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Abstract: Edge-cloud computing involves deploying a set of edge servers near mobile devices so that these devices can schedule tasks to 

the servers with low latency. One fundamental and critical problem in edge-cloud systems is determining how to dispatch and schedule 

tasks in such a way that the task response time (defined as the interval between the release of a task and the arrival of the computation 

result at its device) is minimized. Edge computing (EC), which distributes resources to the network edge, is gaining traction in 

applications requiring low latency and high reliability. Nowadays, EC provides resources in a decentralized manner; a large number of 

cloud-based services are deployed on the network's edge, as processing data at the edge can reduce costs. This paper presents an 

optimised scheduling algorithm based on the Lion Optimization Algorithm (LOA), PSO (Particle Swarm Optimization), Firefly 

Algorithm (FF), and Ant Colony Optimization (ACO) to improve cloud edge task scheduling. To achieve a better result in terms of 

reducing energy consumption and increasing the lifespan of the cloud-edge system after task completion (LOA). The simulation results 

demonstrate the efficacy of the comparison by employing research parameters such as Task delay, Task Completion Time, Execution 

Time, Average Make span, Energy consumption, Average response time, and Energy Latency. 

 

Keywords: Edge Cloud Computing, Lion Optimization Algorithm, Particle Swarm Optimization, Firefly Algorithm, Ant Colony 
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1. Introduction 
 

Edge computing is a new technology that performs data 

analytics and storage close to the data source (i.e., mobile 

devices) to reduce network latency. This computing 

paradigm has piqued the interest of academics and industry 

alike. Edge computing, due to its characteristics of being on 

the network's edge and close to mobile terminal equipment, 

can reduce data transmission delay and improve real-time 

performance of local businesses [2]. Edge computing is one 

of the potential solutions to these problems. Edge 

computing, in particular, is a distributed computing 

paradigm that enables computation and data storage to be 

brought as close to the relevant data sources as possible. 

Edge computing technology has been proposed to meet the 

requirements of low latency and reduced bandwidth 

consumption [3]. Edge-cloud data centres are a subset of 

remote cloud data centres that have fewer computational 

capabilities, slower processing speeds and less memory 

capacity than remote cloud data centres [4]. Mobile devices 

can offload tasks to edge clouds and receive computing 

results with low network latency. Even so, since these 

specially deployed servers are on a smaller scale than remote 

cloud data centres, the resource and computation capabilities 

of edge-clouds are relatively limited when compared to 

remote cloud data centres. Whatever given edge-cloud may 

not be able to support a wide range of mobile applications. 

As a result, edge-clouds are typically backed up by a remote 

cloud via the Internet, allowing them to offload some of 

their more demanding jobs to the remote cloud. Connecting 

multiple edge-clouds (e.g., via a metropolitan area network) 

in order to improve mobile user services by sharing and 

balancing workloads among the able to participate edge-

clouds [5–7]. Edge computing brings the power of cloud 

data centres to the network's edge, bringing it closer to IoT 

devices. Although edge nodes have more resources than IoT 

devices, they fall short of cloud data centres. Many 

researchers are currently combining cloud data centres and 

edge nodes to fully leverage each other's advantages and 

compensate for their respective disadvantages. Hierarchical 

computing can be realised in the cloud and edge coexistence 

system, in which tasks can be processed opportunistically by 

both the edge node and the cloud server. Non-

computationally intensive tasks, for example, can be 

processed at the edge node to achieve lower end-to-end 

latency and better energy efficiency. On the other hand, it is 

preferable to offload computationally intensive tasks to the 

cloud server in order to take advantage of its vast computing 

capacity. As a result, effective collaboration between cloud 

computing and edge computing is critical for performance 

enhancement. [8]. Resource allocation is important in edge 

computing for assigning tasks (generated by local devices) 

to the remote cloud (the network's central) or local 

servers/devices (the edge of the network). A common 

approach for resource management in edge computing is to 

assign tasks to remote cloud or local servers based on factors 

such as energy, bandwidth consumption, and latency. Based 

on their goals, these methods can be divided into three 

categories [9]. 

 

 Reducing energy consumption 

 Improving system throughput  

 Reducing task completion time  

 

There's really edge computing technology, that also sends 

the service to be processed to a server closer to the user 

terminal, solving the problem that the terminal's processing 

power is insufficient, the hardware condition is poor, and the 

distance to the cloud is too long, resulting in an excessive 

delay response. Completing a business calculation requires 

communication and computing resources from the edge 

computing server throughout the process of applying edge 
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computing technology. As a result, optimizing the 

computational resource allocation strategy can reduce the 

time and system loss required in the calculation process. The 

problem of optimising cloud edge computing resource 

allocation was solved by using mutual iteration of the lion 

optimization algorithm and the firefly algorithm, reducing 

calculation energy consumption and delay. 

 

2. Optimization Algorithms 
 

2.1 Lion Optimization Algorithm: 

 

LOA is inspired by the nature of lions. Lions are known for 

their high levels of cooperation and aggression. Lions are 

divided into two social groups: resident lions (RL) and 

nomad lions (NL) (NL). Pride groups are common among 

RL. Whereas the second type moves out infrequently, either 

in pairs or individually. Lions hunt in packs, and several 

lionesses work together to encircle the prey from various 

angles in order to capture it. Male lions and a few female 

lionesses rest and await the hunter lionesses. The lions can 

mate at any time, and a lioness can mate with multiple 

partners. Lions use their urine to mark their territory. The 

lion's behaviours are mathematically defined in LOA in 

order to model the optimization algorithm. A collection of 

arbitrarily produced solutions known as lions generates the 

initial population in LOA. Some members of the initial 

community (percent N) are chosen as NL, while the 

remainder of the population (RL) is randomly divided into P 

subsets (prides). S represents the number of females, and the 

remaining lions are males. The best-attained solution in the 

previous iterations for each individual lion is known as the 

best-visited location, and it is updated during the 

optimization process. The lion's behaviours are 

mathematically defined in LOA in order to model the 

optimization algorithm. A collection of arbitrarily produced 

solutions known as lions generates the initial population in 

LOA. Some members of the initial community (percent N) 

are chosen as NL, while the remainder of the population 

(RL) is randomly divided into P subsets (prides). S 

represents the number of females, and the remaining lions 

are males. The best-attained solution in the previous 

iterations for each individual lion is known as the best-

visited location, and this is revised during the optimisation 

problem. Every pride removes the young males from the 

group, and it becomes NL when they reach maturity and 

their strength is lower than the resident males. Furthermore, 

an NL (both male and female) moves at random in search of 

a better location (solution). In line with this, some resident 

females migrate from one pride to another or change their 

lifestyle to become NL and vice versa. The weakest lion dies 

or is killed due to a variety of factors, including a lack of 

food and competition. In the current study, the above 

procedure was repeated until the termination criterion was 

met. The various phases of the LOA are described below 

[10]. 

 
Figure 1: Nature of LOA 

 

Lion Optimization process: 

The lion algorithm's process is as follows [11]: 

 Create random populations 

 Create prides and lions. 

 One lion particle = Choose a female lion at random for 

hunting. Each female lion chooses the best spot in the 

pride. The weakest lion pride is expelled from the 

population and becomes a nomad. Each pride assesses 

the rate of immigration and becomes a nomad. 

 Evaluate the fitness function to select the best females 

and fill the empty places which of  the female lions 

which are migrated from the territory 

 

Algorithm: 

Input: Different set of factors 

(Asi,.Cki,.Poi,.Ci 

.Qi}.{𝛔1.𝛔2.R.𝛃2.Dr.v3}.{e1,𝛚1}.{m,k,l,𝛄g.F.G.E} 

Output: Optimal set of factors for edge devices 

i←1:j←1:St←0:Dt←0; 

while(i<N) 

Computeh Mop,. Si and Di 

i←i+1: 

While (j≤N) 

Dt← Dt
-1

+D𝛄. 

St←St
-1

+Sr 

Compute Tw.Titgar.C.Cr and 𝛕high; 

Initialize the number of lions (edge devices) and 

iterations: 

                Create an atbitrazy result for every lion: Assign 

pride and nomad lions; while (tr< max iteration) 

for (every pride) 

 

A few females are chosen at random to hunt; 

 

The rest of the females travel toward the most excellent 

sites in the region: 

 

Every male roam in %R of the region; 

 

%Ma of female's note with only one inhabitant males: The 

weakest male is rejected by pride and tutus into a nomad: 

for (every nomad lion) 

 

Males and females travel arbitrary distances in exploring 

space: 

%Ma of female's mate with only one male: 

Nomad males hit pride; 
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for (every pride) 

% I of females immiigrate from pride and tum into nomads:  

Each nomad lion gender is ranked based on its objective 

range: 

 

Most excellent females are chosen and circulated to pride. 

satisfying empty sites: 

 

Nomad lions with the minimum objective content will be 

Rejected depending on the highest allowed quantity of 

every gender; 

 end for 

  end for 

end for 

end while 

obtain the optimal set of TQP,TEC,TCE,
s

iE , ,

c

i kE ,Thigh for 

edge devices; 

cloud decides which tasks will be carried out at the edge 

devices;  

end while 

end while 

end      

      

Initialization: Initially, the population is generated 

arbitrarily across the solution space. Each outcome is known 

as a lion (edge devices). A lion (edge devices) is denoted in 

a d-dimensional optimization dilemma, i.e., d set of 

determining factors, as:  

 

Lion (edge devices) =[l1,,,,,,ld]                                    (1) 

 

The fitness range of every edge device (lion) is determined 

by assessing the objective function given in (16) as: 

 

f (edge device) = f(l1,,,,,,,,,,ld)                                       (2) 

 

In the initial stage, dpop solutions are generated arbitrarily in 

exploring space, and a percentage d of completed results is 

arbitrarily chosen as migrant edge devices. The remaining 

population is divided in to the pride at random. Evey 

solution had a specific gender and remained stable 

throughout the optimization task. Each lion observes its 

most excellent entered site while searching. Each pride's 

region is created based on such observed sites. As a result, 

for each pride, observed sites (the best entered sites) 

generate that pride's region via its representatives [12]. 

 

Migration  : Motivated by the lion swap life and migratory 

behaviour in nature, when one lion travels from one pride to 

another or switches its lifestyle and resident female becomes 

nomad and vice versa, it increases the diversity of the target 

pride by its position in the previous pride. The lion's 

migration and switch lifestyle, on the other hand, create a 

bridge for exchange of information. The maximum number 

of females in each pride is determined by S% of the pride's 

population. Some females were chosen at random to be 

nomads by migration operators. The number of migrated 

females in each pride is equal to the number of surplus 

females in each pride multiplied by the maximum number of 

females in a pride. Once selected females migrate from 

prides and become nomads, they are separated into new 

nomad females and old nomad females based on their 

fitness. The best females from among the m are then chosen 

at random and distributed to prides to fill the migratory 

females' empty spots. This procedure maintains the diversity 

of the whole population and share information among prides 

[13]. 

 

Movements towards Safety: Only a few female lions hunt 

for prey, while the rest stay in safe territory. The best 

positions for each territory are calculated and saved. A high 

victory rate indicates that the lions have strayed from the 

optimal point. Lower values indicate that lions are roaming 

for improvement, and thus competition evaluation indicates 

success. 

 

Female Lion’ =Female lion + 2D × rand(0,1){R1} + U(-1,1) 

× tan(θ) X D                        (3) 

                       × {R2} {R1}.{R2} –    0,|[R2]| -1 

                                    

where Female Lion is the female lion's current position, and 

D represents the distance between the female lion's current 

position and the chosen point chosen through tournament 

selection within the pride's territory. R1 is a vector whose 

initial point is the female lion's previous location and whose 

direction is toward the chosen position. R2 is perpendicular 

to R1. 

 

Hunting: Some females in each pride look for prey in a 

group to provide food for their pride. These hunters use 

specific strategies to encircle and capture their prey. When 

hunting, lions generally followed similar patterns. Stander 

classified the lions into seven stalking roles, classifying 

them as Left Wing, Center Wing, and Right Wing. During 

hunting, each lioness adjusts her claim based on her 

own[14]. 

 

 
Figure 2: Hunt Process 

 

Divide hunters into n subgroups randomly generate a prey 

For i=1 to hunters (H) 

 Move→ ith Hunter 

If(i_pos>last_pos) 

 Hunt=1 

Else 

     Hunt=0 

End for 

 

Mating: Mating includes two primary steps known as 

crossover and mutation, which are found to be significant 

operators for any evolutionary optimization. We follow the 

maximum natural littering rate, i.e., four cubs (mostly) in a 

lioness pregnancy, and thus we get four cubs 'X cubs' from 

the crossover, which is uniform in nature with random 

crossover probability Cr. The crossover operation can be 

represented mathematically as follows: 

Paper ID: SE23616111856 40 of 49 



International Journal of Scientific Engineering and Research (IJSER) 
ISSN (Online): 2347-3878 

Impact Factor (2020): 6.733 

Volume 11 Issue 6, June 2023 

www.ijser.in 
Licensed Under Creative Commons Attribution CC BY 

X
male     

+ X 
cubs     

(p) = Bp
o
  B p 0 X

female  :
p 1,2,3,4                                          

(4) 

where B is the one's complement of B, vector operator" 

represents Hadamard product or schur product, and 

Xcubs(p) is the pth cub obtained from crossover The Xcubs 

are subjected to uniform mutation with mutation probability 

as Mr, resulting in an equal number of new cubs Xnew. The 

Xnew (from mutation) and Xcubs (from crossover) are 

placed in the cub pool and processed further. A secondary 

step known as gender clustering is also included in this 

procedure to extract a single male and female creature from 

the cub stream.Based on the lion’s physical nature, we select 

the cubs, which have the first and second best fitness, as the 

male cub X m_ cub and female cub X f _ cub, respectively. 

Once the X m_ cub and X f _ cub are obtained, set their ages 

(commonly referred as cubs’ age) A cub as zero. 

 

Defense: Lions value this behaviour. Mature male lions 

engage in combat with other lions. Losers either become 

nomads or flee the territory. When nomadic lions win a 

battle, they take over the territory of the loser. Thus, LOA 

defends lions in two ways: against newly matured resident 

males and nomadic males. LOA thus finds the strongest lion 

in the group[15]. 

 

Termination Criteria 

When any of following two termination criteria is met, the 

algorithm execution is terminated; otherwise, the process is 

repeated from equation5, after storing X male and f.  

(X male).f (X male) ≤e T                          (5 ) 

N f >N f 
max

                                    (6) 

Nfmax and eT are the maximum number of function 

evaluations and target error, respectively. 

 

2.2 Firefly Algorithm: 

 

The firefly algorithm (FA) is a met heuristic algorithm 

inspired by the flashing behaviour of fireflies. The Firefly 

Algorithm (FA) is a population-based technique that 

investigates firefly foraging behaviour to find the global 

optimal solution based on swarm intelligence. The primary 

function of the firefly's flash is to attract other fireflies. 

Fireflies use their flashing signal to attract mating partners 

and prey, as well as to share food with others. The Firefly 

Algorithm generates a random initial population of viable 

candidate solutions. All fireflies in the population are 

handled in the solution search space with the goal of 

collectively sharing knowledge among fireflies to guide the 

search to the best location in the search space. Every particle 

in the inhabitants is a firefly which it moves in a search 

domain with a regularly updated attractiveness based just on 

firefly's and its neighbours' knowledge [16]. 

 

The standard Firefly algorithm is based on firefly flashing 

patterns, which act as a signal system to attract other 

fireflies. They use the flash light to attract mates or prey, and 

the following assumptions are made to execute the firefly 

algorithm:  

 

1) A firefly is concerned about another firefly. 

2) The attraction between two fireflies is proportional to 

their brightness and the distance between them. As a 

result, the brighter firefly can attract nearby fireflies, 

and if none are brighter than the others, their movement 

will be random. 

3) When the brightness of both fireflies is equal, the 

fireflies move at random [17].Algorithm: 

 

Create and initialize N firefly particles 

Determine the light intensity for each firefly 

Determine the distance between each toe fireflies 

Repeat 

 For j=1;N 

If(Ii<Ij) move firefly I towards firefly j end if 

Update the attractiveness with distance r by exp[-γr] 

Evaluate the new solution and update light intensity 

End for j 

End for i 

Rank the fireflies and find the current global best 

Until Termination condition is met 

 

Fireflies will be drawn to other fireflies that are brighter. 

Light intensity can be interpreted as an objective function 

with a value corresponding to the observed problem's 

objective function. The light intensity is proportional to the 

value of the objective function in the maximisation problem, 

but inversely proportional in the minimization problem. The 

Firefly algorithm's goal in scheduling is to minimize makes 

span so that the intensity of the light is inversely 

proportional to makes span. Solutions with a short life 

expectancy will have brighter light intensity, attracting 

solutions with a longer life expectancy [18]. 

 

The firefly algorithm is an efficient met heuristic that 

enhances the standard firefly algorithm with a new position-

based mapping method and a linear movement scheme. To 

be more specific, we first use a novel position-based 

mapping method to convert a firefly to a corresponding 

solution, which is regarded as a task permutation, with the 

currently best solution in mind. In addition, unlike the 

traditional movement strategy [19], we build a linear 

movement strategy that reduces the computational burden 

when updating the firefly positions, allowing us to speed up 

the searching procedure. 

 

The FF algorithm is developed based on these rules to obtain 

the optimal solution. This 

 

Algorithm comprises four important steps: 

 

Step 1: The FF population is randomly initialised and 

consists of a set solution in this step. 

Throughout our algorithm, the population consists of fog 

devices or cloud servers. 

Step 2: The distance between any two FF I and j at xi and xj 

is calculated as follows: 

                     

 V=||xi -xj|| =

1

( , )2
D

k

xi xj k


                           (7) 

Here, D is the optimization parameter, which is equivalent to 

the number of computational tasks in this study. 

 

Step 3: As the distance increases, the attractiveness of the 

FF, which is the objective function of our algorithm, 
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decreases exponentially. At a distance v, Equation (8) gives 

the FF's attractiveness. 

β(vi,j) = β0e
-γ2ij                                                 

(8) 

Where is the FF's brightness at distance v, and 0 is the FF's 

brightness at initial attractiveness when v = 0. The 

theoretical value of the light absorption coefficient is the 

variance of attractiveness, and its value influences the speed 

of algorithm convergence. Almost all of the time, the values 

of 2[0.01, 100]. 

 

Step 4: The FF attraction and randomization walkthrough 

Levy flights in this step. The FF's movement is calculated 

using distance and attractiveness as follows: 

xi =    xi +  β0e-γr
2
ij(xj - xi)  +  α∈i                   (9) 

 

Where I is a random number vector derived from a Gaussian 

or uniform distribution, and  α is the randomization variable. 

In our algorithm, the FF movement is equivalent to the task 

movement to the fog or cloud servers [20]. 

 

Light intensity and attractiveness of firefly: 

The Firefly algorithm is founded on two key concepts: 

variation in light intensity and desirability formulation. For 

the sake of simplicity, it is assumed that the attractiveness of 

the firefly is determined by its bright light, which is linked to 

the objective function [21].  

 

A firefly's brightness I can be chosen as I(x) f(x) for a 

maximisation problem at a specific location x. 

 

Because attractiveness is relative, it should be judged by 

other fireflies, and it will vary with distance rij between 

firefly I and firefly j. As previously stated, light intensity 

decreases with distance from its source, and light is also 

absorbed by air, so attractiveness should be allowed to vary 

with varying degrees of absorption. So, in its most basic 

form, light intensity I(r) follows the inverse square law. 

                                                ( )
2

Is
I r

r
                       (10) 

Is represents the intensity at the source. The light intensity I 

varies with distance r, with a constant light absorption 

coefficient, i.e. Where Io is the initial light intensity, the 

combined effect of the inverse square law and absorption 

can be approximated as the following Gaussian form to 

avoid the singularity at r = 0 in the expression Is/r2.: 

 

I = I0e-γr
2
                                    (11) 

The desirability of a firefly is proportional to the light 

intensity seen by adjacent fireflies, which can be expressed 

as: 

β        =     β0e
-γr2                                       

(12) 

 

where β0 is the attractiveness at r = 0. Since it is often faster 

to calculate1/(1 + r2) than an exponential function, the above 

function, if necessary, can be approximated as shown in 

(13). 

β = 
0

(1 2)r




                              (13) 

 

In the real-time implementation, β (r) is the attractiveness 

function, which can be any monotonically decreasing 

function, such as the one shown below.  

β(r) = β0e 
–γrm    

(m≥1)                        (14) 

 

For a fixed, the characteristic length becomes 

 

r=  γ-
1/m

 → 1,m →∞                       (15) 

Conversely, γ can be used as typical initial value for a 

specific length scale Г in an optimization problem. That is 

1
mr

                                        (16) 

The distance between any two fireflies is calculated using 

Cartesian distance method 

,  i jr   = ||xi -xj|| = 
, ,

1

(
d

i k j k

k

x x


                 (17) 

in(10) xi,k is the kth component of spatial coordinate xi of 

ith firefly. In 2-D case, we have 

 

                      ,  i jr  = 
2( ) ( )2i j i jX X y y           (18) 

 

Firefly i is attracted to brighter firefly j and its movement is 

determined by 

xi = xi  + β0e-γr
2

i,j(xj - xi) + α∈i                              (19) 

 

Firefly movement: If firefly j is brighter than firefly I the 

firefly I is attracted and moved to it. The firefly I to firefly j 

movement can be described as 

 

xi = xi +β0 exp(−γr 2 i j)(xj −xi) +α(rand −0.5)     (20) 

 

The first term in (12) is the current position of a firefly, the 

second term is the firefly's attractiveness to light intensity 

seen by neighbour fireflies, and the third term is the firefly's 

random movement when there is no brighter firefly. The 

coefficient is a randomizatiosn parameter with the value 

[0,1], and rand is a random number with the value [0,1] 

 

The movement of a firefly i which is attracted by a more 

attractive i.e., brighter firefly j is given by the following 

equation [2, 3, 20]: 

 

xi = xi +β0 * exp(-γr
2
ij) *(xj -xi) + a *(rand -1/2)     (21) 

 

Where the first term refers to a firefly's current position, the 

second term refers to a firefly's attractiveness to light 

intensity seen by adjacent fireflies, and the third term refers 

to. 

 

In the absence of brighter fireflies, this is used to generate 

random movement. The coefficient is a randomization 

parameter determined by the problem of interest, whereas 

rand is a uniformly distributed random number generator in 

the space [0,1]. As we will see in this algorithm 

implementation, we will use 0 = 1.0, [0, 1], and the 

attractiveness or absorption coefficient =1.0, which ensures 

that the algorithm quickly converges to the Ideal solution. 

 

The brightness and attractiveness of firefly: When 

comparing the brightness of two fireflies, the locations of the 

fireflies must be taken into account. As the distance between 

two fireflies grows, their attractiveness and brightness 

decrease dramatically. Furthermore, if a firefly does not 
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encounter another firefly in its immediate vicinity, it will fly 

in an unknown direction. The algorithm compares the appeal 

of the new and old firefly positions. If the new position has a 

higher attractiveness value than the current position, the 

firefly is moved to it; otherwise, the firefly remains in its 

current position. The termination criterion of the FA is based 

on an arbitrary number of iterations or a predetermined 

fitness value. 

 

According to the following equation, the brightest firefly 

moves at random: Each firefly has a value that indicates how 

well it can attract other fireflies in the swarm. As shown by 

the comparison, the attractiveness will diverge with its 

distance factor dij at the locations Xi and Xj, between the 

two corresponding fireflies I and j.  

 

dij =|Xi –Xj|                             (22)                                                 

 

The attractiveness function β of the firefly is computed as:  

                 β =β0 e−γ r2           (23) 

 

where β0 is attractiveness at r=0 and  is coefficient of light 

absorption.  

 

The movement of the less bright firefly toward the brighter 

firefly is computed by  

 

Xi=Xi+β0 e−γr2ij (Xj-Xi) + α (r and-1/2)           (24) 

 

where α is the randomization parameter and rand is a 

randomly selected number in the interval [0, 1]. 

 

2.3 Ant Colony Optimization: 

 

Ants interact by leaving pheromone trails, so where ants go 

within and around their ant colony is a stigmergic system. 

Numerous ant species deposit a substance called pheromone 

on the ground as they walk from or to a food source. Other 

ants can detect this pheromone, and its presence influences 

their path-finding behavior, as they tend to follow high 

pheromone concentrations. The pheromone deposited on the 

ground creates a pheromone trail, enabling the ants to locate 

great food sources that have previously been recognized by 

other ant.[22] 

, ,

,

, ,

[ ] [ ]

[ ] [ ]

i j i j

i j

i j i j

h s

p

 

 

 

 





                             (25)

 

Where is all the pheromone and is the reciprocal of the 

distance between the two nodes. This probability determines 

ant k at node I to choose node j with the highest p[i][j].The 

Ant System ACO algorithm was the first to be proposed. Its 

main feature is that all the ants who have completed the tour 

keep updating the pheromone values. This same pheromone 

update for ij, that is, for the edge connecting cities I and j, is 

as follows: [23] 

, ,

1

( ) (1 ). ( 1)
n

k

i j i j ij

i

t t   


    
              (26)                               

 

Where ρ is the evaporation rate, m is the number of ants, and 

Δτkij is the quantity of pheromone per unit length laid on 

edge (i,j) by the kth ant 
k

ij  ={ Q/Lk   if ant k used edge (i,j) in its tour                         

 0 otherwise                              (27) 

Where Q is a constant and Lk is the tour length of the kth 

ant. We choose =1 and =1 to solve our assignment 

probability. 0, the initial amount of pheromone is also equal 

to1. Assuming that there are no pheromone evaporations is 

equal to 1 [24]. 

 

Every ant in an ant colony optimization system is a 

computation agent. Iteratively creates the optimal solution to 

the issue. Solution nations are the solutions obtained at 

intermediate states. Every ant in each generation begins to 

move from state I to state 'j' in search of a locally optimal 

solution. As just a result, in each iteration, each ant uses 

probability to compute a set of feasible solutions to its 

current state and moves to one of the optimal solution states. 

The probability of Pijk moving to state j from state I for every 

ant k is generally determined by two parameters: the 

coefficient of vaporisation phenomenon or pheromone 

concentration denoted by ij indicating the previous move 

and visibility of the move denoted by ij indicating the past 

worth of the move. In each iteration, these values are 

updated to find the best optimal solution. To achieve an 

optimal solution, their value may increase or decrease in 

each iteration based on their effect. In general, Equation 

gives the probability of ant k moving from state I to state j 

(28). 

( )( )

_ ( )( )

k iz iz
ij

iz iz

P
VM listallowedk

 

 

 

  



            (28) 

 •𝜏𝑖𝑗 denotes the pheromone concentration for the 

transition from state I to state j. 

 0≤ α is a parameter that controls the pheromone 

concentration's influence. 

 𝜂𝑖𝑗 represents the desirability of transitioning from state I 

to state j. It is computed using priori information, i.e., a 

priori knowledge, typically 1/dij, where d is the 

distance). 

 β1 is a parameter that controls the effect of 𝜂𝑖𝑗. 
 VM_list allowed, where allowed kVM_list is a list of 

VMs allowed by ant k. 

 The overall result of this update is that when one ant 

discovers a path to food sourced from the colony, the 

remaining ants are likely to follow that path, and the 

positive feedback of previous ants who have already 

discovered the path eventually leads to all ants following 

the shortest path [25]. 

 

Algorithm: 

Input: An instance p of a CO problem model p = (S,f,Ω) 

           intializePheromoneValues (T) 

S bs ← null 

While termination conditions not met do 

𝔖iter ← ∅ 

For j=1,…,na do 

S ← ConstructSolution (T) 

If S is a valid solution then 

S ← localsearch(S)  {optional} 

If (f(S) < f(S bs)) or (S bs  = null) then S bs ← S 

𝔖iter ← 𝔖iter ∪  { S } 

End if 

End for 

Applypheromoneupdate(T, 𝔖iter, S bs  ) 

End while 
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Output: the best so far solution S bs   

 

ACO is inspired by the foraging behavior of ant colonies. 

Indeed, real ants have inspired many researchers [26], and 

the ants approach has been used by many researchers for 

problem solving in a variety of fields. This strategy is known 

as ACO after its inspiration. The ants collaborate to find new 

food sources while also using existing food sources to shift 

food back to the nest. 

 

The movements of these ants independently update a 

solution set. There are two types of ant traversal in this 

system. 

1) Forward movements-Ants move forward to extract food 

or search for food sources. 

2) Backward movements-In this type of movement, ants 

traverse back to the nest after gathering food from food 

sources. 

 

The ACO is a unique algorithm for several reasons, 

including the fact that the optimum solution is built not by a 

single entity but by several entities that traverse the length 

and breadth of the network and then build upon a solution 

individually. Many researchers [27] have improved upon the 

ACO's pheromone updating phenomenon in order to 

improve on the results. It has been used by researchers to 

improve various tasks such as task scheduling and 

optimizations in cloud edge computing [28]. 

 

Every ant in a generation constructs a solution step by step 

by making several probabilistic choices. In general, ants that 

find a good solution mark their paths through the decision 

space by sprinkling pheromone on the path's edges. The 

pheromone attracts the next generation of ants, causing them 

to search the solution space near previous good solutions. 

Aside from pheromone values, ants are usually guided by 

some problem-specific heuristic when evaluating trial 

solutions. To use ACO to solve a Cost-Performance Trade-

off Problem (CPTOP), the problem must first be 

transformed into a Travel Salesman Problem (TSP). 

Furthermore, the cost and performance objectives should be 

merged into a single optimization problem [29]. 

 

2.4 Particle Swarm Optimization 

 

Kennedy and Eberhart [30] proposed particle swarm 

optimization (PSO) as a population-based stochastic 

optimization algorithm. The technique is used to solve 

optimization problems by mimicking the social behavior of 

bird flocks, fish schools, and other animal societies that 

cooperate and share information to improve their position 

without relying on a leader. In this technique, a population 

of individuals, which are politician running alternatives 

defined as particles, move in a provided solution space based 

on their current position Xik and current velocity Vi k for 

the kth iteration. Depending on the optimization problem, 

the quality of each particle is measured using a predefined 

fitness function. The movement of each particle is 

determined by its best known personal position pBesti, as 

well as the best known global position gBesti for the entire 

swarm. This process guides the swarm to the best position 

after several iterations of the search process. The velocity 

and position of the particle are described further below: 

         vi
k+1  

=ω Vi
k 
+ c1r1(pBesti -Xi

k
) + 

c2r2(gBesti - Xi
k                                                  

(29) 

Xi
k+1

  = Xi
k
 + ViK                                  (30) 

Where ω is the inertia weight, r1 and r2 are random numbers 

between (0,1) and c1 and c2 are the learning factors.[31]. 

 

Algorithm: 

Initialize Population 

for t=1 : maximum generation 

    for i=1 : population size 

 if f(xi,d(t)) < f(pi (t)) then pi(t) = xi,d(t) 

 f (pg (t)) = min (f(pt(t))) 

 end 

 for d=1 : dimension 

     i,d(t+1) = ω i,d(t) + c1r1(pi – xi,d(t)) + c2r2(pg – 

xi,d(t)) 

 xi,d(t+1) = xi,d(t) +  i,d(t+1) 

               if  i,d (t+1) > max then  i,d(t+1)= max  

              else if  i,d (t+1) >  max  then  i,d (t+1) = max  

 else if  i,d (t+1) <  min then  i,d(t+1) =  min 

 end 

if xi,d (t+1) < xmax then xi,d (t+1) = xmax 

else if xi,d(t+1)<xmin then xi,d (t+1) = xmin 

   end 

            end 

       end 

end 

 

In PSO, a swarm of q particles is defined first. A candidate 

solution is represented by a particle i(i 1,..., q). The positions 

of the particles xik move over time, or more precisely the 

algorithm's iteration steps k, according to their velocity of 

displacement vik in equation (26) and the displacement rule 

in equation (26) (27). These particles attempt to follow the 

population's best leader gbest (which has the best solution) 

and improve their own best results pbest. If a particle 

outperforms the leader, it becomes the population's new 

gbest leader. The operation is repeated until the number of 

iterations reaches a certain limit kmax or a certain 

appropriate situation has been managed to reach. 

  
       (31) 

1 1k k k

i i ix x                          (32) 

 

Consider n tasks to assign to m cloud resources. The 

expression Sp represents a solution (29). This expression is 

written as a vector of dimension n. The n elements of the 

vector represent the tasks, and the value g of a j-th element 

represents the resource Rj that will process the task, as 

shown in equation (29): 

Sp = {T1
Ra

 , T2
Rm

,,,,,,,, Tj
Rg

  ,,,,,,Tn
Rf

} = [a,m,,,,,,g,,,,,,f]  (33) 

 

In our approach, we consider that this solution 𝑆p is 

equivalent to the position 𝑥i of the particle 𝑖 of the PSO. 𝑥i is 

represented by a vector of size 𝑛. A particle move with a 𝑣i 

velocity. 𝑣i is also represented by a vector of size 𝑛[32]. 

 

Self-organization in swarms through three basic ingredients 

as follows. 

1) Strong dynamical nonlinearity (often involving positive 

and negative feedback): positive feedback promotes the 

formation of convenient structures, whereas negative 
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feedback counterbalances positive feedback and aids in 

the stabilisation of the collective pattern. 

2) Exploration and exploitation balance: SI identifies an 

appropriate balance to provide a valuable mean artificial 

creativity approach. 

3) Numerous interactions: swarm agents use information 

from neighbouring agents to publish awareness all 

through the network [33]. 

 

PSO algorithm can thus be summarized as follows: PSO 

algorithm is a swarm-based search process in which each 

individual is called a particle defined as a potential solution 

of the optimised problem in D dimensional search space, and 

it can memorise the optimal position of the swarm and its 

own, as well as the velocity. The particle information is 

combined in each generation to adjust the velocity of each 

dimension, which is used to compute the particle's new 

position. Particles in the multidimensional search space 

constantly change their states until they reach balance or 

optimality, or go beyond the computation limits. The 

objective functions introduce a unique connection between 

the different dimensions of the problem space. Many 

empirical evidences have demonstrated that this algorithm is 

a useful optimization tool. 

 

The Improvement of Particle Swarm Optimization 

Algorithm 

 

Inertia weights 

An inertia weight ω is a proportional agent that is related to 

the previous time's speed, as well as the method for 

changing the speed is as follows: 

 
1

1 1 2 2( ) ( )k k k k k k k k

id id id id d idv c r pbest x c r gbest x      
(34)             

 

 

Inertia weights can be used to control the influence of the 

previous speed on the current speed. The larger is, the 

greater the PSO's searching ability for the whole, and the 

smaller is, the greater the PSO's searching ability for the 

partial. In general, is equal to 1, so there is a lack of 

searching ability for the partial at later stages of the several 

generations. According to the experimental results, PSO has 

the fastest convergence rate when is between 0.8 and 1.2. 

During the experiment, is restricted from 0.9 to 0.4 

according to the linear decrease, which causes PSO to search 

for a larger space at the start and quickly locate the position 

to the most idealist solution. As ω is decreasing, the 

particle's speed will also slow down in order to find the 

delicate partial. The method accelerates convergence and 

improves the PSO function. Whenever the problem to be 

solved is very complex, this method causes PSO's searching 

ability again for entire at a later period after several 

generations to be insufficient, and the most optimist solution 

cannot be found, so inertia weights can be used to solve the 

problem [34]. 

 

To execute task scheduling in the cloud edge, Particle 

Swarm Optimization (PSO) is used. Because customers' 

demands must be met to the greatest extent possible in the 

cloud environment, selecting a strategy for task scheduling 

of workflow is critical [35]. Workflow is a computational 

model of a working process that represents the logics and 

rules that govern how to organise the front and back ends of 

a working process and calculates it in a computer using the 

appropriate model [36]. The main issue that the workflow 

should address is that it should do everything possible to 

achieve the goal of a service and transmit information, 

resources, or tasks automatically according to specific rules 

using computers between a large numbers of participants 

[37]. 

 

3. Experimental Results 
 

Inside this test, we used CloudSim 3.0 to implement the 

algorithms for tasks that need to be processed in the cloud, 

by adding the bindCloudletToVM method in the Datacenter 

Broker class; the LOA algorithm based on the catastrophe 

PSO, ACO, FF algorithm is added to carry out the 

simulation experiment. Data such as resource computing 

power and task calculations are derived from MATLAB data 

that has been randomly generated. We select a different 

number of tasks, and the experimental data from various 

iteration times is analyzed and compared with the time-

based algorithm (LOA) and simple ACO, FF, PSO 

algorithms under another data circumstances. (LOA) task 

scheduling algorithm that minimizes the completion time. 

 

Moreover, our simulations were performed on a PC with 

Intel Core i5-7400 processor @ 3.0 GHz CPU and 8 GB of 

RAM. 

 

In the laboratory, cloud computing, edge computing, and 

user terminal environments were built, and the connection 

between the actual edge and the cloud data centre was 

simulated using bandwidth controllable network equipment, 

with the end environment being a local area network of 

computer equipment components connected to the edge 

environment. Figure 3 depicts the complete experimental 

verification environment. 

 
Figure 3: Experiments Environment 

 

Task delay: 

Figure 4 depicts the task delays under various offered loads 

in order to investigate the performance limits of various 

scheduling schemes. Each result represents a 107-slot 

simulation run. Because the optimal throughput region is 

defined as the set of arrival rate vectors in which queue 

lengths and thus delays remain finite, we can consider the 

traffic load as the boundary of the ideal throughput 

region. Because LOA has a considerably higher 

throughput, despite the fact that the end-to-end delay 

appears to be similar between FIREFLY and LOA. LOA 

is a vast improvement over FF, ACO, and PSO. A 
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comparison of the delay rates in edge computing task 

scheduling is calculated via the following formula.  

 

Delay rate =∈ turnRoundTime – ∈ length Xlength /∈ length 

100%, Where turnRoundTime is the turnaround time of the 

tasks and length is the length of the tasks. 

 
Figure 4: Comparison of Task Delay 

 

Task Completion Time: 

The completion time is the time difference between the 

starting and finishing times. The graph below depicts the 

task completion time as well as the energy consumption. 

Figure 5 depicts the iterative process of combining ACO, 

PSO, Firefly, and LOA to achieve the best total time and 

lowest total cost. In terms of completion time, the LOA 

algorithm outperforms the ACO, PSO, and Firefly 

algorithms. The eight tasks arrived four times at 0, 220, 440, 

and 660 Figure 4 shows that when the task volume is small, 

the completion time of each algorithm is not significantly 

different. that the four algorithms have the same completion 

time in the first iteration, but as the number of iterations 

increases, the convergence rate and accuracy outperform the 

edge cloud scheduling results of LOA, ACO, PSO, and 

Firefly. As the task volume increased, so did the completion 

time of each algorithm. LOA outperforms the second fastest 

FF, PSO, ACO algorithm by 6.6 %faster than the second 

fastest FF, PSO, and ACO algorithm. 

 

 
Figure 5: Task Completion Time 

 

Execution Time: 

TASK requests with a growing number of cloud servers and 

a fixed number of edge servers and tasks. It demonstrates 

that the execution times of requests decrease as the number 

of cloud servers increases. This is due to the task requests 

being distributed across multiple cloud servers. However, 

when comparing execution times with increasing cloud 

servers (Figure 5) to increasing edge servers (Figure 6), 

there is little difference, despite the fact that the processing 

capability of the cloud servers is greater than that of the edge 

servers. This is because all requests will first be routed to an 

edge-server, which will determine whether the request 

should be executed on the edge or sent to the cloud. Thus, 

increasing the number of cloud servers has no significant 

impact because requests must wait in the edge-decision 

server's queue, resulting in an increase in execution time. It 

is clear from the results that as user requests increase, so 

does the time required for resource allocation. The time 

required to allocate resources is determined by resource 

availability as well as the distance between the resources and 

the client (request place). Figure 5 depicts the iterative 

process of combining ACO, PSO, Firefly, and LOA to 

achieve the best completion time and total cost. In terms of 

execution time, the LOA algorithm beats the ACO, PSO, 

and Firefly algorithms. 

 

 
Figure 6: Execution Time 

 

Average Make span: 

The graph compares the make span to time. The results 

demonstrate that the proposed LOA algorithm 

outperforms PSO, ACO, and FF. The following 

experiments compared the average make span with various 

tasks set. Figure 7 depicts the average make pan of the LOA, 

PSO, ACO, and FF algorithms. It can be seen that as the 

number of tasks increases, LOA takes less time than FF, 

PSO, and ACO algorithms. This implies that the LOA 

algorithm outperforms the ACO, PSO, and FF 
algorithms. 
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Figure 7: Average Makespan 

 

Energy consumption: 

It is an obvious feasibility of the ACOBF exhibition in terms 

of meeting the person's time constraints. Even though 

previously stated, duties sent to the Cloud are expected to be 

independent of one another. The results explain the ACO, 

PSO, FF, and LOA algorithms. When a comparable number 

of task units/tasks are received by the Cloud, make span and 

energy increase dramatically, whereas in the case of LOA, 

make span and energy either reduce or vary. This one is 

due to the algorithm's ability to preserve the convergence 

achieved by having the starting point close to the minimum. 

Figure 8 depicts the LOA algorithm's behaviour in 

comparison to previous schemes for an average energy 

consumption scenario with a variable number of nodes. 

According to the findings, the LOA algorithm significantly 

reduces network energy usage when compared to traditional 

methods. Just a subset of tasks is held accountable for 

achieving balanced energy consumption. 

 
Figure 8: Energy Consumption 

 

Average response time: 

Figure 9 depicts the average reaction time results. Because 

the RR algorithm was specifically designed for time sharing, 

it outperforms all other approaches in terms of average 

response time.  

 

 
Figure 9: Average Response Time 

 

Using a fair resource allocation strategy ensures that each 

service request has a set time frame. If the service 

processing time exceeds the system's time quantum, the 

sample is removed from the average response time 

calculation. For instance, if the previous service request had 

a lengthy task schedule, the average response time would 

increase. Because the proposed LOA algorithm sequentially 

inserts tasks into the queue, its average response time is 

slightly longer than that of FF, PSO, and ACO. Although the 

priority algorithm can sort tasks based on the priority of 

service requests, low-priority tasks are easily delayed, 

increasing the average response time. 

 

Energy Latency: 

It is the time it takes the edge nodes to complete the tasks. In 

terms of latency, Figure 10 compares the efficiency of ACO 

and LOA-based task execution optimization. When 

compared to the ACO, PSO, and FF algorithms, LOA-based 

task execution optimization in a cloud-edge computing 

system achieves less latency. 

 
Figure 10: Energy Latency 

 

4. Conclusion 
 

To develop task scheduling techniques in cloud edge 

computing, various optimization algorithms have been used. 

The PSO, FF, ACO, and LOA algorithms were used to 

develop a task-scheduling algorithm for cloud edge 

computing in this paper. The cloud server can select which 

tasks will be performed at the edge devices, according to this 

optimization solution. Finally, the results demonstrated 

that the proposed algorithm is more efficient. Using the 
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Lion Optimization Algorithm to reduce energy consumption 

and make span of the cloud-edge system after task 

completion time. Experiments show that the existing ACO, 

PSO, LOA, and FF algorithms satisfy the requirements of 

users in task scheduling in cloud edge computing 

effectively. 
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