol.2014, pp.1-15, Jul.2014.  

[20] E. Cozzi, M. Graziano, Y. Fratantonio and D. 

Balzarotti, "Understanding Linux malware", 39th 

IEEE Symp. Secur. Privacy, May 2018.  

[21] M. D. Zeiler and R. Fergus, "Visualizing and 

understanding convolutional networks", 13th Eur. 

Conf. Comput. Vis, Sep.2014.  

[22] H. Zhou, "Malware detection with neural network 

using combined features", 15th Int. Annu. Conf. 

Cyber Secur, Aug.2018.  

[23] R. Kumar, X. Zhang, W. Wang, R. U. Khan, J. 

Kumar and A. Sharif, "A multimodal malware 

detection technique for Android IoT devices using 

various features", IEEE Access, vol.7, pp.64411-

64430, 2019.  

[24] I. Santos, J. Devesa, F. Brezo, J. Nieves, and P. G. 

Bringas, “OPEM: a static-dynamic approach for 

machine-learning-based malware detection, ” in 

International Joint Conference CISIS’12-ICEUTE´ 

12-SOCO´ 12 Special Sessions. Berlin, Germany: 

Springer, 2013, pp.271-280.  

[25] M. Tan and Q. V. Le, "EfficientNet: rethinking model 

scaling for convolutional neural networks, " in 

Proceedings of the 36th International Conference on 

Machine Learning, Long Beach, CA, 2019, pp.6105-

6114.  

Paper ID: SE23515123724 56 of 56 




