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Abstract: The continuous growth of the semiconductor industry has led to the development of advanced microcontrollers that power 

various electronic systems. Functional verification is a crucial step in the design and development process to ensure the correct 

operation of these microcontrollers. This research paper focuses on the functional verification of the LC3 (Little Computer 3) 

microcontroller using the Universal Verification Methodology (UVM) and SystemVerilog. The objective is to validate the functionality 

of the LC3 microcontroller design by employing industry-standard verification techniques and methodologies. The paper presents the 

architecture of the LC3 microcontroller, explains the UVM methodology, and demonstrates the application of SystemVerilog for 

functional verification. Additionally, various verification components and strategies are discussed to ensure comprehensive and 

effective verification of the LC3 microcontroller. 
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1. Introduction 
 

The proposed research paper aims to provide a 

comprehensive guide to functional verification of the LC3 

microcontroller using UVM and SystemVerilog. The paper 

will discuss the LC3 microcontroller's architecture, 

instruction set, and memory organization. It will also present 

an in-depth explanation of the UVM methodology and its 

application in the functional verification process. 

Furthermore, the paper will delve into the key features of 

System Verilog and its usage in building effective 

testbenches.  

 

2.  LC3 Microcontroller  
 

2.1 Artitectute 

 

The LC3 (Little Computer 3) microcontroller is a simplified, 

educational microcontroller architecture that is widely used 

in academic settings to teach computer architecture and 

assembly language programming concepts. It was designed 

by Yale N. Patt and Sanjay J. Patel at the University of 

Texas at Austin and has gained popularity due to its 

simplicity and educational value. 

 

The LC3 microcontroller follows a Von Neumann 

architecture, which means that both the program memory and 

data memory are stored in the same address space. The 

architecture consists of several key components, each 

playing a specific role in the microcontroller's operation. 

Let's explore these components in detail: 

 

2.1.1 Program Counter (PC): 

The Program Counter is a register that holds the memory 

address of the current instruction being executed. It is 

automatically incremented after each instruction fetch, 

pointing to the next instruction in memory. 

 

 

 

2.1.2 Instruction Register (IR): 

The Instruction Register is a register that holds the current 

instruction fetched from memory. It provides the necessary 

information to decode and execute the instruction. 

 

2.1.3 Arithmetic Logic Unit (ALU): 

The ALU performs arithmetic and logical operations on data. 

It supports basic operations such as addition, subtraction, 

logical AND, logical OR, etc. 

 

2.1.4 General-Purpose Registers: 

The LC3 architecture provides eight general-purpose 

registers (R0 to R7) that can be used to store data or 

intermediate results during program execution. These 

registers are primarily used for computation and data 

manipulation. 

 

2.1.5 Condition Code Register (CC): 

The Condition Code Register holds information about the 

result of the most recent arithmetic or logical operation. It 

contains four condition code flags: Negative (N), Zero (Z), 

Positive (P), and Overflow (V). These flags are used to 

determine the outcome of conditional branch instructions. 

 

2.2 Memory 

 

The LC3 microcontroller has a 16-bit address space, 

allowing it to address up to 64 kilobytes of memory. It uses a 

flat memory model, where both instructions and data are 

stored in the same address space. 

 

2.3 Control Unit 

 

The Control Unit coordinates the execution of instructions 

by generating control signals that activate various 

components of the microcontroller. It controls the flow of 

data between registers, memory, and the ALU based on the 

instructions being executed. 
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2.4 Input / Output (I/O) 

 

The LC3 microcontroller supports simple I/O operations. It 

provides a set of memory-mapped I/O locations that can be 

used to interact with external devices such as keyboards, 

displays, or other peripherals. 

 

The LC3 microcontroller uses a simple and orthogonal 

instruction set architecture, meaning that instructions are 

easy to decode and execute. The instruction set includes 

operations such as data movement, arithmetic and logic 

operations, control transfer (branching), and I/O operations. 

Each instruction is encoded as a 16-bit value, with specific 

fields for the opcode, source and destination registers, 

immediate values, and addressing modes. 

 

The LC3 architecture's simplicity makes it an ideal platform 

for learning computer architecture concepts, assembly 

language programming, and low-level system design. It 

provides a solid foundation for understanding more complex 

microcontroller architectures and their associated concepts. 

 

3. Functional Verification 
 

3.1 Importance and Challenges 

 

Functional verification is a crucial step in the design and 

development process of microcontrollers to ensure their 

correct operation and adherence to design specifications. It 

involves the rigorous testing of the microcontroller's 

functionality, performance, and compliance with the 

intended design requirements. Effective functional 

verification helps identify and rectify design flaws, ensuring 

the microcontroller's reliability, robustness, and optimal 

performance. 

 

The challenges associated with functional verification arise 

from the increasing complexity of microcontroller designs 

and the need to validate their behavior under diverse 

operating conditions. These challenges include: 

 

Complexity: Modern microcontrollers are highly complex, 

integrating various functional units, peripherals, and memory 

subsystems. Verifying the interactions and interdependencies 

between these components is a significant challenge. 

 

Time-to-Market Pressure: Microcontroller development 

cycles are often constrained by market demands. Shorter 

development cycles put pressure on verification teams to 

deliver comprehensive test coverage within limited 

timeframes. 

 

Design Changes: Design iterations and modifications are 

common during the development process, which necessitate 

frequent updates to the verification environment. 

Maintaining consistency and accuracy throughout these 

changes can be challenging. 

 

Functional Coverage: Ensuring that all aspects of the 

microcontroller's functionality have been thoroughly tested 

requires defining and tracking functional coverage metrics. 

Achieving comprehensive coverage can be time-consuming 

and complex. 

 

Verification Environment Complexity: Developing a robust 

verification environment that accurately models the 

microcontroller's behavior and allows efficient testbench 

development is a non-trivial task. Building reusable and 

scalable verification components is essential for 

productivity. 

 

3.2 Universal Verification Methodology (UVM) 

 

The Universal Verification Methodology (UVM) is an 

industry-standard verification methodology widely used in 

semiconductor design verification, including microcontroller 

verification. UVM provides a standardized framework and a 

set of guidelines for developing scalable, reusable, and 

modular verification environments. 

 

3.2.1 UVM Components 

UVM is composed of various key components, including: 

 

Testbench: The testbench is responsible for creating stimuli 

to test the microcontroller design, applying transactions, and 

monitoring responses. 

 

Agents: Agents act as the interface between the testbench 

and the microcontroller design. They transmit and receive 

signals and data between the two. 

 

Scoreboard: The scoreboard verifies the correctness of the 

microcontroller's outputs by comparing them against 

expected results. 

 

Sequences: Sequences define stimulus generation patterns 

for testing specific scenarios or use cases. They control the 

flow of transactions and drive the microcontroller design. 

 

Monitors: Monitors observe the microcontroller's behavior 

by monitoring its inputs and outputs. They capture 

transaction information for analysis and coverage. 

 

3.2.2 UVM Testbench Architecture 

The UVM testbench architecture follows a hierarchical 

structure that promotes reusability and scalability. It 

typically consists of multiple layers, including the test, 

environment, sequence, driver, monitor, and interface layers. 

Each layer has specific responsibilities and interfaces with 

the adjacent layers, enabling modular development and 

verification. 

 

3.2.3 UVM Phases 

UVM defines several phases that govern the execution flow 

of the verification environment. These phases include build, 

connect, end_of_elaboration, start_of_simulation, run, 

extract, check, report, and final phases. Each phase provides 

a specific context for executing various tasks, such as 

building the testbench, connecting components, running 

sequences, and generating reports. 
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3.3 SystemVerilog 

 

SystemVerilog is a hardware description and verification 

language that extends the capabilities of the Verilog HDL. It 

provides advanced features specifically designed for 

verification, making it a popular choice for functional 

verification of microcontrollers. 

 

3.3.1 Key Features of SystemVerilog 

SystemVerilog includes several key features that enhance the 

verification process, including: 

 

Object-Oriented Programming (OOP): SystemVerilog 

supports OOP concepts, allowing the development of 

reusable and modular verification components. Classes, 

objects, and inheritance facilitate the creation of complex 

verification environments. 

 

Assertions: SystemVerilog provides assertion constructs, 

such as immediate assertions and concurrent assertions, to 

define properties and constraints that the microcontroller 

design must satisfy. Assertions enhance the verification 

process by automating the checking of expected behaviors 

and detecting violations. 

 

Coverage: SystemVerilog incorporates coverage features 

that allow the collection and analysis of functional coverage 

data. Coverage models and bins enable the quantification of 

how thoroughly the microcontroller design has been 

exercised during simulation. 

 

3.3.2 SystemVerilog for Verification 

SystemVerilog's advanced features, such as constrained 

randomization, dynamic data types, and DPI (Direct 

Programming Interface), enable efficient and effective 

verification of microcontrollers. Constrained randomization 

allows for the generation of randomized stimuli, covering a 

wide range of input scenarios. Dynamic data types enhance 

flexibility in representing complex data structures and 

behaviors. The DPI facilitates interfacing with other 

languages, such as C or C++, enabling the integration of pre-

existing verification components or algorithms. 

 

3.3.3 Writing Testbenches in SystemVerilog 

Writing testbenches in SystemVerilog involves the creation 

of verification components, stimulus generation, result 

checking, and coverage collection. SystemVerilog 

testbenches leverage the language's features to define test 

scenarios, drive stimulus to the microcontroller design, and 

verify the correctness of its responses. Testbenches typically 

utilize OOP concepts to develop reusable and scalable 

verification environments, improving productivity and 

maintainability. 

 

In conclusion, the Universal Verification Methodology 

(UVM) and SystemVerilog are widely employed in 

functional verification of microcontrollers. UVM provides a 

standardized methodology and framework, including key 

components like testbenches, agents, and sequences. 

SystemVerilog, with its advanced verification features, 

facilitates efficient testbench development, stimulus 

generation, result checking, and coverage collection. 

Together, UVM and SystemVerilog contribute to building 

comprehensive and effective verification environments for 

ensuring the correctness and robustness of microcontroller 

designs. 

 

3.4 Writing Testbenches in SystemVerilog 

 

SystemVerilog provides powerful features for designing and 

developing testbenches for functional verification. 

Testbenches play a crucial role in driving stimulus to the 

design under test (DUT), monitoring its behavior, and 

checking for expected results. Here is a step-by-step guide 

on writing testbenches in System Verilog: 

 

Testbench Architecture: 

Define the overall structure of your testbench. It typically 

includes the following components: 

 Testbench module: The top-level module that instantiates 

other testbench components. 

 Interface instances: Connect the DUT to the testbench 

using interfaces that mirror the DUT's input and output 

ports. 

 Monitor: Observes the signals from the DUT and captures 

transaction-level information for analysis and debugging. 

 Driver: Drives stimulus to the DUT by generating 

appropriate signals and transactions. 

 Scoreboard: Compares the DUT's outputs with expected 

results to check for correctness. 

 Coverage: Collects functional coverage data to ensure 

comprehensive testing. 

 

Interface Definition: 

Declare an interface that represents the signals and data 

paths between the testbench and the DUT. The interface 

should mirror the DUT's input and output ports, allowing 

seamless communication between the two. 

 

Testbench Initialization: 

Create an instance of the DUT and the testbench modules. 

Connect the DUT to the testbench via the defined interface. 

 

Test Generation: 

Write test sequences that generate input stimuli to exercise 

different scenarios or test cases. Use constructs like loops, if-

else statements, and randomization to create diverse test 

scenarios. 

 

Driving Stimulus: 

In the testbench driver, generate appropriate signals and 

transactions to drive stimulus to the DUT. This involves 

applying inputs to the DUT's interface signals based on the 

test sequences. Use task or function calls to encapsulate 

reusable stimulus generation code. 

 

Monitoring: 

In the testbench monitor, observe the DUT's output signals 

and capture relevant transaction-level information. This data 

can be used for analysis, debugging, and coverage collection. 

 

Result Checking: 

Compare the DUT's output signals with expected values or 

use assertions to check for correct behavior. Assertions can 
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be used to specify properties that the DUT's signals must 

satisfy, helping to identify violations automatically. 

 

Coverage Collection: 

Define functional coverage models to capture the extent of 

stimulus coverage. Specify coverage bins and attributes to 

track which parts of the design have been exercised during 

simulation. Collect coverage data to ensure comprehensive 

testing. 

 

Testbench Control: 

Control the execution flow of the testbench using a test 

sequence or test control module. This module manages the 

sequence of tests, handles test initialization, and monitors 

test completion. 

 

Simulation Setup and Execution: 

Set up simulation directives, such as the simulation time, 

seed values for randomization, and verbosity levels for 

debug information. Compile and run the simulation to 

execute the testbench and observe the behavior of the DUT. 

 

Debugging and Analysis: 

Analyze simulation results, monitor output, and debug any 

issues or failures. Use waveform viewers and debugging 

tools to gain insights into the DUT's behavior and understand 

the cause of failures. 

 

By following these steps, you can create a robust and 

effective testbench in SystemVerilog for functional 

verification of microcontroller designs. The modular and 

scalable nature of SystemVerilog allows for reusable 

testbench components and efficient development of 

comprehensive verification environments. 

 

4. Verification Environment Setup 
 

4.1 Testbench Architecture 

 

The testbench architecture plays a crucial role in setting up 

the verification environment for the functional verification of 

a microcontroller design. The testbench architecture defines 

the structure and organization of the various components that 

interact with the design under test (DUT). Here are some key 

considerations for the testbench architecture: 

 

Top-Level Testbench Module: Create a top-level module 

that instantiates and connects the different testbench 

components. This module acts as the central hub for 

controlling and coordinating the verification process. 

 

DUT Instantiation: Instantiate the DUT module within the 

testbench module. Connect the DUT's input and output ports 

to the corresponding signals or interfaces in the testbench. 

 

Testbench Components: Identify the necessary components 

for the testbench, such as monitors, drivers, scoreboards, and 

coverage collectors. These components work together to 

drive stimulus to the DUT, observe its behavior, check for 

correctness, and collect coverage data. 

 

Hierarchical Organization: Consider organizing the 

testbench components in a hierarchical structure to enhance 

modularity and reusability. This allows for easier 

maintenance and scalability as the complexity of the 

microcontroller design increases. 

 

4.2 Testbench Components 

 

The testbench components in the verification environment 

are responsible for generating stimulus, observing the DUT's 

behavior, checking for correctness, and collecting coverage 

data. Here are some commonly used testbench components: 

 

Monitor: The monitor component observes the signals or 

interfaces of the DUT and captures transaction-level 

information. It extracts relevant data from the DUT's outputs 

and records it for analysis, debugging, and coverage 

collection purposes. 

 

Driver: The driver component drives stimulus to the DUT by 

generating appropriate signals or transactions based on the 

test scenario. It interacts with the DUT's input ports and 

applies the desired stimuli. 

 

Scoreboard: The scoreboard component compares the DUT's 

outputs against expected results or golden reference models. 

It verifies the correctness of the DUT's behavior and flags 

any discrepancies or errors. 

 

Coverage Collector: The coverage collector component 

collects functional coverage data during the verification 

process. It tracks which parts of the microcontroller design 

have been exercised and provides insights into the 

completeness of the test suite. 

 

Test Sequencer: The test sequencer manages the sequence of 

tests or test scenarios. It controls the activation of different 

test sequences, ensuring that they are executed in the desired 

order. 

 

4.3 Interface Modeling 

 

Modeling the interfaces between the testbench and the DUT 

is crucial for establishing communication and data exchange. 

SystemVerilog provides several constructs for interface 

modeling, such as interface declarations, modports, and 

clocking blocks. Consider the following aspects when 

modeling interfaces: 

 

Input and Output Ports: Define input and output ports in the 

DUT module and connect them to the corresponding 

interface signals or modports in the testbench. 

 

Transaction-Level Interfaces: Use interfaces to abstract the 

communication between the testbench and the DUT. This 

allows for better encapsulation, modularity, and ease of 

connectivity. 

 

Clock and Reset: Model the clock and reset signals as part of 

the interface to synchronize the testbench with the DUT. 
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Data Path and Control Signals: Identify the data path signals 

and control signals that need to be connected between the 

testbench and the DUT. Ensure that the interface accurately 

reflects the signals required for stimulus generation and 

result checking. 

 

4.4 Stimulus Generation 

 

Generating stimulus is a crucial aspect of the verification 

process. The testbench should be capable of generating 

diverse and meaningful test scenarios to thoroughly exercise 

the microcontroller design. Consider the following 

techniques for stimulus generation: 

 

Directed Testing: Develop test sequences that follow 

specific scenarios or use cases to target specific 

functionalities or corner cases. These test sequences can be 

manually written to achieve specific goals. 

 

Constrained Randomization: Utilize constrained 

randomization techniques 

 

Functional Coverage: Leverage functional coverage to 

guide stimulus generation. Define coverage goals and use 

coverage-driven techniques to ensure that the testbench 

generates stimulus to cover all relevant aspects of the 

microcontroller design. 

 

4.5 Coverage and Analysis 

 

Coverage analysis is essential to assess the thoroughness and 

completeness of the verification process. By collecting 

coverage data, you can determine how well the 

microcontroller design has been exercised during simulation. 

Consider the following aspects for coverage and analysis: 

 

Functional Coverage Models: Define functional coverage 

models to specify coverage goals and metrics. Identify the 

important aspects of the microcontroller design to be 

covered and create coverage points accordingly. 

 

Coverage Bins and Attributes: Specify coverage bins to 

categorize the different scenarios or values that the 

microcontroller design can encounter. Define attributes to 

track the occurrence and coverage of these bins. 

 

Coverage Collection: Instrument the testbench and the 

DUT to collect coverage data during simulation. Utilize 

coverage sampling techniques to efficiently collect coverage 

information without incurring excessive simulation 

overhead. 

 

Coverage Reports: Generate coverage reports to analyze 

the coverage data and identify any gaps or areas that require 

additional testing. Use coverage visualization tools to gain 

insights into the coverage results and track progress towards 

coverage goals. 

 

By setting up a comprehensive verification environment with 

well-designed testbench architecture, appropriate testbench 

components, accurate interface modeling, effective stimulus 

generation techniques, and coverage and analysis 

mechanisms, you can ensure the thorough and reliable 

functional verification of the LC3 microcontroller. 

 

5. Results and Analysis  
 

5.1 Simulation Results 

 

Simulation results provide valuable insights into the behavior 

and performance of the LC3 microcontroller during the 

functional verification process. The simulation results should 

be thoroughly analyzed to identify any potential issues, bugs, 

or deviations from the expected behavior. Here are some key 

considerations for analyzing simulation results: 

 

Signal Waveforms: Review the waveforms of the input and 

output signals to ensure they exhibit the expected behavior. 

Look for any anomalies, unexpected transitions, or timing 

violations 

 

Error and Warning Messages: Pay attention to any error 

or warning messages generated during the simulation. These 

messages can provide valuable information about issues 

encountered during the verification process. 

 

Stimulus and Response Analysis: Evaluate the 

effectiveness of the generated stimuli in exercising different 

functionalities and scenarios. Compare the responses of the 

microcontroller against the expected results to identify any 

discrepancies. 

 

Performance Metrics: Measure and analyze the 

performance metrics of the microcontroller, such as 

execution time, latency, throughput, and power consumption. 

Compare these metrics against the design specifications to 

ensure they meet the requirements. 

 

5.2 Coverage Analysis 

 

Coverage analysis is essential to assess the completeness of 

the verification process and identify any gaps in the test 

suite. By analyzing coverage data, you can determine which 

parts of the microcontroller design have been exercised and 

which areas require further testing. Consider the following 

aspects for coverage analysis: 

 

Coverage Metrics: Analyze coverage metrics, such as 

statement coverage, branch coverage, toggle coverage, and 

condition coverage. Assess the achieved coverage 

percentage and compare it against the defined coverage 

goals. 

 

Uncovered Areas: Identify any uncovered or low-coverage 

areas of the microcontroller design. These areas may indicate 

missing or insufficient test scenarios and may require 

additional tests to achieve higher coverage. 

 

Coverage Trends: Monitor coverage trends across different 

simulation runs or iterations. Identify any areas where 

coverage is consistently low or improving slowly, indicating 

potential testing gaps that need to be addressed. 
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Coverag Closure: Assess the coverage closure, which is the 

process of reaching the desired coverage goals. Determine if 

the achieved coverage is sufficient for the microcontroller's 

intended functionality and make informed decisions about 

coverage improvements if necessary. 

 

6.3 Functional Coverage 

 

Functional coverage focuses on capturing and analyzing the 

coverage of specific functionalities or features of the 

microcontroller. It ensures that critical parts of the design are 

adequately exercised during the verification process. 

Consider the following aspects for functional coverage: 

Coverage Goals: Define functional coverage goals based on 

the microcontroller's specifications and requirements. 

Identify the important functionalities, corner cases, and 

scenarios that need to be covered. 

Coverage Points: Define coverage points that represent 

specific functionalities, events, or scenarios. These coverage 

points can include instruction coverage, register access 

coverage, interrupt handling coverage, or peripheral 

interactions. 

Coverage Metrics: Determine the appropriate coverage 

metrics to measure the completeness of the functional 

coverage. For example, instruction coverage may measure 

the percentage of executed instructions, and register 

coverage may measure the percentage of registers accessed. 

Coverage Analysis: Analyze the functional coverage data to 

determine the completeness of the coverage for different 

functionalities. Identify any areas where coverage is lacking 

and devise additional test scenarios to improve coverage. 

Coverage Closure: Similar to overall coverage, assess 

functional coverage closure by comparing the achieved 

coverage with the defined coverage goals. Determine if the 

coverage is sufficient for the critical functionalities and make 

adjustments as needed. 

By thoroughly analyzing simulation results, assessing 

coverage metrics, and ensuring comprehensive functional 

coverage, you can gain confidence in the correctness and 

completeness of the LC3 microcontroller's functional 

verification process. This analysis helps identify any 

potential issues, improve the quality of the design, and 

ensure the microcontroller meets the desired specifications 

and requirements. 

 

References 
 

[1] Greg Tumbush, "Advanced Verification Techniques: A 

SystemVerilog Testbench and Verification 

Methodology Primer," Springer, 2014. 

[2] Ben Cohen, "SystemVerilog for Verification: A Guide 

to Learning the Testbench Language Features," 

Springer, 2012. 

[3] Chris Spear, Greg Tumbush, "SystemVerilog for 

Verification: A Guide to Learning the Testbench 

Language Features," Springer, 2012. 

[4] Dennis Brophy, "UVM Primer for SystemVerilog," 

Springer, 2013. 

[5] Stuart Sutherland, Simon Davidmann, Peter Flake, 

"SystemVerilog Assertions and Functional Coverage: 

Guide to Language, Methodology and Applications," 

Springer, 2016. 

[6] IEEE Standard for SystemVerilog--Unified Hardware 

Design, Specification, and Verification Language (IEEE 

Std 1800-2017). 

[7] Accellera Systems Initiative, "Universal Verification 

Methodology (UVM) User's Guide," Accellera UVM 

Working Group, 2013. 

[8] Open Verification Methodology Cookbook, 

https://verificationacademy.com/cookbook/uvm 

[9] Doulos UVM Golden Reference Guide, 

https://www.doulos.com/knowhow/uvm/uvm-golden-

reference-guide/ 

[10] VerificationAcademy, https://verificationacademy.com/ 

[11] Mark Glasser, Stuart Sutherland, "SystemVerilog 

Assertions Handbook, 4th Edition," Sutherland HDL, 

Inc., 2016. 

 

Author Profile 
 

Sai Madhav Modepalli received the B.tech degree in Electrical 

and Electronics Engineering from National Institute of Technology 

Karnataka Surathkal in the year 2022. Currently he’s working with 

Honeywell, Inc. as Hardware Engineer. 

Paper ID: SE23530154133 18 of 18 

https://verificationacademy.com/



