
International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 5, May 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

A Study of Malware Analysis and Malware

Detection Methods in Cyber-Security

Karan Chawla

Abstract: Any programme or file that purposefully hurts a computer, network, or server is known as malware, or malicious software.

These harmful programmes steal, encrypt, and destroy private information. To detect malware, antivirus software often relies on a

signature-based approach. To transmit malware that infects devices and networks, malware developers employ a range of physical and

virtual methods. On the other hand, the behavior-based approach makes use of suspicious files that are run in a controlled setting,

observed, and classified as hazardous if their behaviors resemble known malware. Behavior-based analysis may be used to detect new

malware and malware that use obfuscation techniques; however it is time-consuming and has a high false positive rate. The memory-

based approach is an option that is now gaining favor in malware detection due to the volume of data disclosed in the memory dump that

may be used to investigate dangerous activities. Future malware is predicted to be more sophisticated. Attackers may utilize cutting-edge

encryption or obfuscation technologies to render malware detection and analysis nearly difficult. Anti-virus programmes often detect

malware by looking for well-known signatures. Unfortunately, a simple obfuscation technique may be used to readily avoid this method.

Both static and dynamic assessments have significant drawbacks. As an alternative, malware may be thoroughly analyzed via memory

analysis. Malware has a strong ability to conceal its code within the computer system. To finally carry out its operations, malware must,

however, run its code in memory. This review paper analyses three different methodologies for malware analysis, namely, static,

dynamic and memory analyses.

Keywords: Encryption, Malware, Signature, Computer Network, Behavior-Based Analysis, Memory Analysis, Dynamic Analyses

1. Introduction

Software that is installed on a computer without the user's

consent is known as malware. By interfering with

computer operations, stealing data, or getting around

access rules, it can cause damage to the computer system.

Malware, sometimes known as harmful software, is

posing an increasingly serious danger to the computing

industry. The sheer volume of malware makes it hard for

human engineers to tackle it. Therefore, malware

detection systems are used by security researchers to find

malware. Systems for detection go through two stages:

analysis and detection. A signature-based technique is

frequently used by antivirus software to detect malware.

This method is quick and has a low risk of false positives

for identifying known malware. However, malware that

employs obfuscation techniques may readily circumvent

signature-based detection, which fails to find

undiscovered malware. The behavior-based technique, on

the other hand, uses suspicious files to be performed in a

controlled environment, watched, and labeled as harmful

if their behaviors match those of recognised malware.

Detecting unknown malware and malware that uses

obfuscation techniques can be done with behavior-based

analysis, but it takes a long time and has a high false

positive rate.

The abundance of data revealed in the memory dump that

may be utilized to look into harmful activity makes the

memory-based technique an alternative that is lately

growing in popularity in malware detection.

The majority of antiviral programmes on the market

employ a signature-based strategy. This method uses a

malware file that has been captured to extract a distinctive

signature that may be used to identify other malware that

is identical. A file hash or a series of bytes known as a

signature can be used to recognise particular malware.

Attackers may easily alter the malware signature to avoid

being picked up by antivirus software, though. While

signature-based malware detection is highly quick and

efficient at catching known malware, it cannot catch

recently released malware. The signature-based strategy

for malware detection relies on applying static analysis to

extract special byte sequences known as marks and

demonstrates the general signature-based process.

Anomaly or behavior-based detection are other names for

heuristic-based detection. The actions taken by malware

while it is running are examined in a training (learning)

phase of this detection. On the basis of a pattern gleaned

from the training test, the file is then classified as

malicious or genuine during a testing (monitoring) phase.

Heuristic-based methods frequently rely on data mining

methods to comprehend how running files behave;

examples of these methods are Support Vector Machine,

Naive Bayes, Decision Tree, and Random Forest.

2. Static Analysis

Software static analysis is carried out without actually

running the programme. Opcode sequences (obtained by

disassembling the binary file), control flow graphs, and

other information are a few examples of what we may

learn via static analysis. These feature sets can be

combined or used singly to identify malware. The authors

introduced a malware detection method based on control

flow graphs and static analysis. Their method, which

focuses on identifying malware's obfuscation patterns, has

a high degree of accuracy. Malware detection via static

detection has made use of machine learning approaches.

Based on collected opcode sequences, metamorphic

malware is efficiently categorized using hidden markov

models. Malware detection uses a similar technique using

Profile Hidden Markov Models and Support Vector

Paper ID: SE23515123724 51 of 56

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 5, May 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Machines. For malware identification, some researchers

have employed function call graph analysis, while others

use an opcode-based similarity measure that uses

straightforward substitution cryptanalysis methods. Both

API call sequences and opcode sequences are used to

assess if a section of code resembles any specific

malware. Based on collected opcode sequences,

metamorphic malware is efficiently categorized using

hidden markov models. Malware detection uses a similar

technique using Profile Hidden Markov Models and

Support Vector Machines. For malware identification,

some researchers have employed function call graph

analysis, while others use an opcode-based similarity

measure that uses straightforward substitution

cryptanalysis methods. Both API call sequences and

opcode sequences are used to assess if a section of code

resembles any specific malware. With this method,

Portable Executable files (PE files) are examined without

being run. To avoid being analyzed, malware frequently

utilizes binary packers like UPX and ASP Pack Shell.

Before being analyzed, a PE file has to be unpacked and

decompressed. A disassembler programme, like IDA Pro

or OlleyDbg, which shows assembly instructions,

provides details about the virus, and extracts patterns to

pinpoint the attacker, may be used to decompile a

windows executable file.

The detection pattern may be determined using static

analysis techniques including Windows API calls, text

signatures, control flow graphs (CFG), opcode (operation

codes) frequency, and byte sequence n-grams. Windows

API (short for Application Programming Interface) calls

are used by almost all programmes to interact with the

operating system. For instance, the Windows API

"OpenFileW" in "Kernel32. dll" creates new files or opens

existing ones. As a result, API calls provide information

about how programmes behave and may be used to

identify malware.

For instance, the Windows API calls

"WriteProcessMemory,” "LoadLibrary" and

"CreateRemoteThread" are suspected of being utilized by

malware to inject DLLs into processes, while infrequently

occurring as a valid set. In the section on memory

analysis, DLL injection is covered. Strings are a reliable

sign of malevolent activity. Since strings frequently

contain essential semantic information, they indicate the

attacker's intentions and objectives. As an instance, the

string "This programme cannot be run in DOS mode"

denotes a malicious file when it is discovered outside of

the standard PE header, a characteristic of installers and

droppers.

A control flow graph (CFG) is a directed graph that shows

how a program's control flow is implemented. Code

blocks are represented by nodes in the CFG, and control

flow channels are represented by edges. CFG may be used

to record a PE file's behavior and extract the programme

structure during malware detection.

Opcodes are the initial component of a machine code

instruction, commonly referred to as machine language

that specify the operation the CPU should do. A complete

machine language command, such as "move eax 7”, "add

eax ecx" or "sub ebx 1" is made up of an opcode and,

optionally, one or more operands.

By analyzing opcode frequency or comparing opcode

sequences, opcode may be used as a characteristic in

malware identification.

All consecutive subsequences of a sequence of length N

are referred to as N-grams [21]. For instance, the word

"MALWARE, " which consists of a string of seven

characters, may be broken up into three-gram units called

"MAL, " "ALW, " "LWA, " "WAR, " and "ARE. "

NGrams have been used in conjunction with a number of

detection tools, including API calls and opcodes. Other

characteristics, such as file size and function length, have

also been employed in static analysis in addition to the

ones mentioned above. Static analysis also includes

networking aspects like TCP/UDP ports, destination IP

addresses, and HTTP requests.

Kirat and Vigna have conducted some of the most

important studies on malware signature avoidance

methods. They were able to gather 78 comparable evasion

signature approaches from 2810 different malware

samples. A novel method was put up by Hashemi and

Hamzeh that turns the executable file's unique opcodes

into digital images. Then, using one of the most well-

known texture extraction techniques in image processing,

Local Binary Pattern (LBP), visual characteristics are

recovered from the image. Finally, malware detection is

done using machine learning techniques. The accuracy

percentage for the suggested detection method was 91.9%.

Additionally, Shaid and Maarof recommended showing

viruses as pictures.

Their method records malware API requests and

transforms them into visual clues or graphics. Malware

variations are recognised using these photos.

The accuracy of the API arguments list, which is 98.4%,

and the false positive rate, which is roughly 3%,

demonstrated that it is superior to the other two sets.

Similar to this, Han et al. used static analysis to extract

APIs from the IAT table (import Address Table). They

assessed the similarity between the extracted API

sequence and another sequence in order to categorize the

malware family. Han discovered that malware from the

same family is around 40% identical and that the false

positive rate is 16%. To find malware that uses shellcode,

some people have used the WinDbg programme to

analyze native API sequences and used Support Vector

Machine. They had a 94.37% accuracy rate despite using a

too-small training set. False negative rate, on the other

hand, was as high as 44.44%.

3. Dynamic Analysis

Dynamic analysis can provide details about API calls,

system calls, instruction traces, registry changes, memory

writes, and other things. The authors create fine-grained

models that are intended to capture malware's system call-

based behavior. The resultant behavior models are

Paper ID: SE23515123724 52 of 56

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 5, May 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

represented as graphs, where system calls are represented

by the vertices, and dependencies between calls are

represented by the edges.

The API calls' parameters and return values make up the

geographical information, while their ordering makes up

the temporal information. For the purpose of detecting

malware, this data is utilized to create formal models that

are fed into industry-standard machine learning

techniques. Again, malware detection uses API sequences.

Frequency analysis of API call sequences is used to

analyze malware.

The conversion of dynamic instruction sequences into

abstract assembly blocks is logged. A classification model

is created using data mining methods and feature vectors

that are taken from this data. Some people employ

executables' instruction trace logs, where this data is

dynamically gathered. These traces are then analyzed as

graphs, with the instructions acting as the nodes, and

transition probabilities are computed using statistics from

the instruction traces. The actual categorization is made

using Support Vector Machines.

Another name for it is behavior analysis. In this study,

suspicious files are run and watched in a supervised

setting like a virtual machine, emulator, or simulator. The

basic reason why the infected files must be examined in a

covert environment is that certain malware is backed by

anti-virtual machine and anti-emulator capabilities. When

malware recognises such an environment, they perform

properly and do not engage in any nefarious behavior.

Dynamic analysis is more efficient than static analysis

because it can analyze an infected file without having to

deconstruct it. Additionally, malware that is both known

and unknown can be found through dynamic analysis.

Additionally, malware that is polymorphic and disguised

cannot avoid dynamic detection. Dynamic analysis

requires a lot of time and resources, though.

Several methods, including function call monitoring,

function parameter analysis, instruction traces, and

information flow tracing; can be employed with dynamic

analysis. According to a review of the assessed articles,

network characteristics, file systems, Windows registries,

and system calls are all often used in malware dynamic

analysis.

Zeus malware was categorized by Mohaisen et al. using a

variety of machine learning methods. The classifier was

trained using artifacts including registry, file system, and

network information.1980 samples of the Zeus Banking

Trojan made up the dataset, and accuracy was close to

95%.

Mohaisen et al. then suggested AMAL, an automated and

behavior-based malware analysis and labeling system, in

their subsequent study.

AutoMal and AutoLabel are the two halves of AMAL. To

analyze malware samples, Automal makes use of file

systems, network activity logging, and registry monitoring

functions. Additionally, AutoLabel groups malware

samples into families according to their behavior. Over

115, 000 malware samples were utilized by AMAL, and a

99% detection rate was attained.

The majority of dynamic approaches employed API calls

to simulate malware behavior. Following that, linked API

requests with similar semantic goals are organized into

sequences. Using a decision tree, they were able to attain a

maximum accuracy of 97.19%.

The method has a 99.8% accuracy rate and zero false

positives. Only 80 APIs were chosen for the experiment,

and utilising Decision Tree and Naive Bayesian methods,

the identification rate approached 95%. Dynamic analysis

uses malware that is executed in a safe setting to watch

how dangerous files behave in real time without getting

yourself into trouble. There are several kinds of control

environments, including virtual machines, emulators,

debuggers, and simulators. Next, we describe each sort of

malware and the methods it employs to look for a

controlled environment. An emulator is a controlled

environment that is used to manage how a malicious

programme is executed. The CPU, hard drive, and

resources are all under the control of a comprehensive

emulation system. Emulators can be distinguished based

on the portion of the running environment that is under

control. The BitBlaze project's TEMU, a comprehensive

emulation system that provides dynamic binary analysis

by keeping track of elements including network activity,

memory locations, function calls, processes, modules, and

API calls, was presented in 2008. Another form of

emulator, TTAnaylze, uses the free source machine

emulation QEMU and offers an automated malware

analysis module that logs native and Windows APIs. The

bulk of viruses can, however, recognise a simulated

environment. Malware can carry out operations that

function outside the mimicked environment when just

partial emulation is used to determine if it is executing in a

controlled environment. Additionally, malware may still

identify the traits and consequences of a whole

environment system, such as identifying flawed CPU

features and contrasting system characteristics (i. e. the

user who is now signed in).

Another kind of controlled environment is a debugger,

which is a programme that monitors and investigates the

operation of other binary programmes. Debuggers like

WinDbg, OllyDbg, and GDB may be used to track the

execution behavior of questionable binaries down to the

individual instruction level. WinDbg further enables

kernel debugging, unlike OllyDbg. Additionally, the built-

in debugger in IDA Pro, a static analysis tool, is less

powerful. However, the easiest way for malware to detect

that it is being debugged is to leverage the Windows API.

The API calls "IsDebuggerPresent",

"CheckRemoteDebuggerPresent", and

"OutputDebugString" can all be used to prevent

debugging.

Malware will also examine registry keys, files, and

directories for indications that a debugging tool has been

installed on the system. Additionally, malware can

Paper ID: SE23515123724 53 of 56

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 5, May 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

leverage there are a number of methods, such as

exceptions and interrupts, to stop a programme from

running while it is being debugged.

Simulator is a software programme that mimics an

operation so that it may be watched by the user without

actually conducting it. Virus may run in a regulated virtual

environment with the help of simulator programmes like

CWSandbox, Norman Sandbox, and Detours, which also

record the behavior of the virus. DLL injection is

accomplished with Detours to intercept function calls

made by a process to any DLL, and API hooking is

accomplished with CWSandbox to record calls to

Windows APIs made by malicious software.

Conversely, Norman Sandbox replicates the host

machine's Windows operating system, LAN, and Internet

access. Malware searches for certain sandbox products by

checking for their presence in the registry, files, or

processes in order to perform anti-simulation. The

execution time is another method for sandbox and virtual

environment detection since controlled environment

instruction execution takes longer than real-world

instruction execution.

Virtual machines (VMs) are the most popular controlled

environment. The computer programme known as VM

runs both an operating system and applications. These

programmes are kept separate from the host system. As a

result, executing files or programmes within a virtual

machine cannot affect the host computer. Applications for

virtual machines include VirtualBox, Parallels, and

VMware.

Software that creates operates, and controls virtual

machines are known as a virtual machine monitor

(VMM). It is also in charge of designating hardware for

virtual machines. Malware, on the other hand, looks for

artifacts that installed VM tools leave in the file system,

registry, and process listing to determine whether a virtual

machine (VM) is present on a system. In order to detect

the presence of VM tools, malware may also search for

specific instructions that may be called in user mode, such

as "sidt,” "sgdt” and "sldt”. Additionally, hardware traits

and features may contribute to the presence of virtual

machines. Malware can test certain bits to see if they are

operating within a virtual machine, such as the CPUID

hypervisor bit, which is set to zero in the actual system.

Additionally, because the majority of debuggers and

virtual machines produce files and drivers specific to that

tool, malware can search for these artifacts to determine

whether virtual machines or debuggers are present.

4. Memory Analysis

In recent years, memory analysis has gained popularity as

a method for malware analysis due to its effectiveness and

accuracy. Malware researchers are drawn to memory

analysis because it provides a thorough examination of

malware by looking into malicious hooks and code

outside of the function's typical scope. It employs memory

images to analyze data about the operating system, open

programmes, and overall health of the machine. Memory

forensics investigations go through two stages: memory

analysis and memory acquisition. Tools like Memoryze,

FastDump, and DumpIt are used in the memory

acquisition to dump the target machine's memory in order

to generate a memory picture. Using software like

Volatility and Rekall, the memory analysis stage involves

examining the memory picture in search of harmful

activity.

Numerous studies on memory forensics methods have

been put out. Through the use of API trigger-based

memory dump technology, which enables Cuckoo to

dump memory at any desired API call. In order to identify

malware, researchers have examined three elements taken

from memory images: imported libraries, registry activity,

and API function calls. Their maximum accuracy,

utilizing SVM and registry activity data, was roughly

96%. A method that uses the process handles to determine

if the suspected sample is malicious or benign has been

suggested by some.

The investigation has shed information on the primary

handle types that malicious processes frequently employ,

including section handles, process handles, and mutants.

Rootkits can leave behind memory artifacts at the kernel

level, including: drivers, modules, SSDT hooks, IDT

hooks, and callbacks. Callback functions, changed drivers,

and connected devices are the kernel-level operations that

the experiment has shown to be the most dubious. The

outcomes of the publications surveyed that used memory

analysis in their malware detection techniques.

5. Analysis

One of the main problems is that modern antivirus

software relies on signature-based detection methods,

which are ineffective given the daily creation of hundreds

of new malwares and the ease with which malware

authors may alter the malware signature. Obfuscation

methods including dead-code insertion, register

reassignment, and subroutine reordering are a problem

with signature-based approaches. The tiny false positive

rate with signature-based detection is another problem.

The problem with heuristic or behavior-based approaches

is the high probability of false positives and excessive

monitoring time. Additionally, hundreds of extracted

characteristics are being reduced, their similarities are

being assessed, and malware activity is being watched, all

of which have a direct impact on the capacity to identify

zero-day malware.

The capacity to identify zero-day malware assaults is also

directly impacted by the reduction of thousands of

extracted characteristics, comparison of their similarities,

and monitoring of malware activity.

API calls are a crucial indicator for malware identification

in static analysis since they show programme behavior.

For example, the Windows API calls

"WriteProcessMemory", "LoadLibrary", and

"CreateRemoteThread" are suspected of being utilized by

malware to inject DLLs into processes, while infrequently

Paper ID: SE23515123724 54 of 56

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 5, May 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

occurring as a valid set. Strings are a reliable way to spot

nefarious activity. Since strings frequently contain

essential semantic information, they indicate the attacker's

intentions and objectives. For instance, the phrase "This

programme cannot be run in DOS mode" denotes a

malicious file when it is discovered outside of the standard

PE header, which is a characteristic of installers and

droppers.

A better technique to use since static analysis required

disassembling of information such as opcode and N-grams

and dynamic analysis is resource consuming would be to

use resource efficient data mining approaches during

dynamic analysis or to send a pre-worked image of the

possible marks in the malware using historical data that

could be found to minimize the workload of the dynamic

analysis process. Another method would be to use

“insertion” techniques in dynamic analysis to insert pre-

written code in the malware to check if it reacts to give a

certain known behavior outcome which would also reduce

the false positive rate since this would not be a shot in the

dark but rather an interaction with the malware.

6. Conclusion

We face a serious danger from malware to our computer

systems, internet, and data. Malware authors present many

difficulties for anti-virus software and security researchers

by creating complex malware that frequently modifies its

signature to evade detection and by releasing more

sophisticated versions of malware that use new

obfuscation techniques. In this article, we provide a quick

overview of malware detection techniques and malware

kind. Static, dynamic, and hybrid malware analysis

methodologies have all been studied. We also spoke about

how memory forensics may be used to locate malware

artifacts. We also talked about the potential of memory-

based analysis for malware identification.

The use of obfuscation, attacking, and anti-analysis tactics

by malware to avoid detection has also been examined.

Finally, this article has examined the future course of

malware development as well as the primary malware

dataset sources.

7. Future Directions

Many security specialists think that malware's future is

still up in the air. Future malware creation will face a

variety of difficulties that security companies and

researchers should take into account. The automation of

malware variant creation is the first cause for concern.

Attackers can create automated systems that can generate

hundreds of different malware samples each day by

researching the most recent malware detection techniques

and utilizing machine learning. Second, malware groups

may rent or sell such malware automation technologies,

opening the door for unskilled groups and amateur

hackers to enter the realm of malware.

Third, the functionality and structure of malware are

always changing. The majority of the surveyed

approaches learned and tested the behaviors (the

classifier) on a single malware dataset.

RAM that is volatile retains its data until the device is

turned off. As a result, examining the RAM can provide

information about system activity. Running processes,

Dynamic Link Library (DLL), files, registry keys,

services, sockets and ports, and active network

connections are just a few examples of the valuable live

information that may be found in memory. Thus, memory

analysis is a potential method that is anticipated to gain

popularity in malware detection alongside data mining and

machine learning methods. Collecting malware samples is

crucial for researchers to investigate malicious tactics and

strategies. Using honeypots, a special machine set up to

draw attackers so they may observe their attacking

methods, is one approach to gather samples. Additionally,

researchers may employ known harmful URLs.

References

[1] H. Sun, X. Wang, R. Buyya and J. Su, "CloudEyes:

Cloud-based malware detection with reversible sketch

for resource-constrained Internet of Things (IoT)

devices", Softw. Pract. Exper., vol.47, pp.421-441,

Mar.2017.

[2] M. Noor, H. Abbas and W. B. Shahid, "Countering

cyber threats for industrial applications: An

automated approach for malware evasion detection

and analysis", J. Netw. Comput. Appl., vol.103,

pp.249-261, Feb.2018.

[3] S. Sharmeen, S. Huda, J. H. Abawajy, W. N. Ismail

and M. M. Hassan, "Malware threats and detection

for industrial mobile-IoT networks", IEEE Access,

vol.6, pp.15941-15957, 2018.

[4] O. A. Waraga, M. Bettayeb, Q. Nasir and M. A.

Talib, "Design and implementation of automated IoT

security testbed", Comput. Secur., vol.88, pp. 1-17,

Jan.2020.

[5] R. Kumar, X. Zhang, R. U. Khan and A. Sharif,

"Research on data mining of permission-induced risk

for Android IoT devices", Appl. Sci., vol.9, no.2, pp.

1-22, Jan.2019.

[6] P. K. Sharma, J. H. Park, Y. -S. Jeong and J. H. Park,

"SHSec: SDN based secure smart home network

architecture for Internet of Things", Mobile Netw.

Appl., vol.24, no.3, pp.913-924, Jun.2019.

[7] Y. -S. Jeong and J. H. Park, "IoT and smart city

technology: Challenges opportunities and solutions",

J. Inf. Process. Syst., vol.15, no.2, pp.233-238,

Apr.2019.

[8] T. Lei, Z. Qin, Z. Wang, Q. Li and D. Ye, "EveDroid:

Event-aware Android malware detection against

model degrading for IoT devices", IEEE Internet

Things J., vol.6, no.4, pp.6668-6680, Aug.2019.

[9] P. K. Sharma, J. H. Ryu, K. Y. Park, J. H. Park and J.

H. Park, "Li-Fi based on security cloud framework for

future IT environment", Hum. -Centric Comput. Inf.

Sci., vol.8, no.1, pp.1-13, Aug.2018.

[10] J. Kang, S. Jang, S. Li, Y. -S. Jeong and Y. Sung,

"Long short-term memory-based malware

classification method for information security",

Comput. Electr. Eng., vol.77, pp.366-375, Jul.2019.

Paper ID: SE23515123724 55 of 56

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 5, May 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

[11] A. Souri and R. Hosseini, "A state-of-the-art survey

of malware detection approaches using data mining

techniques", Hum. -Centric Comput. Inf. Sci., vol.8,

no.1, pp.1-22, Jan.2018.

[12] R. Tahir, "A study on malware and malware detection

techniques", Int. J. Eng. Educ., vol.8, no.2, pp.20-30,

Mar.2018.

[13] B. Yu, Y. Fang, Q. Yang, Y. Tang and L. Liu, "A

survey of malware behavior description and analysis",

Frontiers Inf. Technol. Electron. Eng., vol.19, no.5,

pp.583-603, May 2018.

[14] R. Sihwail, K. Omar and K. A. Z. Ariffin, "A survey

on malware analysis techniques: Static dynamic

hybrid and memory analysis", Int. J. Adv. Sci. Eng.

Inf. Technol., vol.8, no.2, pp.1662-1671, 2018.

[15] C. -W. Tien, J. -W. Liao, S. -C. Chang and S. -Y.

Kuo, "Memory forensics using virtual machine

introspection for malware analysis", IEEE Conf.

Depend. Secure Comput, Aug.2017.

[16] J. Landage and M. P. Wankhade, "Malware and

malware detection techniques: A survey", Int. J. Eng.

Res. Technol., vol.2, no.12, pp.61-68, Dec.2013.

[17] D. Ucci, L. Aniello and R. Baldoni, "Survey of

machine learning techniques for malware analysis",

Comput. Secur., vol.81, pp.123-147, Mar.2019

[18] M. Rhode, P. Burnap and K. Jones, "Early-stage

malware prediction using recurrent neural networks",

Comput. Secur., vol.77, pp.578-594, Aug.2018.

[19] K. Han, B. Kang and E. G. Im, "Malware analysis

using visualized image matrices", Sci. World J.,

vol.2014, pp.1-15, Jul.2014.

[20] E. Cozzi, M. Graziano, Y. Fratantonio and D.

Balzarotti, "Understanding Linux malware", 39th

IEEE Symp. Secur. Privacy, May 2018.

[21] M. D. Zeiler and R. Fergus, "Visualizing and

understanding convolutional networks", 13th Eur.

Conf. Comput. Vis, Sep.2014.

[22] H. Zhou, "Malware detection with neural network

using combined features", 15th Int. Annu. Conf.

Cyber Secur, Aug.2018.

[23] R. Kumar, X. Zhang, W. Wang, R. U. Khan, J.

Kumar and A. Sharif, "A multimodal malware

detection technique for Android IoT devices using

various features", IEEE Access, vol.7, pp.64411-

64430, 2019.

[24] I. Santos, J. Devesa, F. Brezo, J. Nieves, and P. G.

Bringas, “OPEM: a static-dynamic approach for

machine-learning-based malware detection, ” in

International Joint Conference CISIS’12-ICEUTE´

12-SOCO´ 12 Special Sessions. Berlin, Germany:

Springer, 2013, pp.271-280.

[25] M. Tan and Q. V. Le, "EfficientNet: rethinking model

scaling for convolutional neural networks, " in

Proceedings of the 36th International Conference on

Machine Learning, Long Beach, CA, 2019, pp.6105-

6114.

Paper ID: SE23515123724 56 of 56

