
International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 6, June 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Analysis of Optimal Task Scheduling Using

Optimization Algorithms in Cloud-Edge Computing

K. Vinothkumar
1
, Dr. D. Maruthanayagam

2

1Research Scholar, Sri Vijay Vidyalaya College of Arts & Science, Dharmapuri, Tamilnadu, India

2Head/Professor, PG and Research Department of Computer Science, Sri Vijay Vidyalaya College of Arts & Science, Dharmapuri,

Tamilnadu, India

Abstract: Edge-cloud computing involves deploying a set of edge servers near mobile devices so that these devices can schedule tasks to

the servers with low latency. One fundamental and critical problem in edge-cloud systems is determining how to dispatch and schedule

tasks in such a way that the task response time (defined as the interval between the release of a task and the arrival of the computation

result at its device) is minimized. Edge computing (EC), which distributes resources to the network edge, is gaining traction in

applications requiring low latency and high reliability. Nowadays, EC provides resources in a decentralized manner; a large number of

cloud-based services are deployed on the network's edge, as processing data at the edge can reduce costs. This paper presents an

optimised scheduling algorithm based on the Lion Optimization Algorithm (LOA), PSO (Particle Swarm Optimization), Firefly

Algorithm (FF), and Ant Colony Optimization (ACO) to improve cloud edge task scheduling. To achieve a better result in terms of

reducing energy consumption and increasing the lifespan of the cloud-edge system after task completion (LOA). The simulation results

demonstrate the efficacy of the comparison by employing research parameters such as Task delay, Task Completion Time, Execution

Time, Average Make span, Energy consumption, Average response time, and Energy Latency.

Keywords: Edge Cloud Computing, Lion Optimization Algorithm, Particle Swarm Optimization, Firefly Algorithm, Ant Colony

Optimization, Optimization Algorithms, Energy Consumption, Average Makespan

1. Introduction

Edge computing is a new technology that performs data

analytics and storage close to the data source (i.e., mobile

devices) to reduce network latency. This computing

paradigm has piqued the interest of academics and industry

alike. Edge computing, due to its characteristics of being on

the network's edge and close to mobile terminal equipment,

can reduce data transmission delay and improve real-time

performance of local businesses [2]. Edge computing is one

of the potential solutions to these problems. Edge

computing, in particular, is a distributed computing

paradigm that enables computation and data storage to be

brought as close to the relevant data sources as possible.

Edge computing technology has been proposed to meet the

requirements of low latency and reduced bandwidth

consumption [3]. Edge-cloud data centres are a subset of

remote cloud data centres that have fewer computational

capabilities, slower processing speeds and less memory

capacity than remote cloud data centres [4]. Mobile devices

can offload tasks to edge clouds and receive computing

results with low network latency. Even so, since these

specially deployed servers are on a smaller scale than remote

cloud data centres, the resource and computation capabilities

of edge-clouds are relatively limited when compared to

remote cloud data centres. Whatever given edge-cloud may

not be able to support a wide range of mobile applications.

As a result, edge-clouds are typically backed up by a remote

cloud via the Internet, allowing them to offload some of

their more demanding jobs to the remote cloud. Connecting

multiple edge-clouds (e.g., via a metropolitan area network)

in order to improve mobile user services by sharing and

balancing workloads among the able to participate edge-

clouds [5–7]. Edge computing brings the power of cloud

data centres to the network's edge, bringing it closer to IoT

devices. Although edge nodes have more resources than IoT

devices, they fall short of cloud data centres. Many

researchers are currently combining cloud data centres and

edge nodes to fully leverage each other's advantages and

compensate for their respective disadvantages. Hierarchical

computing can be realised in the cloud and edge coexistence

system, in which tasks can be processed opportunistically by

both the edge node and the cloud server. Non-

computationally intensive tasks, for example, can be

processed at the edge node to achieve lower end-to-end

latency and better energy efficiency. On the other hand, it is

preferable to offload computationally intensive tasks to the

cloud server in order to take advantage of its vast computing

capacity. As a result, effective collaboration between cloud

computing and edge computing is critical for performance

enhancement. [8]. Resource allocation is important in edge

computing for assigning tasks (generated by local devices)

to the remote cloud (the network's central) or local

servers/devices (the edge of the network). A common

approach for resource management in edge computing is to

assign tasks to remote cloud or local servers based on factors

such as energy, bandwidth consumption, and latency. Based

on their goals, these methods can be divided into three

categories [9].

 Reducing energy consumption

 Improving system throughput

 Reducing task completion time

There's really edge computing technology, that also sends

the service to be processed to a server closer to the user

terminal, solving the problem that the terminal's processing

power is insufficient, the hardware condition is poor, and the

distance to the cloud is too long, resulting in an excessive

delay response. Completing a business calculation requires

communication and computing resources from the edge

computing server throughout the process of applying edge

Paper ID: SE23616111856 38 of 49

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 6, June 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

computing technology. As a result, optimizing the

computational resource allocation strategy can reduce the

time and system loss required in the calculation process. The

problem of optimising cloud edge computing resource

allocation was solved by using mutual iteration of the lion

optimization algorithm and the firefly algorithm, reducing

calculation energy consumption and delay.

2. Optimization Algorithms

2.1 Lion Optimization Algorithm:

LOA is inspired by the nature of lions. Lions are known for

their high levels of cooperation and aggression. Lions are

divided into two social groups: resident lions (RL) and

nomad lions (NL) (NL). Pride groups are common among

RL. Whereas the second type moves out infrequently, either

in pairs or individually. Lions hunt in packs, and several

lionesses work together to encircle the prey from various

angles in order to capture it. Male lions and a few female

lionesses rest and await the hunter lionesses. The lions can

mate at any time, and a lioness can mate with multiple

partners. Lions use their urine to mark their territory. The

lion's behaviours are mathematically defined in LOA in

order to model the optimization algorithm. A collection of

arbitrarily produced solutions known as lions generates the

initial population in LOA. Some members of the initial

community (percent N) are chosen as NL, while the

remainder of the population (RL) is randomly divided into P

subsets (prides). S represents the number of females, and the

remaining lions are males. The best-attained solution in the

previous iterations for each individual lion is known as the

best-visited location, and it is updated during the

optimization process. The lion's behaviours are

mathematically defined in LOA in order to model the

optimization algorithm. A collection of arbitrarily produced

solutions known as lions generates the initial population in

LOA. Some members of the initial community (percent N)

are chosen as NL, while the remainder of the population

(RL) is randomly divided into P subsets (prides). S

represents the number of females, and the remaining lions

are males. The best-attained solution in the previous

iterations for each individual lion is known as the best-

visited location, and this is revised during the optimisation

problem. Every pride removes the young males from the

group, and it becomes NL when they reach maturity and

their strength is lower than the resident males. Furthermore,

an NL (both male and female) moves at random in search of

a better location (solution). In line with this, some resident

females migrate from one pride to another or change their

lifestyle to become NL and vice versa. The weakest lion dies

or is killed due to a variety of factors, including a lack of

food and competition. In the current study, the above

procedure was repeated until the termination criterion was

met. The various phases of the LOA are described below

[10].

Figure 1: Nature of LOA

Lion Optimization process:

The lion algorithm's process is as follows [11]:

 Create random populations

 Create prides and lions.

 One lion particle = Choose a female lion at random for

hunting. Each female lion chooses the best spot in the

pride. The weakest lion pride is expelled from the

population and becomes a nomad. Each pride assesses

the rate of immigration and becomes a nomad.

 Evaluate the fitness function to select the best females

and fill the empty places which of the female lions

which are migrated from the territory

Algorithm:

Input: Different set of factors

(Asi,.Cki,.Poi,.Ci

.Qi}.{𝛔1.𝛔2.R.𝛃2.Dr.v3}.{e1,𝛚1}.{m,k,l,𝛄g.F.G.E}

Output: Optimal set of factors for edge devices

i←1:j←1:St←0:Dt←0;

while(i<N)

Computeh Mop,. Si and Di

i←i+1:

While (j≤N)

Dt← Dt
-1

+D𝛄.

St←St
-1

+Sr

Compute Tw.Titgar.C.Cr and 𝛕high;

Initialize the number of lions (edge devices) and

iterations:

 Create an atbitrazy result for every lion: Assign

pride and nomad lions; while (tr< max iteration)

for (every pride)

A few females are chosen at random to hunt;

The rest of the females travel toward the most excellent

sites in the region:

Every male roam in %R of the region;

%Ma of female's note with only one inhabitant males: The

weakest male is rejected by pride and tutus into a nomad:

for (every nomad lion)

Males and females travel arbitrary distances in exploring

space:

%Ma of female's mate with only one male:

Nomad males hit pride;

Paper ID: SE23616111856 39 of 49

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 6, June 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

for (every pride)

% I of females immiigrate from pride and tum into nomads:

Each nomad lion gender is ranked based on its objective

range:

Most excellent females are chosen and circulated to pride.

satisfying empty sites:

Nomad lions with the minimum objective content will be

Rejected depending on the highest allowed quantity of

every gender;

 end for

 end for

end for

end while

obtain the optimal set of TQP,TEC,TCE,
s

iE , ,

c

i kE ,Thigh for

edge devices;

cloud decides which tasks will be carried out at the edge

devices;

end while

end while

end

Initialization: Initially, the population is generated

arbitrarily across the solution space. Each outcome is known

as a lion (edge devices). A lion (edge devices) is denoted in

a d-dimensional optimization dilemma, i.e., d set of

determining factors, as:

Lion (edge devices) =[l1,,,,,,ld] (1)

The fitness range of every edge device (lion) is determined

by assessing the objective function given in (16) as:

f (edge device) = f(l1,,,,,,,,,,ld) (2)

In the initial stage, dpop solutions are generated arbitrarily in

exploring space, and a percentage d of completed results is

arbitrarily chosen as migrant edge devices. The remaining

population is divided in to the pride at random. Evey

solution had a specific gender and remained stable

throughout the optimization task. Each lion observes its

most excellent entered site while searching. Each pride's

region is created based on such observed sites. As a result,

for each pride, observed sites (the best entered sites)

generate that pride's region via its representatives [12].

Migration : Motivated by the lion swap life and migratory

behaviour in nature, when one lion travels from one pride to

another or switches its lifestyle and resident female becomes

nomad and vice versa, it increases the diversity of the target

pride by its position in the previous pride. The lion's

migration and switch lifestyle, on the other hand, create a

bridge for exchange of information. The maximum number

of females in each pride is determined by S% of the pride's

population. Some females were chosen at random to be

nomads by migration operators. The number of migrated

females in each pride is equal to the number of surplus

females in each pride multiplied by the maximum number of

females in a pride. Once selected females migrate from

prides and become nomads, they are separated into new

nomad females and old nomad females based on their

fitness. The best females from among the m are then chosen

at random and distributed to prides to fill the migratory

females' empty spots. This procedure maintains the diversity

of the whole population and share information among prides

[13].

Movements towards Safety: Only a few female lions hunt

for prey, while the rest stay in safe territory. The best

positions for each territory are calculated and saved. A high

victory rate indicates that the lions have strayed from the

optimal point. Lower values indicate that lions are roaming

for improvement, and thus competition evaluation indicates

success.

Female Lion’ =Female lion + 2D × rand(0,1){R1} + U(-1,1)

× tan(θ) X D (3)

 × {R2} {R1}.{R2} – 0,|[R2]| -1

where Female Lion is the female lion's current position, and

D represents the distance between the female lion's current

position and the chosen point chosen through tournament

selection within the pride's territory. R1 is a vector whose

initial point is the female lion's previous location and whose

direction is toward the chosen position. R2 is perpendicular

to R1.

Hunting: Some females in each pride look for prey in a

group to provide food for their pride. These hunters use

specific strategies to encircle and capture their prey. When

hunting, lions generally followed similar patterns. Stander

classified the lions into seven stalking roles, classifying

them as Left Wing, Center Wing, and Right Wing. During

hunting, each lioness adjusts her claim based on her

own[14].

Figure 2: Hunt Process

Divide hunters into n subgroups randomly generate a prey

For i=1 to hunters (H)

 Move→ ith Hunter

If(i_pos>last_pos)

 Hunt=1

Else

 Hunt=0

End for

Mating: Mating includes two primary steps known as

crossover and mutation, which are found to be significant

operators for any evolutionary optimization. We follow the

maximum natural littering rate, i.e., four cubs (mostly) in a

lioness pregnancy, and thus we get four cubs 'X cubs' from

the crossover, which is uniform in nature with random

crossover probability Cr. The crossover operation can be

represented mathematically as follows:

Paper ID: SE23616111856 40 of 49

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 6, June 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

X
male

+ X
cubs

(p) = Bp
o
 B p 0 X

female :
p 1,2,3,4

(4)

where B is the one's complement of B, vector operator"

represents Hadamard product or schur product, and

Xcubs(p) is the pth cub obtained from crossover The Xcubs

are subjected to uniform mutation with mutation probability

as Mr, resulting in an equal number of new cubs Xnew. The

Xnew (from mutation) and Xcubs (from crossover) are

placed in the cub pool and processed further. A secondary

step known as gender clustering is also included in this

procedure to extract a single male and female creature from

the cub stream.Based on the lion’s physical nature, we select

the cubs, which have the first and second best fitness, as the

male cub X m_ cub and female cub X f _ cub, respectively.

Once the X m_ cub and X f _ cub are obtained, set their ages

(commonly referred as cubs’ age) A cub as zero.

Defense: Lions value this behaviour. Mature male lions

engage in combat with other lions. Losers either become

nomads or flee the territory. When nomadic lions win a

battle, they take over the territory of the loser. Thus, LOA

defends lions in two ways: against newly matured resident

males and nomadic males. LOA thus finds the strongest lion

in the group[15].

Termination Criteria

When any of following two termination criteria is met, the

algorithm execution is terminated; otherwise, the process is

repeated from equation5, after storing X male and f.

(X male).f (X male) ≤e T (5)

N f >N f
max

 (6)

Nfmax and eT are the maximum number of function

evaluations and target error, respectively.

2.2 Firefly Algorithm:

The firefly algorithm (FA) is a met heuristic algorithm

inspired by the flashing behaviour of fireflies. The Firefly

Algorithm (FA) is a population-based technique that

investigates firefly foraging behaviour to find the global

optimal solution based on swarm intelligence. The primary

function of the firefly's flash is to attract other fireflies.

Fireflies use their flashing signal to attract mating partners

and prey, as well as to share food with others. The Firefly

Algorithm generates a random initial population of viable

candidate solutions. All fireflies in the population are

handled in the solution search space with the goal of

collectively sharing knowledge among fireflies to guide the

search to the best location in the search space. Every particle

in the inhabitants is a firefly which it moves in a search

domain with a regularly updated attractiveness based just on

firefly's and its neighbours' knowledge [16].

The standard Firefly algorithm is based on firefly flashing

patterns, which act as a signal system to attract other

fireflies. They use the flash light to attract mates or prey, and

the following assumptions are made to execute the firefly

algorithm:

1) A firefly is concerned about another firefly.

2) The attraction between two fireflies is proportional to

their brightness and the distance between them. As a

result, the brighter firefly can attract nearby fireflies,

and if none are brighter than the others, their movement

will be random.

3) When the brightness of both fireflies is equal, the

fireflies move at random [17].Algorithm:

Create and initialize N firefly particles

Determine the light intensity for each firefly

Determine the distance between each toe fireflies

Repeat

 For j=1;N

If(Ii<Ij) move firefly I towards firefly j end if

Update the attractiveness with distance r by exp[-γr]

Evaluate the new solution and update light intensity

End for j

End for i

Rank the fireflies and find the current global best

Until Termination condition is met

Fireflies will be drawn to other fireflies that are brighter.

Light intensity can be interpreted as an objective function

with a value corresponding to the observed problem's

objective function. The light intensity is proportional to the

value of the objective function in the maximisation problem,

but inversely proportional in the minimization problem. The

Firefly algorithm's goal in scheduling is to minimize makes

span so that the intensity of the light is inversely

proportional to makes span. Solutions with a short life

expectancy will have brighter light intensity, attracting

solutions with a longer life expectancy [18].

The firefly algorithm is an efficient met heuristic that

enhances the standard firefly algorithm with a new position-

based mapping method and a linear movement scheme. To

be more specific, we first use a novel position-based

mapping method to convert a firefly to a corresponding

solution, which is regarded as a task permutation, with the

currently best solution in mind. In addition, unlike the

traditional movement strategy [19], we build a linear

movement strategy that reduces the computational burden

when updating the firefly positions, allowing us to speed up

the searching procedure.

The FF algorithm is developed based on these rules to obtain

the optimal solution. This

Algorithm comprises four important steps:

Step 1: The FF population is randomly initialised and

consists of a set solution in this step.

Throughout our algorithm, the population consists of fog

devices or cloud servers.

Step 2: The distance between any two FF I and j at xi and xj

is calculated as follows:

 V=||xi -xj|| =

1

(,)2
D

k

xi xj k


 (7)

Here, D is the optimization parameter, which is equivalent to

the number of computational tasks in this study.

Step 3: As the distance increases, the attractiveness of the

FF, which is the objective function of our algorithm,

Paper ID: SE23616111856 41 of 49

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 6, June 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

decreases exponentially. At a distance v, Equation (8) gives

the FF's attractiveness.

β(vi,j) = β0e
-γ2ij

(8)

Where is the FF's brightness at distance v, and 0 is the FF's

brightness at initial attractiveness when v = 0. The

theoretical value of the light absorption coefficient is the

variance of attractiveness, and its value influences the speed

of algorithm convergence. Almost all of the time, the values

of 2[0.01, 100].

Step 4: The FF attraction and randomization walkthrough

Levy flights in this step. The FF's movement is calculated

using distance and attractiveness as follows:

xi = xi + β0e-γr
2
ij(xj - xi) + α∈i (9)

Where I is a random number vector derived from a Gaussian

or uniform distribution, and α is the randomization variable.

In our algorithm, the FF movement is equivalent to the task

movement to the fog or cloud servers [20].

Light intensity and attractiveness of firefly:

The Firefly algorithm is founded on two key concepts:

variation in light intensity and desirability formulation. For

the sake of simplicity, it is assumed that the attractiveness of

the firefly is determined by its bright light, which is linked to

the objective function [21].

A firefly's brightness I can be chosen as I(x) f(x) for a

maximisation problem at a specific location x.

Because attractiveness is relative, it should be judged by

other fireflies, and it will vary with distance rij between

firefly I and firefly j. As previously stated, light intensity

decreases with distance from its source, and light is also

absorbed by air, so attractiveness should be allowed to vary

with varying degrees of absorption. So, in its most basic

form, light intensity I(r) follows the inverse square law.

 ()
2

Is
I r

r
 (10)

Is represents the intensity at the source. The light intensity I

varies with distance r, with a constant light absorption

coefficient, i.e. Where Io is the initial light intensity, the

combined effect of the inverse square law and absorption

can be approximated as the following Gaussian form to

avoid the singularity at r = 0 in the expression Is/r2.:

I = I0e-γr
2
 (11)

The desirability of a firefly is proportional to the light

intensity seen by adjacent fireflies, which can be expressed

as:

β = β0e
-γr2

(12)

where β0 is the attractiveness at r = 0. Since it is often faster

to calculate1/(1 + r2) than an exponential function, the above

function, if necessary, can be approximated as shown in

(13).

β =
0

(1 2)r




 (13)

In the real-time implementation, β (r) is the attractiveness

function, which can be any monotonically decreasing

function, such as the one shown below.

β(r) = β0e
–γrm

(m≥1) (14)

For a fixed, the characteristic length becomes

r= γ-
1/m

 → 1,m →∞ (15)

Conversely, γ can be used as typical initial value for a

specific length scale Г in an optimization problem. That is

1
mr

 (16)

The distance between any two fireflies is calculated using

Cartesian distance method

, i jr = ||xi -xj|| =
, ,

1

(
d

i k j k

k

x x


 (17)

in(10) xi,k is the kth component of spatial coordinate xi of

ith firefly. In 2-D case, we have

 , i jr =
2() ()2i j i jX X y y   (18)

Firefly i is attracted to brighter firefly j and its movement is

determined by

xi = xi + β0e-γr
2

i,j(xj - xi) + α∈i (19)

Firefly movement: If firefly j is brighter than firefly I the

firefly I is attracted and moved to it. The firefly I to firefly j

movement can be described as

xi = xi +β0 exp(−γr 2 i j)(xj −xi) +α(rand −0.5) (20)

The first term in (12) is the current position of a firefly, the

second term is the firefly's attractiveness to light intensity

seen by neighbour fireflies, and the third term is the firefly's

random movement when there is no brighter firefly. The

coefficient is a randomizatiosn parameter with the value

[0,1], and rand is a random number with the value [0,1]

The movement of a firefly i which is attracted by a more

attractive i.e., brighter firefly j is given by the following

equation [2, 3, 20]:

xi = xi +β0 * exp(-γr
2
ij) *(xj -xi) + a *(rand -1/2) (21)

Where the first term refers to a firefly's current position, the

second term refers to a firefly's attractiveness to light

intensity seen by adjacent fireflies, and the third term refers

to.

In the absence of brighter fireflies, this is used to generate

random movement. The coefficient is a randomization

parameter determined by the problem of interest, whereas

rand is a uniformly distributed random number generator in

the space [0,1]. As we will see in this algorithm

implementation, we will use 0 = 1.0, [0, 1], and the

attractiveness or absorption coefficient =1.0, which ensures

that the algorithm quickly converges to the Ideal solution.

The brightness and attractiveness of firefly: When

comparing the brightness of two fireflies, the locations of the

fireflies must be taken into account. As the distance between

two fireflies grows, their attractiveness and brightness

decrease dramatically. Furthermore, if a firefly does not

Paper ID: SE23616111856 42 of 49

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 6, June 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

encounter another firefly in its immediate vicinity, it will fly

in an unknown direction. The algorithm compares the appeal

of the new and old firefly positions. If the new position has a

higher attractiveness value than the current position, the

firefly is moved to it; otherwise, the firefly remains in its

current position. The termination criterion of the FA is based

on an arbitrary number of iterations or a predetermined

fitness value.

According to the following equation, the brightest firefly

moves at random: Each firefly has a value that indicates how

well it can attract other fireflies in the swarm. As shown by

the comparison, the attractiveness will diverge with its

distance factor dij at the locations Xi and Xj, between the

two corresponding fireflies I and j.

dij =|Xi –Xj| (22)

The attractiveness function β of the firefly is computed as:

 β =β0 e−γ r2 (23)

where β0 is attractiveness at r=0 and  is coefficient of light

absorption.

The movement of the less bright firefly toward the brighter

firefly is computed by

Xi=Xi+β0 e−γr2ij (Xj-Xi) + α (r and-1/2) (24)

where α is the randomization parameter and rand is a

randomly selected number in the interval [0, 1].

2.3 Ant Colony Optimization:

Ants interact by leaving pheromone trails, so where ants go

within and around their ant colony is a stigmergic system.

Numerous ant species deposit a substance called pheromone

on the ground as they walk from or to a food source. Other

ants can detect this pheromone, and its presence influences

their path-finding behavior, as they tend to follow high

pheromone concentrations. The pheromone deposited on the

ground creates a pheromone trail, enabling the ants to locate

great food sources that have previously been recognized by

other ant.[22]

, ,

,

, ,

[] []

[] []

i j i j

i j

i j i j

h s

p

 

 

 

 





 (25)

Where is all the pheromone and is the reciprocal of the

distance between the two nodes. This probability determines

ant k at node I to choose node j with the highest p[i][j].The

Ant System ACO algorithm was the first to be proposed. Its

main feature is that all the ants who have completed the tour

keep updating the pheromone values. This same pheromone

update for ij, that is, for the edge connecting cities I and j, is

as follows: [23]

, ,

1

() (1). (1)
n

k

i j i j ij

i

t t   


    
 (26)

Where ρ is the evaporation rate, m is the number of ants, and

Δτkij is the quantity of pheromone per unit length laid on

edge (i,j) by the kth ant
k

ij ={ Q/Lk if ant k used edge (i,j) in its tour

 0 otherwise (27)

Where Q is a constant and Lk is the tour length of the kth

ant. We choose =1 and =1 to solve our assignment

probability. 0, the initial amount of pheromone is also equal

to1. Assuming that there are no pheromone evaporations is

equal to 1 [24].

Every ant in an ant colony optimization system is a

computation agent. Iteratively creates the optimal solution to

the issue. Solution nations are the solutions obtained at

intermediate states. Every ant in each generation begins to

move from state I to state 'j' in search of a locally optimal

solution. As just a result, in each iteration, each ant uses

probability to compute a set of feasible solutions to its

current state and moves to one of the optimal solution states.

The probability of Pijk moving to state j from state I for every

ant k is generally determined by two parameters: the

coefficient of vaporisation phenomenon or pheromone

concentration denoted by ij indicating the previous move

and visibility of the move denoted by ij indicating the past

worth of the move. In each iteration, these values are

updated to find the best optimal solution. To achieve an

optimal solution, their value may increase or decrease in

each iteration based on their effect. In general, Equation

gives the probability of ant k moving from state I to state j

(28).

()()

_ ()()

k iz iz
ij

iz iz

P
VM listallowedk

 

 

 

  



 (28)

 •𝜏𝑖𝑗 denotes the pheromone concentration for the

transition from state I to state j.

 0≤ α is a parameter that controls the pheromone

concentration's influence.

 𝜂𝑖𝑗 represents the desirability of transitioning from state I

to state j. It is computed using priori information, i.e., a

priori knowledge, typically 1/dij, where d is the

distance).

 β1 is a parameter that controls the effect of 𝜂𝑖𝑗.
 VM_list allowed, where allowed kVM_list is a list of

VMs allowed by ant k.

 The overall result of this update is that when one ant

discovers a path to food sourced from the colony, the

remaining ants are likely to follow that path, and the

positive feedback of previous ants who have already

discovered the path eventually leads to all ants following

the shortest path [25].

Algorithm:

Input: An instance p of a CO problem model p = (S,f,Ω)

 intializePheromoneValues (T)

S bs ← null

While termination conditions not met do

𝔖iter ← ∅

For j=1,…,na do

S ← ConstructSolution (T)

If S is a valid solution then

S ← localsearch(S) {optional}

If (f(S) < f(S bs)) or (S bs = null) then S bs ← S

𝔖iter ← 𝔖iter ∪ { S }

End if

End for

Applypheromoneupdate(T, 𝔖iter, S bs)

End while

Paper ID: SE23616111856 43 of 49

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 6, June 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Output: the best so far solution S bs

ACO is inspired by the foraging behavior of ant colonies.

Indeed, real ants have inspired many researchers [26], and

the ants approach has been used by many researchers for

problem solving in a variety of fields. This strategy is known

as ACO after its inspiration. The ants collaborate to find new

food sources while also using existing food sources to shift

food back to the nest.

The movements of these ants independently update a

solution set. There are two types of ant traversal in this

system.

1) Forward movements-Ants move forward to extract food

or search for food sources.

2) Backward movements-In this type of movement, ants

traverse back to the nest after gathering food from food

sources.

The ACO is a unique algorithm for several reasons,

including the fact that the optimum solution is built not by a

single entity but by several entities that traverse the length

and breadth of the network and then build upon a solution

individually. Many researchers [27] have improved upon the

ACO's pheromone updating phenomenon in order to

improve on the results. It has been used by researchers to

improve various tasks such as task scheduling and

optimizations in cloud edge computing [28].

Every ant in a generation constructs a solution step by step

by making several probabilistic choices. In general, ants that

find a good solution mark their paths through the decision

space by sprinkling pheromone on the path's edges. The

pheromone attracts the next generation of ants, causing them

to search the solution space near previous good solutions.

Aside from pheromone values, ants are usually guided by

some problem-specific heuristic when evaluating trial

solutions. To use ACO to solve a Cost-Performance Trade-

off Problem (CPTOP), the problem must first be

transformed into a Travel Salesman Problem (TSP).

Furthermore, the cost and performance objectives should be

merged into a single optimization problem [29].

2.4 Particle Swarm Optimization

Kennedy and Eberhart [30] proposed particle swarm

optimization (PSO) as a population-based stochastic

optimization algorithm. The technique is used to solve

optimization problems by mimicking the social behavior of

bird flocks, fish schools, and other animal societies that

cooperate and share information to improve their position

without relying on a leader. In this technique, a population

of individuals, which are politician running alternatives

defined as particles, move in a provided solution space based

on their current position Xik and current velocity Vi k for

the kth iteration. Depending on the optimization problem,

the quality of each particle is measured using a predefined

fitness function. The movement of each particle is

determined by its best known personal position pBesti, as

well as the best known global position gBesti for the entire

swarm. This process guides the swarm to the best position

after several iterations of the search process. The velocity

and position of the particle are described further below:

 vi
k+1

=ω Vi
k
+ c1r1(pBesti -Xi

k
) +

c2r2(gBesti - Xi
k

(29)

Xi
k+1

 = Xi
k
 + ViK (30)

Where ω is the inertia weight, r1 and r2 are random numbers

between (0,1) and c1 and c2 are the learning factors.[31].

Algorithm:

Initialize Population

for t=1 : maximum generation

 for i=1 : population size

 if f(xi,d(t)) < f(pi (t)) then pi(t) = xi,d(t)

 f (pg (t)) = min (f(pt(t)))

 end

 for d=1 : dimension

  i,d(t+1) = ω i,d(t) + c1r1(pi – xi,d(t)) + c2r2(pg –

xi,d(t))

 xi,d(t+1) = xi,d(t) +  i,d(t+1)

 if  i,d (t+1) > max then  i,d(t+1)= max

 else if  i,d (t+1) >  max then  i,d (t+1) = max

 else if  i,d (t+1) <  min then  i,d(t+1) =  min

 end

if xi,d (t+1) < xmax then xi,d (t+1) = xmax

else if xi,d(t+1)<xmin then xi,d (t+1) = xmin

 end

 end

 end

end

In PSO, a swarm of q particles is defined first. A candidate

solution is represented by a particle i(i 1,..., q). The positions

of the particles xik move over time, or more precisely the

algorithm's iteration steps k, according to their velocity of

displacement vik in equation (26) and the displacement rule

in equation (26) (27). These particles attempt to follow the

population's best leader gbest (which has the best solution)

and improve their own best results pbest. If a particle

outperforms the leader, it becomes the population's new

gbest leader. The operation is repeated until the number of

iterations reaches a certain limit kmax or a certain

appropriate situation has been managed to reach.

 (31)

1 1k k k

i i ix x    (32)

Consider n tasks to assign to m cloud resources. The

expression Sp represents a solution (29). This expression is

written as a vector of dimension n. The n elements of the

vector represent the tasks, and the value g of a j-th element

represents the resource Rj that will process the task, as

shown in equation (29):

Sp = {T1
Ra

 , T2
Rm

,,,,,,,, Tj
Rg

 ,,,,,,Tn
Rf

} = [a,m,,,,,,g,,,,,,f] (33)

In our approach, we consider that this solution 𝑆p is

equivalent to the position 𝑥i of the particle 𝑖 of the PSO. 𝑥i is

represented by a vector of size 𝑛. A particle move with a 𝑣i

velocity. 𝑣i is also represented by a vector of size 𝑛[32].

Self-organization in swarms through three basic ingredients

as follows.

1) Strong dynamical nonlinearity (often involving positive

and negative feedback): positive feedback promotes the

formation of convenient structures, whereas negative

Paper ID: SE23616111856 44 of 49

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 6, June 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

feedback counterbalances positive feedback and aids in

the stabilisation of the collective pattern.

2) Exploration and exploitation balance: SI identifies an

appropriate balance to provide a valuable mean artificial

creativity approach.

3) Numerous interactions: swarm agents use information

from neighbouring agents to publish awareness all

through the network [33].

PSO algorithm can thus be summarized as follows: PSO

algorithm is a swarm-based search process in which each

individual is called a particle defined as a potential solution

of the optimised problem in D dimensional search space, and

it can memorise the optimal position of the swarm and its

own, as well as the velocity. The particle information is

combined in each generation to adjust the velocity of each

dimension, which is used to compute the particle's new

position. Particles in the multidimensional search space

constantly change their states until they reach balance or

optimality, or go beyond the computation limits. The

objective functions introduce a unique connection between

the different dimensions of the problem space. Many

empirical evidences have demonstrated that this algorithm is

a useful optimization tool.

The Improvement of Particle Swarm Optimization

Algorithm

Inertia weights

An inertia weight ω is a proportional agent that is related to

the previous time's speed, as well as the method for

changing the speed is as follows:

1

1 1 2 2() ()k k k k k k k k

id id id id d idv c r pbest x c r gbest x      
(34)

Inertia weights can be used to control the influence of the

previous speed on the current speed. The larger is, the

greater the PSO's searching ability for the whole, and the

smaller is, the greater the PSO's searching ability for the

partial. In general, is equal to 1, so there is a lack of

searching ability for the partial at later stages of the several

generations. According to the experimental results, PSO has

the fastest convergence rate when is between 0.8 and 1.2.

During the experiment, is restricted from 0.9 to 0.4

according to the linear decrease, which causes PSO to search

for a larger space at the start and quickly locate the position

to the most idealist solution. As ω is decreasing, the

particle's speed will also slow down in order to find the

delicate partial. The method accelerates convergence and

improves the PSO function. Whenever the problem to be

solved is very complex, this method causes PSO's searching

ability again for entire at a later period after several

generations to be insufficient, and the most optimist solution

cannot be found, so inertia weights can be used to solve the

problem [34].

To execute task scheduling in the cloud edge, Particle

Swarm Optimization (PSO) is used. Because customers'

demands must be met to the greatest extent possible in the

cloud environment, selecting a strategy for task scheduling

of workflow is critical [35]. Workflow is a computational

model of a working process that represents the logics and

rules that govern how to organise the front and back ends of

a working process and calculates it in a computer using the

appropriate model [36]. The main issue that the workflow

should address is that it should do everything possible to

achieve the goal of a service and transmit information,

resources, or tasks automatically according to specific rules

using computers between a large numbers of participants

[37].

3. Experimental Results

Inside this test, we used CloudSim 3.0 to implement the

algorithms for tasks that need to be processed in the cloud,

by adding the bindCloudletToVM method in the Datacenter

Broker class; the LOA algorithm based on the catastrophe

PSO, ACO, FF algorithm is added to carry out the

simulation experiment. Data such as resource computing

power and task calculations are derived from MATLAB data

that has been randomly generated. We select a different

number of tasks, and the experimental data from various

iteration times is analyzed and compared with the time-

based algorithm (LOA) and simple ACO, FF, PSO

algorithms under another data circumstances. (LOA) task

scheduling algorithm that minimizes the completion time.

Moreover, our simulations were performed on a PC with

Intel Core i5-7400 processor @ 3.0 GHz CPU and 8 GB of

RAM.

In the laboratory, cloud computing, edge computing, and

user terminal environments were built, and the connection

between the actual edge and the cloud data centre was

simulated using bandwidth controllable network equipment,

with the end environment being a local area network of

computer equipment components connected to the edge

environment. Figure 3 depicts the complete experimental

verification environment.

Figure 3: Experiments Environment

Task delay:

Figure 4 depicts the task delays under various offered loads

in order to investigate the performance limits of various

scheduling schemes. Each result represents a 107-slot

simulation run. Because the optimal throughput region is

defined as the set of arrival rate vectors in which queue

lengths and thus delays remain finite, we can consider the

traffic load as the boundary of the ideal throughput

region. Because LOA has a considerably higher

throughput, despite the fact that the end-to-end delay

appears to be similar between FIREFLY and LOA. LOA

is a vast improvement over FF, ACO, and PSO. A

Paper ID: SE23616111856 45 of 49

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 6, June 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

comparison of the delay rates in edge computing task

scheduling is calculated via the following formula.

Delay rate =∈ turnRoundTime – ∈ length Xlength /∈ length

100%, Where turnRoundTime is the turnaround time of the

tasks and length is the length of the tasks.

Figure 4: Comparison of Task Delay

Task Completion Time:

The completion time is the time difference between the

starting and finishing times. The graph below depicts the

task completion time as well as the energy consumption.

Figure 5 depicts the iterative process of combining ACO,

PSO, Firefly, and LOA to achieve the best total time and

lowest total cost. In terms of completion time, the LOA

algorithm outperforms the ACO, PSO, and Firefly

algorithms. The eight tasks arrived four times at 0, 220, 440,

and 660 Figure 4 shows that when the task volume is small,

the completion time of each algorithm is not significantly

different. that the four algorithms have the same completion

time in the first iteration, but as the number of iterations

increases, the convergence rate and accuracy outperform the

edge cloud scheduling results of LOA, ACO, PSO, and

Firefly. As the task volume increased, so did the completion

time of each algorithm. LOA outperforms the second fastest

FF, PSO, ACO algorithm by 6.6 %faster than the second

fastest FF, PSO, and ACO algorithm.

Figure 5: Task Completion Time

Execution Time:

TASK requests with a growing number of cloud servers and

a fixed number of edge servers and tasks. It demonstrates

that the execution times of requests decrease as the number

of cloud servers increases. This is due to the task requests

being distributed across multiple cloud servers. However,

when comparing execution times with increasing cloud

servers (Figure 5) to increasing edge servers (Figure 6),

there is little difference, despite the fact that the processing

capability of the cloud servers is greater than that of the edge

servers. This is because all requests will first be routed to an

edge-server, which will determine whether the request

should be executed on the edge or sent to the cloud. Thus,

increasing the number of cloud servers has no significant

impact because requests must wait in the edge-decision

server's queue, resulting in an increase in execution time. It

is clear from the results that as user requests increase, so

does the time required for resource allocation. The time

required to allocate resources is determined by resource

availability as well as the distance between the resources and

the client (request place). Figure 5 depicts the iterative

process of combining ACO, PSO, Firefly, and LOA to

achieve the best completion time and total cost. In terms of

execution time, the LOA algorithm beats the ACO, PSO,

and Firefly algorithms.

Figure 6: Execution Time

Average Make span:

The graph compares the make span to time. The results

demonstrate that the proposed LOA algorithm

outperforms PSO, ACO, and FF. The following

experiments compared the average make span with various

tasks set. Figure 7 depicts the average make pan of the LOA,

PSO, ACO, and FF algorithms. It can be seen that as the

number of tasks increases, LOA takes less time than FF,

PSO, and ACO algorithms. This implies that the LOA

algorithm outperforms the ACO, PSO, and FF
algorithms.

Paper ID: SE23616111856 46 of 49

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 6, June 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Figure 7: Average Makespan

Energy consumption:

It is an obvious feasibility of the ACOBF exhibition in terms

of meeting the person's time constraints. Even though

previously stated, duties sent to the Cloud are expected to be

independent of one another. The results explain the ACO,

PSO, FF, and LOA algorithms. When a comparable number

of task units/tasks are received by the Cloud, make span and

energy increase dramatically, whereas in the case of LOA,

make span and energy either reduce or vary. This one is

due to the algorithm's ability to preserve the convergence

achieved by having the starting point close to the minimum.

Figure 8 depicts the LOA algorithm's behaviour in

comparison to previous schemes for an average energy

consumption scenario with a variable number of nodes.

According to the findings, the LOA algorithm significantly

reduces network energy usage when compared to traditional

methods. Just a subset of tasks is held accountable for

achieving balanced energy consumption.

Figure 8: Energy Consumption

Average response time:

Figure 9 depicts the average reaction time results. Because

the RR algorithm was specifically designed for time sharing,

it outperforms all other approaches in terms of average

response time.

Figure 9: Average Response Time

Using a fair resource allocation strategy ensures that each

service request has a set time frame. If the service

processing time exceeds the system's time quantum, the

sample is removed from the average response time

calculation. For instance, if the previous service request had

a lengthy task schedule, the average response time would

increase. Because the proposed LOA algorithm sequentially

inserts tasks into the queue, its average response time is

slightly longer than that of FF, PSO, and ACO. Although the

priority algorithm can sort tasks based on the priority of

service requests, low-priority tasks are easily delayed,

increasing the average response time.

Energy Latency:

It is the time it takes the edge nodes to complete the tasks. In

terms of latency, Figure 10 compares the efficiency of ACO

and LOA-based task execution optimization. When

compared to the ACO, PSO, and FF algorithms, LOA-based

task execution optimization in a cloud-edge computing

system achieves less latency.

Figure 10: Energy Latency

4. Conclusion

To develop task scheduling techniques in cloud edge

computing, various optimization algorithms have been used.

The PSO, FF, ACO, and LOA algorithms were used to

develop a task-scheduling algorithm for cloud edge

computing in this paper. The cloud server can select which

tasks will be performed at the edge devices, according to this

optimization solution. Finally, the results demonstrated

that the proposed algorithm is more efficient. Using the

Paper ID: SE23616111856 47 of 49

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 6, June 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Lion Optimization Algorithm to reduce energy consumption

and make span of the cloud-edge system after task

completion time. Experiments show that the existing ACO,

PSO, LOA, and FF algorithms satisfy the requirements of

users in task scheduling in cloud edge computing

effectively.

References

[1] M. Satyanarayanan, “the emergence of edge

computing,” computer, vol. 50, no. 1, pp. 30 39, 2017.

[2] Shida lu1, rongbin gu1, hui jin2, liang wang1, xin li 2,

(member, ieee), and jing li,”qos-aware task scheduling

in cloud-edge environment” 2021.

[3] Sapienza, M.; Guardo, E.; Cavallo, M.; La Torre, G.;

Leombruno, G.; Tomarchio, O. Solving critical events

through mobile edge computing: An approach for

smart cities. In Proceedings of the 2016 IEEE

International Conference on Smart Computing

(SMARTCOMP), St Louis, MO, USA, 18–20 May

2016; pp. 1–5.

[4] Lin, Yezhi.; An analytic computation-driven algorithm

for Decentralized Multicore Systems. Future Gener.

Comput. Syst. 2019, 96, 101–110.

[5] M. Jia et al., “Optimal cloudlet placement and user to

cloudlet allocation in wireless metropolitan area

networks,” in INFOCOM 2016.

[6] Z. Xu et al., “Efficient algorithms for capacitated

cloudlet placements,” IEEE Trans. on Parallel and

Distributed Systems, vol. 27, no. 10, 2016.

[7] Capacitated cloudlet placements in wireless

metropolitan area networks,” in Local Computer

Networks (LCN) 2012.

[8] Jinke Ren, Guanding Yu, Yinghui He, and Geoffrey

Ye Li, Collaborative Cloud and Edge Computing for

Latency Minimization”, IEEE TRANSACTIONS ON

VEHICULAR TECHNOLOGY, 2019

[9] HealthEdge: Haoyu Wang∗, Jiaqi Gong†, Yan

Zhuang∗, Haiying Shen∗, John Lach, “Task

Scheduling for Edge Computing with Health

Emergency and Human Behavior Consideration in

Smart Home”,

[10] Karuppaiah Geetha, Veerasamy Anitha, “An

evolutionary lion optimization algorithm-based image

compression technique for biomedical applications”,

2019, https://doi.org/10.1111/exsy.12508

[11] K. Kaur and Y. Kumar, “Swarm intelligence and its

applications towards various computing: A systematic

review,” in Int. Conf. on Intelligent Engineering and

Management (ICIEM), IEEE, vol. 2013,no. 7, pp. 1–6,

2020.

[12] S. Saranya and 2N. Sabiyath Fatima,”Efficient

Handling of Medical Data Classification in Cloud-

Edge Network using Optimization Algorithm”,

Journal of Computer Science, 2021, 17 (11):

1116.1127

[13] Maziar Yazdani, FariborzJolai, “Lion Optimization

Algorithm(LOA): A nature-inspired metaheuristic

algorithm”, 2015, Journal of Computational Design

and Engineering,

[14] K. Thenmozhi, S. Udhaya, n. Vinothini, V.

Nagaraju,”an adaptive wsn clustering scheme using

lion optimization algorithm to maintain coverage area

in wireless sensor network”, international journal on

recent researches in science, engineering & technology

(ijrrset)

[15] S.Silambarasan, m. Savitha devi,” enhanced lion

swarm optimization algorithm with centralized

authentication approach for secured data transmission

over wsn, ictact journal on communication technology,

september 2021, volume: 12, issue: 03, issn: 2229-

6948(online)

[16] Adil Yousif Aboalgassim Alfaki,”Job Scheduling

Approaches Based On Firefly Algorithm For

Computational Grid”, 2013

[17] Ibrahim Ahmed Saleh, Omar Ibrahim Alsaif Sundus

Abduttalib Muhamed, Essa Ibrahim Essa,”Task

Scheduling for cloud computing Based on Firefly

Algorithm,: journal of physics,2019

[18] Debbie Kemala Sari, Sumiharni Batubara, Raden Roro

Sindyastuti S,“ Scheduling design for Job Shop

Production Using Firefly Algorithm to Minimize Mean

Tardiness,”Proceedings of the International

Conference on Industrial Engineering and Operations

Management Dubai, UAE, March10-12,2020

[19] R. SundarRajan, V. Vasudevan, and S. Mithya,

“Workflow scheduling in cloud computing

environment using firefly algorithm,” in International

Conference on Electrical, Electronics, and

Optimization Techniques, 2016, pp. 955–960.

[20] Rabab Farouk Abdel-Kader, Noha Emad El-SayadID*,

Rawya Yehia Rizk,”Efficient energy and completion

time for dependent task computation offloading

algorithm in industry 4.0”, PLOS ONE, 2021

[21] Sankalap Arora, Satvir Singh “The Firefly

Optimization Algorithm: Convergence Analysis and

Parameter Selection”, International Journal of

Computer Applications (0975 – 8887), Volume 69–

No.3, May 2013

[22] An Introduction to Ant Colony Optimization”,Marco

Dorigo and Krzysztof Socha IRIDIA, Universit´e Libre

de Bruxelles, CP 194/6, Av. Franklin D. Roosevelt 50,

1050 Brussels, Belgium http://iridia.ulb.ac.beApril 30,

2007,pp.6-7.

[23] M. Dorigo, L M Gambardella “Ant colonies for the

traveling salesman problem”. BioSystems, 1997 [11]

“An Ant Colony Optimization Algorithm for Solving

Travelling Salesman Problem”, Krishna H. Hingrajiya,

Ravindra Kumar Gupta, Gajendra Singh Chandel

[24] D.Prasanth Rao, Mr.E.Madhukar,” A compartive

study between Hungarian and Antcolony optimization

algrorithm for task scheduling in the Cloud,

International Journal Of Modern Engineering

Research, Volume 11, Issue 2, February-2020 ISSN

2229-5518

[25] Sambit Kumar Mishra, Bibhudatta Sahoo and P. Satya

Manikyam, “Adaptive Scheduling of Cloud Tasks

Using Ant Colony Optimization”,

[26] M. Dorigo, V. Maniezzo and A. Colorni, Ant System:

Optimization by a Colony of Cooperating Agents,

IEEE Transactions on Systems, Man, and Cybernetics,

PP. 29-41, 1996.

[27] C.W. Chiang, Y.C. Lee, C.N. Lee and T.Y. Chou, Ant

Colony Optimization for Task Matching and

Scheduling, IEE Proceedings on Computers and

Digital Techniques, 153 (6), pp. 373-380, 2006.

Paper ID: SE23616111856 48 of 49

https://doi.org/10.1111/exsy.12508

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 6, June 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

[28] J. Sun, S. Xiong and F.M. Guo, A New Pheromone

Updating Strategy In Ant Colony Optimization,

Proceedings of the International Conference on

Machine Learning and Cybernetics, pp. 620-625, 2004

[29] Mingzhang Wu, Janne Koljonen and Timo Mantere,”

Addressing Resource Allocation Issues in Cloud

Computing Environment with Ant Colony

Optimization, Proceedings ISBN 978–952-5183-54-2,

[30] J. Kennedy and R. Eberhart, “Particle swarm

optimization in: Neural networks,” in Proceedings

IEEE International Conference on 1995, 1942, pp.

1942–1948.

[31] Dineshan Subramoney, Clement Nyirenda, “PSO-

Based Workflow Scheduling: A Comparative

Evaluation of Cloud and Cloud-Fog Environments,

[32] Multi-Criteria Aware Task Scheduling Algorithm

Based on PSO For Fog Computing, ISSN: 2509-0119.

© 2021 International Journals of Sciences and High

Technologies, Vol. 30 No. 1 December 2021, pp.205-

219

[33] Yudong Zhang,1 Shuihua Wang,1,2 and Genlin Ji1,”A

Comprehensive Survey on Particle Swarm

Optimization Algorithm and Its Applications”,

Hindawi Publishing Corporation Mathematical

Problems in Engineering Volume 2015, Article ID

931256, 38 pages

[34] Qinghai Bai, “Analysis of Particle Swarm

Optimization Algorithm”, journal of computer and

information science, vol.3, no.1, 2010

[35] Y. Fang, F. Wang, J. Ge. “A task scheduling algorithm

based on load balancing in cloud computing”, Web

Information Systems and Mining. Springer Berlin

Heidelberg, (2010), pp.271 277.

[36] M. Xu, L. Cui, H. Wang, Y. Bi. “A multiple QoS

constrained scheduling strategy of multiple workflows

for cloud computing”, Proceedings of the IEEE

International Symposium on Parallel and Distributed

Processing with Applications, (2009) August 10-12;

Chengdu, China.

[37] A Vouk M. “Cloud computing–issues, research and

implementations”, CIT. Journal of Computing and

Information Technology, vol. 16, no. 4, (2008), pp.

235-246.

Author Profile

K. Vinothkumar received his M.Phil Degree

from Periyar University, Salem in the year 2015.

He has received his M.Sc., Degree from

Hindusthan College of Arts and Science, Coimbatore

affiliated to Bharathiar University, Coimbatore in 2013. He

is pursuing his Ph.D Degree (Part-Time) in Sri Vijay

Vidyalaya College of Arts & Science, Dharmapuri,

Tamilnadu, India. He is working as HOD Cum Assistant

Professor in Department of Computer Science at Kavitha’s

College of Arts and Science (Co-Ed.,), Vaiyappamalai,

Tiruchengode, Namakkal. His current research of interests

includes Edge Computing, Cloud Computing, Mobile

Computing and Ad hoc Networks.

Dr. D. Maruthanayagam received his Ph.D

Degree from Manonmaniam Sundaranar

University, Tirunelveli in the year 2014. He

received his M.Phil Degree from Bharathidasan

University, Trichy in the year 2005. He received his M.C.A

Degree from Madras University, Chennai in the year 2000.

He is working as HOD Cum Professor, PG and Research

Department of Computer Science, Sri Vijay Vidyalaya

College of Arts & Science, Dharmapuri, Tamilnadu, India.

He has above 22 years of experience in academic field. He

has published 7 books, more than 60 papers in International

Journals and more than 30 papers in National &

International Conferences so far. His areas of interest

include Computer Networks, Grid Computing, Cloud

Computing and Mobile Computing.

Paper ID: SE23616111856 49 of 49

