
International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 7, July 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Enhancing Data Integrity of Student Registration

Input Using Integration of Secure Program

Development Technique

Godwin. A. Otu
1
, Stephen. E. Iheagwara

2
, Akudo C. Okafor

3

1, 2, 3Department of Computer Science, Air Force Institute of Technology Kaduna, Nigeria

Abstract: The act of developing secure program modules assist software owners to reduce maintenance cost and increase dependency

on the software. Frequent attacks by hackers are mostly aim at corrupting data to undermine software reliability and distort input

integrity. Inappropriate data can even result to denial of service to software users if such data crashes the system. In this research the

use of secure program development approach will be deployed to generate reliable data for student registration in tertiary institutions.

The data is transformed using object oriented approach (OOP) in conformity with software development using modular approach. OOP

class construct, decision structure, loop, inheritance and interface will be employed to build the module. The interface is implemented to

make sure there is conformity with the data specification. The program will ensure data such as name of student, level, matric number,

department, age and grade point average (GPA) pass through a carefully formulated system that will ensure that these data conformed

to required data laid down guidelines and conforms to format. This result from the module shows an output of range of references

displaying either valid or invalid data depending on if either all the set of input data are either completely conforms to format or not.

The module can be adopted by developers for a range of data checking activities during operations; it will also assist programmers to

identify permissible data set for a given operation. A graphical interface for the module can be developed and then integrated as data

integrity check in applications.

Keywords: Data integrity, Inheritance, Interface, Secure program development. Software reliability

1. Introduction

According to Salagrama et al. (2022) data integrity is related

to the serious threat of manipulation and alteration in the

course storage and transmission. The data is being altered by

malicious actors for getting the advantages which translates

to destruction of trust and money. Data users regularly want

to ensure that the consuming data is precise and not altered

during processing and transmission. Also Nina et al. (2021)

described secure software development in five development

stages which are; software requirement security where

elicitation and misuse issues are identified, design security

where there is threat model and security patterns,

construction security here issues like static code analysis and

vulnerability detection are identified and finally testing

security which includes penetration testing and vulnerability

scanning. Managing the integrity of data is an intricate

process for every type of data like data at rest, data at

processing and data at transmit. Reply attack is very

common with data in transit and this attack causes a serious

harm to sender and receiver by losing the trust and money as

well.

Many research work have been carried out to mitigate

actions that will lead to data being compromised either in

storages or during transmission. Krakowiak and Ziemba

(2022) used SERM (Structure Entity Relationship Diagram)

data model to design a structure for defining and processing

rules ideal to the verification of data consistency and

integrity. Son et al. (2013) evaluates android recovery mode

variables that tend to compromise data integrity at the period

of data acquisition. Based on the conducted analysis, an

Android data acquisition tool that ensures the integrity of

acquired data is developed, which is demonstrated in a case

study to test tool’s strength to preserve data integrity.

Hussain et al. (2022) presented a flexible and formal

methodology that adopts Model - Driven Engineering

(MDE) to model closed - world integrity constraints for

open - world reasoning. The proposed method offers

semantic validation of data by describing integrity

constraints at both the model and the code level. Barbaria et

al. (2023) proposed a blockchain - based architectural model

to ensure the integrity of healthcare - sensitive data in an AI

based medical research context. The method will use the

HL7 FHIR standardized data structure to ensure the

interoperability of our approach with the existing hospital

information systems (HIS). Ramadhan et al. (2022) infused

blockchain technology into relational database to build a

system with the FastAPI structure using Python

programming language, React framework and JavaScript

programming language. This system was tested using

Katalon and Wireshark software to perform throughput

testing and man - in - the - middle attack. Sukumaran and

Misbahuddin (2018) designed a bio - computing solution

approaches to address data security the proposed

methodology is based on the principle concepts of

polymerase chain reaction and primer generation for

ensuring data confidentiality and integrity. The security

analysis of the proposed cryptosystem is evaluated by

theoretical analysis, complexity and probability analysis.

Christensen et al. (2020) developed an architecture that

allows for the formal verification and authentication of

varied properties of the end - to - end system with a proof of

correctness of the assembly - level implementation of the

core algorithm in Coq, the integrity of trusted data via a non

- interference proof, and a guarantee that the model achieves

critical timing requirements. Liu et al. (2023) proposed

auditing and authenticating scheme which is used to

guarantee the correctness and the completeness of the stored

data in 5G - enabled software - defined edge computing. The

auditing results of the distributed data in the proposed

Paper ID: SE23722163214 54 of 57

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 7, July 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

scheme can be used as an important basis for evaluating the

trustworthiness of the edge devices. Mittal et al. (2015)

presented a hash function technique to test distributed

environments against threats on data integrity.

The research studies critically looked at have proposed many

techniques on how to maintain data integrity in the cloud,

others the use of encoding algorithms and come the infusion

of block - chain technology with relational databases in

order to enforce data integrity. In this research decision

structure, loop structure, interface and inheritance concepts

will be used to enforce user input data integrity.

A class is created with student basic registration details and

methods used to return the corresponding student types with

respect to the details declarations. An interface is created

with a check method which is implemented by another class

that inherits the student details class. The implementation of

the check method for each type is done in such a way as the

type integrity is not compromised before the data is used for

processing.

2. Methodology

Data Collection

The data used to test the module reliability is from the user

input.

Algorithm

1) Start

2) Declare variables

3) Initialize and store data in variables

4) Check type

5) Check length

6) Else re - enter type and length

7) Check data validity

8) Pass validity test.

9) Else perform validity operation again

10) Display output

11) Stop

Flowchart

3. Implementation

publicclass studentDetail {

protected String name;

protected String level;

protectedint age;

protected String department;

protected String matricno;

protecteddouble gpa;

public studentDetail (String name, String level, int age,

String department, String matricno, double gpa) {

this. name = name;

this. level = level;

this. age = age;

this. department = department;

this. matricno = matricno;

this. gpa = gpa;

 }

 public String getName () {

 return name;

 }

 public String getLevel () {

 return level;

 }

 publicint getAge () {

 return age;

 }

 public String getDepartment () {

 return department;

 }

 public String getMatricNo () {

 return matricno;

 }

 public double getGPA () {

 return gpa;

Paper ID: SE23722163214 55 of 57

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 7, July 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

 }

}

publicclass Implementation extends student Detail

implements DataCheck {

 public Implementation (String name, String level, int age,

String department, String matricno, double gpa) {

 super (name, level, age, department, matricno, gpa);

 }

public boolean check () {

 for (int x = 0; x<name. length (); x++) {

 if (Character. isDigit (getName (). charAt (x))) {

 return false;

 }

 }

 if (getLevel (). isEmpty ()) {

 return false;

 }

 if (age<14) {

 return false;

 }

 if (getDepartment (). isEmpty ()) {

 return false;

 }

 for (int x = 0; x<department. length (); x++) {

 if (Character. isDigit (getDepartment (). charAt (x))) {

return false;

}

 }

 if (getMatricNo (). length () !=8) {

 return false;

 }

 if (gpa<= 0) {

 return false;

 }

 if (gpa> 5) {

 return false;

 }

 return true;

}

}

public interface DataCheck {

 public boolean check ();

}

public class Demonstration {

 public static void main (String [] args) {

 Implementation test1= new Implementation ("Godwin",

"100", 15, "computer science", "12345678", 8);

 Implementation test2= new Implementation ("Professor

Achimugu", "400", 17, "computer science", "12345678", 5);

 Implementation test3= new Implementation ("Oyebanji",

"300", 17, "software Engineering", "20345678", 2.5);

 Implementation test4= new Implementation ("Iheagwara",

"400", 20, "1omputer science", "13456891", 5);

 Implementation test5= new Implementation ("Okafor", "",

20, "computer science", "13456891", 1);

 Implementation test6= new Implementation (" Alcaraz", "

100", 0, "computer science", "13456891", 1.5);

 Implementation test7= new Implementation (" Samuel", "

400", 18, "computer science", "13456891", 4.88);

 Implementation test8= new Implementation ("Lucia", "

200", 20, "computer science", "13456891", 3);

 Implementation test9= new Implementation ("Modupe", "

Civil Engineering", 20, "computer science", "13456891", 3);

 Implementation test10= new Implementation ("Akong", "

400", 20, "computer science", "13456891", 3);

 System. out. println (checkIntegrity (test1));

 System. out. println (checkIntegrity (test2));

 System. out. println (checkIntegrity (test3));

 System. out. println (checkIntegrity (test4));

 System. out. println (checkIntegrity (test5));

 System. out. println (checkIntegrity (test6));

 System. out. println (checkIntegrity (test7));

 System. out. println (checkIntegrity (test8));

 System. out. println (checkIntegrity (test9));

 System. out. println (checkIntegrity (test10));

 }

 public static String checkIntegrity (DataCheckmyCheck) {

 if (myCheck. check ())

 return" valid data";

 else
 return"invalid data";

 }

}

4. Result

serial number Object Remark

1 test1 invalid data

2 test2 valid data

3 test3 valid data

4 test4 invalid data

5 test5 invalid data

6 test6 invalid data

7 test7 valid data

8 test8 valid data

9 test9 valid data

10 test10 valid data

5. Discussion

The method in the interface is overridden in the class where

it is it implemented to give the required restrictions to the

input data set in order to enforce data integrity and

reliability. The range of reference parameters which are test1

to test2 point to their respective set of values which have

been modeled from student details. While Barbaria et al.

(2023) proposed a modeled block - chain method using

artificial intelligence to secure health care data, this research

employs a simplified object oriented approach to identify

valid and invalid data from user input. Liu et al. (2023) also

discussed the used of an authentication system to identify

the correctness of data for 5G technology, but this system

needs a complicated hardware and software implementation

which take much more resources and time, but in this

research there is a high level of flexibility with less

programming time to implemented an abstract method from

an interface to suite the chosen data restriction with less

difficulty. Nina et al. (2021) describe a secure software

Paper ID: SE23722163214 56 of 57

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 7, July 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

development strategy which involves five stages of

requirement security, design security, construction security,

code analysis and testing. This elaborate and detail

procedure using conventional software engineering approach

has been summarized using object oriented approach. Result

on the data clearly shows the objects and the corresponding

remark from the module which shows whether a set of data

is reliable based on user input or not.

6. Conclusion

The implementation in the research shows the used of

inheritance and interface concepts to enforce that the input

data conforms to the system specification during input. The

module maintain data integrity by preventing the user from

entering corrupt data which in return will give a faulty

output. Once the system is incorporated into systems hackers

with the intention of making the system susceptible to data

integrity threat will find it difficult to corrupt the system

with inappropriate data.

References

[1] Barbaria, S., Mahjoubi, H., &Rahmouni, H. B. (2023).

A novel blockchain - based architectural modal for

healthcare data integrity: Covid19 screening laboratory

use - case. Procedia Computer Science, 219, 1436 -

1443. doi: https: //doi. org/10.1016/j.

procs.2023.01.433

[2] Christensen, M., McMahan, J., Nichols, L., Roesch, J.,

Sherwood, T., &Hardekopf, B. (2021). Safe functional

systems through integrity types and verified assembly.

Theoretical Computer Science, 851, 39 - 61. doi: https:

//doi. org/10.1016/j. tcs.2020.09.039

[3] Hussain, A., Wu, W., & Tang, Z. (2022). An MDE -

based methodology for closed - world integrity

constraint checking in the semantic web. Journal of

Web Semantics, 74, 100717. doi: https: //doi.

org/10.1016/j. websem.2022.100717

[4] Krakowiak, M., &Ziemba, P. (2022). A SERM based

framework for defining and processing rules

supporting the verification of data consistency and

integrity. Procedia Computer Science, 207, 4227 -

4236. doi: https: //doi. org/10.1016/j.

procs.2022.09.486

[5] Liu, D., Li, Z., &Jia, D. (2023). Secure distributed data

integrity auditing with high efficiency in 5G - enabled

software - defined edge computing. Cyber Security and

Applications, 1, 100004. doi: https: //doi.

org/10.1016/j. csa.2022.100004

[6] Mittal, M., Sangani, R., & Srivastava, K. (2015).

Testing Data Integrity in Distributed Systems.

Procedia Computer Science, 45, 446 - 452. doi: https:

//doi. org/10.1016/j. procs.2015.03.077

[7] Nina, H., Pow - Sang, J. A., & Villavicencio, M.

(2021). Systematic Mapping of the Literature on

Secure Software Development. IEEE Access, 9, 36852

- 36867.

[8] Ramadhan, A. N., Pane, K. N., Wardhana, K. R.,

&Suharjito. (2023). Blockchain and API Development

to Improve Relational Database Integrity and System

Interoperability. Procedia Computer Science, 216, 151

- 160. doi: https: //doi. org/10.1016/j.

procs.2022.12.122

[9] Salagrama, S., Bibhu, V., &Rana, A. (2022).

Blockchain Based Data Integrity Security

Management. Procedia Computer Science, 215, 331 -

339. doi: https: //doi. org/10.1016/j. procs.2022.12.035

[10] Son, N., Lee, Y., Kim, D., James, J. I., Lee, S., & Lee,

K. (2013). A study of user data integrity during

acquisition of Android devices. Digital Investigation,

10, S3 - S11. doi: https: //doi. org/10.1016/j.

diin.2013.06.001

[11] Sukumaran, S. C., &Misbahuddin, M. (2021). PCR

and Bio - signature for data confidentiality and

integrity in mobile cloud computing. Journal of King

Saud University - Computer and Information Sciences,

33 (4), 426 - 435. doi: https: //doi. org/10.1016/j.

jksuci.2018.03.008

Paper ID: SE23722163214 57 of 57

https://doi.org/10.1016/j.procs.2023.01.433
https://doi.org/10.1016/j.procs.2023.01.433
https://doi.org/10.1016/j.tcs.2020.09.039
https://doi.org/10.1016/j.tcs.2020.09.039
https://doi.org/10.1016/j.websem.2022.100717
https://doi.org/10.1016/j.websem.2022.100717
https://doi.org/10.1016/j.procs.2022.09.486
https://doi.org/10.1016/j.procs.2022.09.486
https://doi.org/10.1016/j.csa.2022.100004
https://doi.org/10.1016/j.csa.2022.100004
https://doi.org/10.1016/j.procs.2015.03.077
https://doi.org/10.1016/j.procs.2015.03.077
https://doi.org/10.1016/j.procs.2022.12.122
https://doi.org/10.1016/j.procs.2022.12.122
https://doi.org/10.1016/j.procs.2022.12.035
https://doi.org/10.1016/j.diin.2013.06.001
https://doi.org/10.1016/j.diin.2013.06.001
https://doi.org/10.1016/j.jksuci.2018.03.008
https://doi.org/10.1016/j.jksuci.2018.03.008

