
International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 6, June 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Functional Verification of LC3 Microcontroller

(UVM, System Verilog)

Sai Madhav Modepalli

National Institute of Technology Karnataka Surathkal, Karnataka, India

Email: madhavmodepalli77[at]gmail.com

Abstract: The continuous growth of the semiconductor industry has led to the development of advanced microcontrollers that power

various electronic systems. Functional verification is a crucial step in the design and development process to ensure the correct

operation of these microcontrollers. This research paper focuses on the functional verification of the LC3 (Little Computer 3)

microcontroller using the Universal Verification Methodology (UVM) and SystemVerilog. The objective is to validate the functionality

of the LC3 microcontroller design by employing industry-standard verification techniques and methodologies. The paper presents the

architecture of the LC3 microcontroller, explains the UVM methodology, and demonstrates the application of SystemVerilog for

functional verification. Additionally, various verification components and strategies are discussed to ensure comprehensive and

effective verification of the LC3 microcontroller.

Keywords: LC3 microcontroller, System Verilog, UVM, VLSI

1. Introduction

The proposed research paper aims to provide a

comprehensive guide to functional verification of the LC3

microcontroller using UVM and SystemVerilog. The paper

will discuss the LC3 microcontroller's architecture,

instruction set, and memory organization. It will also present

an in-depth explanation of the UVM methodology and its

application in the functional verification process.

Furthermore, the paper will delve into the key features of

System Verilog and its usage in building effective

testbenches.

2. LC3 Microcontroller

2.1 Artitectute

The LC3 (Little Computer 3) microcontroller is a simplified,

educational microcontroller architecture that is widely used

in academic settings to teach computer architecture and

assembly language programming concepts. It was designed

by Yale N. Patt and Sanjay J. Patel at the University of

Texas at Austin and has gained popularity due to its

simplicity and educational value.

The LC3 microcontroller follows a Von Neumann

architecture, which means that both the program memory and

data memory are stored in the same address space. The

architecture consists of several key components, each

playing a specific role in the microcontroller's operation.

Let's explore these components in detail:

2.1.1 Program Counter (PC):

The Program Counter is a register that holds the memory

address of the current instruction being executed. It is

automatically incremented after each instruction fetch,

pointing to the next instruction in memory.

2.1.2 Instruction Register (IR):

The Instruction Register is a register that holds the current

instruction fetched from memory. It provides the necessary

information to decode and execute the instruction.

2.1.3 Arithmetic Logic Unit (ALU):

The ALU performs arithmetic and logical operations on data.

It supports basic operations such as addition, subtraction,

logical AND, logical OR, etc.

2.1.4 General-Purpose Registers:

The LC3 architecture provides eight general-purpose

registers (R0 to R7) that can be used to store data or

intermediate results during program execution. These

registers are primarily used for computation and data

manipulation.

2.1.5 Condition Code Register (CC):

The Condition Code Register holds information about the

result of the most recent arithmetic or logical operation. It

contains four condition code flags: Negative (N), Zero (Z),

Positive (P), and Overflow (V). These flags are used to

determine the outcome of conditional branch instructions.

2.2 Memory

The LC3 microcontroller has a 16-bit address space,

allowing it to address up to 64 kilobytes of memory. It uses a

flat memory model, where both instructions and data are

stored in the same address space.

2.3 Control Unit

The Control Unit coordinates the execution of instructions

by generating control signals that activate various

components of the microcontroller. It controls the flow of

data between registers, memory, and the ALU based on the

instructions being executed.

Paper ID: SE23530154133 13 of 18

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 6, June 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

2.4 Input / Output (I/O)

The LC3 microcontroller supports simple I/O operations. It

provides a set of memory-mapped I/O locations that can be

used to interact with external devices such as keyboards,

displays, or other peripherals.

The LC3 microcontroller uses a simple and orthogonal

instruction set architecture, meaning that instructions are

easy to decode and execute. The instruction set includes

operations such as data movement, arithmetic and logic

operations, control transfer (branching), and I/O operations.

Each instruction is encoded as a 16-bit value, with specific

fields for the opcode, source and destination registers,

immediate values, and addressing modes.

The LC3 architecture's simplicity makes it an ideal platform

for learning computer architecture concepts, assembly

language programming, and low-level system design. It

provides a solid foundation for understanding more complex

microcontroller architectures and their associated concepts.

3. Functional Verification

3.1 Importance and Challenges

Functional verification is a crucial step in the design and

development process of microcontrollers to ensure their

correct operation and adherence to design specifications. It

involves the rigorous testing of the microcontroller's

functionality, performance, and compliance with the

intended design requirements. Effective functional

verification helps identify and rectify design flaws, ensuring

the microcontroller's reliability, robustness, and optimal

performance.

The challenges associated with functional verification arise

from the increasing complexity of microcontroller designs

and the need to validate their behavior under diverse

operating conditions. These challenges include:

Complexity: Modern microcontrollers are highly complex,

integrating various functional units, peripherals, and memory

subsystems. Verifying the interactions and interdependencies

between these components is a significant challenge.

Time-to-Market Pressure: Microcontroller development

cycles are often constrained by market demands. Shorter

development cycles put pressure on verification teams to

deliver comprehensive test coverage within limited

timeframes.

Design Changes: Design iterations and modifications are

common during the development process, which necessitate

frequent updates to the verification environment.

Maintaining consistency and accuracy throughout these

changes can be challenging.

Functional Coverage: Ensuring that all aspects of the

microcontroller's functionality have been thoroughly tested

requires defining and tracking functional coverage metrics.

Achieving comprehensive coverage can be time-consuming

and complex.

Verification Environment Complexity: Developing a robust

verification environment that accurately models the

microcontroller's behavior and allows efficient testbench

development is a non-trivial task. Building reusable and

scalable verification components is essential for

productivity.

3.2 Universal Verification Methodology (UVM)

The Universal Verification Methodology (UVM) is an

industry-standard verification methodology widely used in

semiconductor design verification, including microcontroller

verification. UVM provides a standardized framework and a

set of guidelines for developing scalable, reusable, and

modular verification environments.

3.2.1 UVM Components

UVM is composed of various key components, including:

Testbench: The testbench is responsible for creating stimuli

to test the microcontroller design, applying transactions, and

monitoring responses.

Agents: Agents act as the interface between the testbench

and the microcontroller design. They transmit and receive

signals and data between the two.

Scoreboard: The scoreboard verifies the correctness of the

microcontroller's outputs by comparing them against

expected results.

Sequences: Sequences define stimulus generation patterns

for testing specific scenarios or use cases. They control the

flow of transactions and drive the microcontroller design.

Monitors: Monitors observe the microcontroller's behavior

by monitoring its inputs and outputs. They capture

transaction information for analysis and coverage.

3.2.2 UVM Testbench Architecture

The UVM testbench architecture follows a hierarchical

structure that promotes reusability and scalability. It

typically consists of multiple layers, including the test,

environment, sequence, driver, monitor, and interface layers.

Each layer has specific responsibilities and interfaces with

the adjacent layers, enabling modular development and

verification.

3.2.3 UVM Phases

UVM defines several phases that govern the execution flow

of the verification environment. These phases include build,

connect, end_of_elaboration, start_of_simulation, run,

extract, check, report, and final phases. Each phase provides

a specific context for executing various tasks, such as

building the testbench, connecting components, running

sequences, and generating reports.

Paper ID: SE23530154133 14 of 18

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 6, June 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

3.3 SystemVerilog

SystemVerilog is a hardware description and verification

language that extends the capabilities of the Verilog HDL. It

provides advanced features specifically designed for

verification, making it a popular choice for functional

verification of microcontrollers.

3.3.1 Key Features of SystemVerilog

SystemVerilog includes several key features that enhance the

verification process, including:

Object-Oriented Programming (OOP): SystemVerilog

supports OOP concepts, allowing the development of

reusable and modular verification components. Classes,

objects, and inheritance facilitate the creation of complex

verification environments.

Assertions: SystemVerilog provides assertion constructs,

such as immediate assertions and concurrent assertions, to

define properties and constraints that the microcontroller

design must satisfy. Assertions enhance the verification

process by automating the checking of expected behaviors

and detecting violations.

Coverage: SystemVerilog incorporates coverage features

that allow the collection and analysis of functional coverage

data. Coverage models and bins enable the quantification of

how thoroughly the microcontroller design has been

exercised during simulation.

3.3.2 SystemVerilog for Verification

SystemVerilog's advanced features, such as constrained

randomization, dynamic data types, and DPI (Direct

Programming Interface), enable efficient and effective

verification of microcontrollers. Constrained randomization

allows for the generation of randomized stimuli, covering a

wide range of input scenarios. Dynamic data types enhance

flexibility in representing complex data structures and

behaviors. The DPI facilitates interfacing with other

languages, such as C or C++, enabling the integration of pre-

existing verification components or algorithms.

3.3.3 Writing Testbenches in SystemVerilog

Writing testbenches in SystemVerilog involves the creation

of verification components, stimulus generation, result

checking, and coverage collection. SystemVerilog

testbenches leverage the language's features to define test

scenarios, drive stimulus to the microcontroller design, and

verify the correctness of its responses. Testbenches typically

utilize OOP concepts to develop reusable and scalable

verification environments, improving productivity and

maintainability.

In conclusion, the Universal Verification Methodology

(UVM) and SystemVerilog are widely employed in

functional verification of microcontrollers. UVM provides a

standardized methodology and framework, including key

components like testbenches, agents, and sequences.

SystemVerilog, with its advanced verification features,

facilitates efficient testbench development, stimulus

generation, result checking, and coverage collection.

Together, UVM and SystemVerilog contribute to building

comprehensive and effective verification environments for

ensuring the correctness and robustness of microcontroller

designs.

3.4 Writing Testbenches in SystemVerilog

SystemVerilog provides powerful features for designing and

developing testbenches for functional verification.

Testbenches play a crucial role in driving stimulus to the

design under test (DUT), monitoring its behavior, and

checking for expected results. Here is a step-by-step guide

on writing testbenches in System Verilog:

Testbench Architecture:

Define the overall structure of your testbench. It typically

includes the following components:

 Testbench module: The top-level module that instantiates

other testbench components.

 Interface instances: Connect the DUT to the testbench

using interfaces that mirror the DUT's input and output

ports.

 Monitor: Observes the signals from the DUT and captures

transaction-level information for analysis and debugging.

 Driver: Drives stimulus to the DUT by generating

appropriate signals and transactions.

 Scoreboard: Compares the DUT's outputs with expected

results to check for correctness.

 Coverage: Collects functional coverage data to ensure

comprehensive testing.

Interface Definition:

Declare an interface that represents the signals and data

paths between the testbench and the DUT. The interface

should mirror the DUT's input and output ports, allowing

seamless communication between the two.

Testbench Initialization:

Create an instance of the DUT and the testbench modules.

Connect the DUT to the testbench via the defined interface.

Test Generation:

Write test sequences that generate input stimuli to exercise

different scenarios or test cases. Use constructs like loops, if-

else statements, and randomization to create diverse test

scenarios.

Driving Stimulus:

In the testbench driver, generate appropriate signals and

transactions to drive stimulus to the DUT. This involves

applying inputs to the DUT's interface signals based on the

test sequences. Use task or function calls to encapsulate

reusable stimulus generation code.

Monitoring:

In the testbench monitor, observe the DUT's output signals

and capture relevant transaction-level information. This data

can be used for analysis, debugging, and coverage collection.

Result Checking:

Compare the DUT's output signals with expected values or

use assertions to check for correct behavior. Assertions can

Paper ID: SE23530154133 15 of 18

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 6, June 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

be used to specify properties that the DUT's signals must

satisfy, helping to identify violations automatically.

Coverage Collection:

Define functional coverage models to capture the extent of

stimulus coverage. Specify coverage bins and attributes to

track which parts of the design have been exercised during

simulation. Collect coverage data to ensure comprehensive

testing.

Testbench Control:

Control the execution flow of the testbench using a test

sequence or test control module. This module manages the

sequence of tests, handles test initialization, and monitors

test completion.

Simulation Setup and Execution:

Set up simulation directives, such as the simulation time,

seed values for randomization, and verbosity levels for

debug information. Compile and run the simulation to

execute the testbench and observe the behavior of the DUT.

Debugging and Analysis:

Analyze simulation results, monitor output, and debug any

issues or failures. Use waveform viewers and debugging

tools to gain insights into the DUT's behavior and understand

the cause of failures.

By following these steps, you can create a robust and

effective testbench in SystemVerilog for functional

verification of microcontroller designs. The modular and

scalable nature of SystemVerilog allows for reusable

testbench components and efficient development of

comprehensive verification environments.

4. Verification Environment Setup

4.1 Testbench Architecture

The testbench architecture plays a crucial role in setting up

the verification environment for the functional verification of

a microcontroller design. The testbench architecture defines

the structure and organization of the various components that

interact with the design under test (DUT). Here are some key

considerations for the testbench architecture:

Top-Level Testbench Module: Create a top-level module

that instantiates and connects the different testbench

components. This module acts as the central hub for

controlling and coordinating the verification process.

DUT Instantiation: Instantiate the DUT module within the

testbench module. Connect the DUT's input and output ports

to the corresponding signals or interfaces in the testbench.

Testbench Components: Identify the necessary components

for the testbench, such as monitors, drivers, scoreboards, and

coverage collectors. These components work together to

drive stimulus to the DUT, observe its behavior, check for

correctness, and collect coverage data.

Hierarchical Organization: Consider organizing the

testbench components in a hierarchical structure to enhance

modularity and reusability. This allows for easier

maintenance and scalability as the complexity of the

microcontroller design increases.

4.2 Testbench Components

The testbench components in the verification environment

are responsible for generating stimulus, observing the DUT's

behavior, checking for correctness, and collecting coverage

data. Here are some commonly used testbench components:

Monitor: The monitor component observes the signals or

interfaces of the DUT and captures transaction-level

information. It extracts relevant data from the DUT's outputs

and records it for analysis, debugging, and coverage

collection purposes.

Driver: The driver component drives stimulus to the DUT by

generating appropriate signals or transactions based on the

test scenario. It interacts with the DUT's input ports and

applies the desired stimuli.

Scoreboard: The scoreboard component compares the DUT's

outputs against expected results or golden reference models.

It verifies the correctness of the DUT's behavior and flags

any discrepancies or errors.

Coverage Collector: The coverage collector component

collects functional coverage data during the verification

process. It tracks which parts of the microcontroller design

have been exercised and provides insights into the

completeness of the test suite.

Test Sequencer: The test sequencer manages the sequence of

tests or test scenarios. It controls the activation of different

test sequences, ensuring that they are executed in the desired

order.

4.3 Interface Modeling

Modeling the interfaces between the testbench and the DUT

is crucial for establishing communication and data exchange.

SystemVerilog provides several constructs for interface

modeling, such as interface declarations, modports, and

clocking blocks. Consider the following aspects when

modeling interfaces:

Input and Output Ports: Define input and output ports in the

DUT module and connect them to the corresponding

interface signals or modports in the testbench.

Transaction-Level Interfaces: Use interfaces to abstract the

communication between the testbench and the DUT. This

allows for better encapsulation, modularity, and ease of

connectivity.

Clock and Reset: Model the clock and reset signals as part of

the interface to synchronize the testbench with the DUT.

Paper ID: SE23530154133 16 of 18

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 6, June 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Data Path and Control Signals: Identify the data path signals

and control signals that need to be connected between the

testbench and the DUT. Ensure that the interface accurately

reflects the signals required for stimulus generation and

result checking.

4.4 Stimulus Generation

Generating stimulus is a crucial aspect of the verification

process. The testbench should be capable of generating

diverse and meaningful test scenarios to thoroughly exercise

the microcontroller design. Consider the following

techniques for stimulus generation:

Directed Testing: Develop test sequences that follow

specific scenarios or use cases to target specific

functionalities or corner cases. These test sequences can be

manually written to achieve specific goals.

Constrained Randomization: Utilize constrained

randomization techniques

Functional Coverage: Leverage functional coverage to

guide stimulus generation. Define coverage goals and use

coverage-driven techniques to ensure that the testbench

generates stimulus to cover all relevant aspects of the

microcontroller design.

4.5 Coverage and Analysis

Coverage analysis is essential to assess the thoroughness and

completeness of the verification process. By collecting

coverage data, you can determine how well the

microcontroller design has been exercised during simulation.

Consider the following aspects for coverage and analysis:

Functional Coverage Models: Define functional coverage

models to specify coverage goals and metrics. Identify the

important aspects of the microcontroller design to be

covered and create coverage points accordingly.

Coverage Bins and Attributes: Specify coverage bins to

categorize the different scenarios or values that the

microcontroller design can encounter. Define attributes to

track the occurrence and coverage of these bins.

Coverage Collection: Instrument the testbench and the

DUT to collect coverage data during simulation. Utilize

coverage sampling techniques to efficiently collect coverage

information without incurring excessive simulation

overhead.

Coverage Reports: Generate coverage reports to analyze

the coverage data and identify any gaps or areas that require

additional testing. Use coverage visualization tools to gain

insights into the coverage results and track progress towards

coverage goals.

By setting up a comprehensive verification environment with

well-designed testbench architecture, appropriate testbench

components, accurate interface modeling, effective stimulus

generation techniques, and coverage and analysis

mechanisms, you can ensure the thorough and reliable

functional verification of the LC3 microcontroller.

5. Results and Analysis

5.1 Simulation Results

Simulation results provide valuable insights into the behavior

and performance of the LC3 microcontroller during the

functional verification process. The simulation results should

be thoroughly analyzed to identify any potential issues, bugs,

or deviations from the expected behavior. Here are some key

considerations for analyzing simulation results:

Signal Waveforms: Review the waveforms of the input and

output signals to ensure they exhibit the expected behavior.

Look for any anomalies, unexpected transitions, or timing

violations

Error and Warning Messages: Pay attention to any error

or warning messages generated during the simulation. These

messages can provide valuable information about issues

encountered during the verification process.

Stimulus and Response Analysis: Evaluate the

effectiveness of the generated stimuli in exercising different

functionalities and scenarios. Compare the responses of the

microcontroller against the expected results to identify any

discrepancies.

Performance Metrics: Measure and analyze the

performance metrics of the microcontroller, such as

execution time, latency, throughput, and power consumption.

Compare these metrics against the design specifications to

ensure they meet the requirements.

5.2 Coverage Analysis

Coverage analysis is essential to assess the completeness of

the verification process and identify any gaps in the test

suite. By analyzing coverage data, you can determine which

parts of the microcontroller design have been exercised and

which areas require further testing. Consider the following

aspects for coverage analysis:

Coverage Metrics: Analyze coverage metrics, such as

statement coverage, branch coverage, toggle coverage, and

condition coverage. Assess the achieved coverage

percentage and compare it against the defined coverage

goals.

Uncovered Areas: Identify any uncovered or low-coverage

areas of the microcontroller design. These areas may indicate

missing or insufficient test scenarios and may require

additional tests to achieve higher coverage.

Coverage Trends: Monitor coverage trends across different

simulation runs or iterations. Identify any areas where

coverage is consistently low or improving slowly, indicating

potential testing gaps that need to be addressed.

Paper ID: SE23530154133 17 of 18

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 6, June 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Coverag Closure: Assess the coverage closure, which is the

process of reaching the desired coverage goals. Determine if

the achieved coverage is sufficient for the microcontroller's

intended functionality and make informed decisions about

coverage improvements if necessary.

6.3 Functional Coverage

Functional coverage focuses on capturing and analyzing the

coverage of specific functionalities or features of the

microcontroller. It ensures that critical parts of the design are

adequately exercised during the verification process.

Consider the following aspects for functional coverage:

Coverage Goals: Define functional coverage goals based on

the microcontroller's specifications and requirements.

Identify the important functionalities, corner cases, and

scenarios that need to be covered.

Coverage Points: Define coverage points that represent

specific functionalities, events, or scenarios. These coverage

points can include instruction coverage, register access

coverage, interrupt handling coverage, or peripheral

interactions.

Coverage Metrics: Determine the appropriate coverage

metrics to measure the completeness of the functional

coverage. For example, instruction coverage may measure

the percentage of executed instructions, and register

coverage may measure the percentage of registers accessed.

Coverage Analysis: Analyze the functional coverage data to

determine the completeness of the coverage for different

functionalities. Identify any areas where coverage is lacking

and devise additional test scenarios to improve coverage.

Coverage Closure: Similar to overall coverage, assess

functional coverage closure by comparing the achieved

coverage with the defined coverage goals. Determine if the

coverage is sufficient for the critical functionalities and make

adjustments as needed.

By thoroughly analyzing simulation results, assessing

coverage metrics, and ensuring comprehensive functional

coverage, you can gain confidence in the correctness and

completeness of the LC3 microcontroller's functional

verification process. This analysis helps identify any

potential issues, improve the quality of the design, and

ensure the microcontroller meets the desired specifications

and requirements.

References

[1] Greg Tumbush, "Advanced Verification Techniques: A

SystemVerilog Testbench and Verification

Methodology Primer," Springer, 2014.

[2] Ben Cohen, "SystemVerilog for Verification: A Guide

to Learning the Testbench Language Features,"

Springer, 2012.

[3] Chris Spear, Greg Tumbush, "SystemVerilog for

Verification: A Guide to Learning the Testbench

Language Features," Springer, 2012.

[4] Dennis Brophy, "UVM Primer for SystemVerilog,"

Springer, 2013.

[5] Stuart Sutherland, Simon Davidmann, Peter Flake,

"SystemVerilog Assertions and Functional Coverage:

Guide to Language, Methodology and Applications,"

Springer, 2016.

[6] IEEE Standard for SystemVerilog--Unified Hardware

Design, Specification, and Verification Language (IEEE

Std 1800-2017).

[7] Accellera Systems Initiative, "Universal Verification

Methodology (UVM) User's Guide," Accellera UVM

Working Group, 2013.

[8] Open Verification Methodology Cookbook,

https://verificationacademy.com/cookbook/uvm

[9] Doulos UVM Golden Reference Guide,

https://www.doulos.com/knowhow/uvm/uvm-golden-

reference-guide/

[10] VerificationAcademy, https://verificationacademy.com/

[11] Mark Glasser, Stuart Sutherland, "SystemVerilog

Assertions Handbook, 4th Edition," Sutherland HDL,

Inc., 2016.

Author Profile

Sai Madhav Modepalli received the B.tech degree in Electrical

and Electronics Engineering from National Institute of Technology

Karnataka Surathkal in the year 2022. Currently he’s working with

Honeywell, Inc. as Hardware Engineer.

Paper ID: SE23530154133 18 of 18

https://verificationacademy.com/

