
International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 7, July 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Web-Application Security and Approach to Find

Vulnerabilities into the Era of Web 2.0

Henil Sanjaykumar Gandhi

Computer Engineering Department, L. D. College of Engineering, Gujarat Technological University, Ahmedabad, Gujarat, India

Email: hsghenil[at]gmail.com

Abstract: Web application security is the process of defending websites and other online services from various security risks that take

advantage of coding flaws in programs. This paper discusses popular web application threats such as injection attacks, XSS, and CSRF.

We are particularly concerned about how these assaults may harm customer trust, data security, and brand reputation. To prevent these

threats, a web application firewall (WAF) is recommended as a critical security solution. The WAF acts as a gatekeeper, screening and

stopping malicious or suspicious requests. The research paper investigates the significance of proactive security techniques such as

security vulnerability assessment and penetration testing. It emphasizes the importance of input validation, secure coding practices, and

robust session management in preventing application vulnerabilities. The study also emphasizes the importance of the integration of

automated techniques for the prompt discovery and remediation of vulnerabilities.

Keywords: Web application Security, Web application Firewall, Approach towards vulnerability finding, Vulnerability scanners and tools,

Vulnerability description

1. Importance of Web Application Security

Testing

Hackers and other cybercriminals are continuously on the

lookout for new vulnerabilities in online applications and

ways to exploit them in order to obtain access or cause them

to malfunction. Web security testing looks for security flaws

in Web applications and their configuration. Testing the

security of a Web application may involve providing

multiple inputs to elicit mistakes and lead the system to act

unpredictably[1].It's critical to understand that online

security testing entails much more than the login and

authorization techniques used in the program. Furthermore,

ensuring the safe implementation of additional components

(such as business logic, suitable input validation, and output

encoding) is critical.

2. Recent Cyber Attacks

1) Twitter Data Breach:

Citing a technical flaw, Twitter acknowledged a data breach

in July 2022 that exposed information about its users. The

majority of the content consisted of information that was

readily accessible to the public, including Twitter IDs,

names, login names, locations, and verified statuses;

however, there was also private information like phone

numbers and email addresses. The attackers offered this

material for sale in exchange for a large loss of organization

[13].

2) Uber Data Breach:

Uber revealed in September 2022 that drivers' and

passengers' private information had been stolen by hackers.

After infecting the contractor's home computer with

malware and exposing those credentials, the attacker

purchased the contractor's Uber corporate password on the

dark web. The attacker then attempted to log into the

contractor's Uber account many times. Each time, the

contractor was presented with a request for a two-factor

login approval, which at first limited access [14]. The

attacker was able to log on successfully after the contractor

eventually accepted one.

3) Crypto.com Theft:

In January, Crypto.com, one of the most well-known

cryptocurrency exchanges in the world, admitted that 483 of

its users had been hacked earlier in the month which resulted

in Unauthorized withdrawals totaling 4,836.26 ETH, 443.93

BTC, and roughly US$66,200 in other cryptocurrencies [15].

The platform claims that its risk monitoring systems

"detected unauthorized activity on a small number of user-

accounts where transactions were being approved without

the 2FA authentication control being inputted by the user."

4) The Dragon force Malaysian group attacked several

Indian websites:

According to reports, a hacker collective going by the name

of "Dragon Force Malaysia" has attacked the websites of the

Institute of Science in Nagpur, the National Institute of

Agriculture Extension Management, the Delhi Public

School, and the Indian embassy in Israel. It belonged to

well-known public and private organizations across the

nation, and they referred to it as "a special operation on the

insult of our Prophet Mohammad by BJP spokesperson

Nupur Sharma's comment [16]."

5) US airport’s websites hacked by Russian Hackers:

On Monday morning, more than a dozen public-facing

airport websites—including those for some of the biggest

airports in the country—appeared to be inaccessible, and

Russian-speaking hackers took responsibility. The hacker

collective Kill-net named several US airports as targets. In

response to Russia's invasion of Ukraine in February, it

intensified its efforts to target organizations in NATO

nations. Kill-net employed a "distributed denial of service"

(DDoS) cyberattack, in which hackers bombard computer

servers with fictitious web traffic in an effort to bring them

offline [17].

Paper ID: SE23725232857 71 of 79

mailto:hsghenil@gmail.com

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 7, July 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Role’s Web Application Firewall in Web Application

Security:

Injection attacks, XSS, and CSRF, to name a few, are just a

few of the many attacks that can affect web applications.

These attacks may have serious repercussions, including

data theft, a loss of customer confidence, and harm to a

company's reputation.

To defend web applications from these attacks, a security

solution called a web application firewall (WAF) is used. It

serves as a gatekeeper between the web application and the

internet, inspecting incoming traffic and blocking any that it

deems to be suspicious or malicious [2]. Incoming web

traffic to a web application is monitored by a WAF, which

identifies and blocks malicious requests before they can

access the application itself. WAFs examine HTTP requests

and responses for particular patterns and behaviors. Known

attack signatures, unusual traffic patterns, or peculiar

application behavior are a few examples of these patterns.

The WAF can modify a request or completely reject it if it

detects a potential attack and neutralizes it. For instance, the

WAF might alter the request if a SQL injection attack is

discovered in order to remove the SQL injection code before

allowing it to reach the application. This aids in avoiding the

attack's compromise of the application. Benefits of WAFs

for web application security include protection from both

known and undiscovered threats, improved speed,

customization, and less chance of data breaches.

Approach in-order to find the vulnerabilities:

The main approach should be followed during testing the

web application security testing is given below:

 Identify the target

 Initial recon/fuzzing process on the target

 Vulnerability scanning

 Penetration testing/ Manual testing

 Find vulnerabilities and Exploitation

 Prepare detailed report

Identify the target:

First security analystlooks for the target scope according to

given information like some sort of domains of the particular

target is given or the wildcard target is given as in scope.

Then collect all the subdomains of the target which is given

in scope. Subdomain enumeration can be done by many

tools and it is more useful to get more subdomains of the

target. SUBFINDER, SUBLISTER, AMASS,

FINDOMAIN, CRT.SH etc tools are generally used for

finding subdomains.

We can use different API keys like github for more deep and

accurate scan for getting more subdomains.

Commands:

subfinder -d target.com

sublist3r -d target.com

amass enum -d target.com

findomain -t target.com

After getting subdomain, httpx or httprobe tool is used to

remove dead subdomains from the list and it will give

running subdomains.

Command:

cat subdomain.txt | httpx | tee running_subdomain.txt

Above command will be save all the running subdomains

from subdomain.txt file into running_subdomain.txt file.

Initial recon/fuzzing process on the target:

Recon/Fuzzing refers to a set of processes and techniques,

such as foot printing and enumeration, that are used to

gather as much information as possible about a target

system.

There are some sort of tools are generally used for the initial

recon process as well as finding some sensitive information

of the target domain which is mention below:

1) Burpsuite

2) Nmap

3) Metasploit

4) Shodan / Censys

5) Nessus & Acunetix

6) Hydra / John the ripper

7) Waybackurls &GF-Patterns

8) SQL Map

9) Nuclei

10) Wappalyzer

After using this sort of tools on the target, most of the

required information is collected about the target.

The above-given tools are mainly used during the

penetration testing of any web application by a security

researcher/tester.

Uses:

1) Burp suite:

It is the most used tool by security researchers and the most

important tool in web application testing. During manual

testing, before each request is sent to the server it comes in

the burp suite and security researchers analyze these requests

to find the vulnerabilities like IDOR, Rate Limit, Broken

Access Control, etc.

2) Nmap:

Nmap is mainly used to do port scanning on the target web

application or list of web applications [1]. It gives all the

information about the open ports and the services running on

that port. Nmap is also used in the initial recon part for

gathering information gathering part. It can also run its script

to find some basic vulnerabilities like previous version CVE

vulnerability in the web application.

3) Metasploit:

Metasploit is a whole framework that contains thousands of

exploits of the vulnerabilities according to the version of the

technologies. It includes modules for testing SQL injection,

XSS, and file inclusion vulnerabilities. It also includes

auxiliary modules for fingerprinting, scanning, and other

tasks. It is also used to create payloads also for further

exploitation.

4) Shodan & Censys

Shodan and Censys are mostly used to discover publicly

accessible assets and services, such as web servers,

databases, and other network devices which can lead to

Paper ID: SE23725232857 72 of 79

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 7, July 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

being critical vulnerabilities further. It obtains information

about target organizations' infrastructure, such as IP

addresses, open ports, SSL/TLS certificates, and other

relevant details [1]. This information can be used to identify

potential attack vectors, misconfigurations, or vulnerabilities

that can be exploited.

5) Nessus & Acunetix

Nessus and Acunetix is a network and web application

vulnerability scanner that can also check for vulnerabilities

in web applications [1]. It can run several tests to find flaws

like SQL injection, XSS, and others.

Nessus uses a sizable database of publicly known

vulnerabilities to find potential problems. Acunetix has a

user-friendly interface and can be used by both beginners

and advanced users.

6) Hydra & John the ripper

Hydra is used for network login that supports numerous

protocols, including HTTP, FTP, Telnet, and others. It is

used to perform brute-force attacks and dictionary attacks on

password-protected services.

Another tool for password cracking is John the Ripper,

which supports hybrid, brute-force, and dictionary attacks as

well as other methods. For password cracking on Windows,

Unix, and other systems, it supports a wide range of

platforms. John the Ripper has a reputation for being quick

and adaptable.

7) Waybackurls & GF-Patterns

Waybackurls is very useful tool in the initial information

gathering phase. It used to collect all the URLs of the target

domain.

After collecting all the URL‟s, GF-Patterns is generally used

to sort all the URL‟s according to vulnerabilities like XSS,

SSRF, SQLI, SSTI, s3-bucket etc.

8) SQL Map

The best automation tool for locating SQL injection

vulnerabilities in web applications is SQLMAP. It entails

using customization to varying degrees of risk. Additionally,

it is utilized to recognize time-based SQL injection as well

as blind SQL injection. Attackers can also use it to take

advantage of SQL injection flaws and obtain unauthorized

access to private information kept in databases.

9) Nuclei

The open-source software called Nuclei is used to find

security flaws. It sends the request to the server primarily in

nuclei using a template of various vulnerabilities, CVEs, and

technology stack. Numerous thousands of templates have

previously been created and are used to find vulnerabilities.

The tool is incredibly effective for customized functioning in

accordance with the demands of the target domain because

we are able to add our own custom templates to it.

10) Wappalyzer

The most popular extension used by security researchers to

determine which services and technologies are utilized by

the target domain is Wappalyzer [1]. Finding the weaknesses

of that certain technology version is quite simple, according

to the technologies.

a) Vulnerability scanning:

When automated scanners are used to find the system's

vulnerabilities, vulnerability scanning is a component of

testing. Scripts customized for each vulnerability are built

into vulnerability scanners. Scripts are executed on the

target, and after the scan is finished, a list of vulnerabilities

discovered in the target is displayed.

Some vulnerability scanner tools used in automation scripts

to identify vulnerabilities include Nessus, Acuntix, Nikto,

and Openvas [1].Not all vulnerabilities will necessarily be

discovered while utilizing vulnerability scanners. This

makes manual testing the primary and most effective way

for identifying vulnerabilities.

Penetration testing/ Manual testing:

The main component of web application penetration testing

is manual testing. Each vulnerability in the target system is

manually discovered by security testers. Therefore, it will be

more beneficial to target the weakness with greater

accuracy.

All vulnerabilities that are missed by automatic scanner tools

are tested for manually. It is crucial because the manual

technique relies on actual circumstances involving the

specific vulnerability.

Security testers used recon data such as the type of

technology being used, the open ports, and any sensitive

information that is available to the general public [1].

In particular, file inclusion vulnerabilities (LFI, RFI), cross-

site scripting (XSS), SSRF, SSTI, RCE, and injection

vulnerabilities (SQLI, Graphql injection) such vulnerabilities

that are listed in the most severe and high priority

vulnerabilities can be find through manual testing.

b) Find vulnerabilities and Exploitation:

After performing manual testing on the system, a security

tester will discover any weak points or defects, which are

referred to as vulnerabilities. When a security tester

identifies a vulnerability, they attempt to exploit it in order

to get more advantages over the system, such as

unauthorized access or other harmful acts. It will make the

specific vulnerability that was discovered more severe.

Prepare detailed report:
After find the vulnerability and its exploitation, complete

report is being prepared by the security tester which

includes,

 Which vulnerability is found?

 Where the vulnerability is exists? (Location of the bug)

 Description of the vulnerability

 Steps to reproduce

 Proof of concept (POC)

 Impact of the vulnerability

 Mitigations/ Remediation

Paper ID: SE23725232857 73 of 79

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 7, July 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Web Application Security Vulnerabilites:

1) Remote Code Execution (RCE):

RCE is the most severe vulnerability in web application

security. RCE give whole remote control of the server to the

attacker which can be very much crucial. RCE allows to

execute any arbitrary code to the server. This vulnerability is

mostly occurred when user input data is not properly

handled by the server and give the details what the user ask

for[1].

The reason for occurring RCE vulnerabilities:

Insecure Input Validation: Failure to properly validate user

input can result in code injection attacks, in which an

attacker injects malicious code that the system executes.

Inadequate handling of external input, such as command-line

arguments or network data, might allow attackers to inject

arbitrary code into the susceptible application, which is then

executed.

Insecure Deserialization: Flaws in the deserialization process

can allow an attacker to deliver a specifically constructed

serialized object that, upon deserialization, executes

arbitrary code.

Attacking Scenario with Example:

I) File upload vulnerability to RCE

One website has file upload functionality for the users.

Where users can upload the images, document for save the

file on the server. Here, attacker use one PHP file which

contains the malicious code which give the full remote

access of the server machine to attacker. Attacker use some

tricks like double extension to bypass the filter of the upload

functionality and upload that PHP shell file to the server. It

executes on the server and attacker will get the full access of

the system files.

II) Server-side template injection (SSTI) leads to RCE

For SSTI, Attacker manually try all the parameters like

search boxes, form fields, and URL parameters, where user-

supplied data may be reflected back in the application's

response. In these types of fields, mostly attacker try {{7*7}}
types of payloads to identify this vulnerability. If output got

reflected as a 49 it means input parameter is executed on the

server side and confirms the vulnerability. After confirming

the SSTI vulnerability, attacker try to execute the malicious

code of script to get the access for the server-side files of

sensitive information which give the access of server side

and RCE will be executed.

III) Local file inclusion (LFI) to RCE

While looking for LFI vulnerability, for example URL will

be like https://www.example.com/?file=/img/3022.jpeg

for the following URL here attacker try to find LFI

vulnerability and put the value for eg. as /../../../etc/passwd in

file parameter [4]. If attacker got the password list in

response it means this parameter is vulnerable to LFI

vulnerability.

After getting LFI, attacker try to exploit LFI into RCE and

try to execute the payload in order to get the access of

sensitive files which give the remote access of the server

side.

Impact:

The RCE vulnerability has a significant impact because it

can result in the entire compromise of a system, allowing an

attacker complete access and control. The RCE vulnerability

can be exploited by a hacker to steal confidential data, edit

or remove data, or even use the compromised system as a

launch pad for assaults on other systems.

Remediation:

To solve Remote Code Execution (RCE) vulnerabilities,

user input must be verified and sanitized to prevent

malicious input from being executed. Implementing secure

coding techniques such as input validation, output encoding,

and correctly establishing server permissions can also help

to limit RCE risk. Software upgrades and the application of

security patches can also help to avoid the exploitation of

known vulnerabilities.

2) Injection Vulnerability:

Injection vulnerability like SQL injection, command

injection is also very critical vulnerability. It can lead to full

access of database or other sensitive file exposure. Attackers

can execute arbitrary commands or queries against the

interpreter by taking advantage of injection vulnerabilities,

which may allow them to compromise the entire system or

gain unauthorized access to confidential information.

(i) SQL Injection:

Attacking Scenario:

Malicious SQL queries are typically inserted by an attacker

into an input field like a search bar or login form, which the

application will process and send to the database.

Attacking scenario,

Attacker will enter the SQL query into a login form. While

entering the username attacker will enter malicious SQL

query like ' or 1=1-- which will try to bypass the login

credential and last (--) in SQL payload comment out the

password field so that unauthorized login will be possible

into the account [4]. This query will trick the application

into thinking that the attacker has already authenticated and

then the attacker take advantage of it.

Once login is completed, attacker will try to escalate the

severity of the vulnerability and try to get the details of the

database like below:

https://www.example.com/?query= SELECT * FROM user

When an attacker enters erroneous SQL queries into user-

entry fields, the application's database executes these

commands.This is known as classic SQL Injection. As a

result, the attacker could have the ability to change the

database, obtain sensitive information, edit data, or carry out

other illicit actions.

The application does not reveal database errors or the

outcomes of the injected SQL queries [4] in this type of

blind SQL injection attack. In order to get information or

perform unauthorized activities, the attacker uses conditional

Paper ID: SE23725232857 74 of 79

https://www.example.com/?file=/img/3022.jpeg
https://www.example.com/?query=

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 7, July 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

queries or time delays to infer information from the

application's response.

Blind SQL injection attack that infers information from time

delays in the application's response is known as "time-based

blind SQLI." Attacker injects SQL queries that cause the

application to delay in responding if the injected condition is

true [4].

Error-Based SQL Injection: This attack uses database error

messages to gather details about the database's structure or

data [4]. Error-Based SQL Injection. The attacker

deliberately inserts SQL queries that result in problems, then

analyses the error reports to extract crucial data.

Union-Based SQL Injection: In this attack, using the

UNION SQL operator, the outcomes of two or more

database searches are merged into a single result set. [4]. By

introducing a false UNION statement, the attacker can

obtain information from other database tables or infer

information.

Depending on the need, SQLMAP has degrees of risk

ranging from 1-3 as well as levels from 1-5 for deeper scans.

SQL Payloads:

 ' or 1=1--

 '; drop table users;--

 '; select sleep(10);--

 ' union select 1,2,3--

 ' union select null,2,3--

 ' and sleep(5)--

 ' or sleep(5)-- [4]

Impact:

An attacker may be able to extract, modify, delete, or even

seize control of the entire database server thanks to SQL

injection's serious consequences. Sensitive information,

including user credentials, private information, financial

information, or intellectual property, may be exposed as a

result of SQL injection. In some circumstances, SQL

injection can also result in denial-of-service attacks or

system failures.

Remediation:

Mitigating SQL injection vulnerabilities requires a

comprehensive strategy to ensure strong protection against

these types of attacks. Firstly, it is essential to employ

thorough input validation and utilize parameterized queries

to effectively filter and sanitize user input. This ensures that

any malicious SQL commands are prevented from

executing.

(ii) Cross-Site Scripting:

The attacker can inject malicious code into a victim's

browser, typically in the form of a script or HTML. The

code will run in the victim's browser, allowing the attacker

to steal user passwords and hijack user sessions. XSS attacks

often occur when an application fails to validate or sanitize

user input adequately. There are three types of XSS attacks:

Reflected XSS:

It occurs when malicious code is injected into an application

and then reflected to the user's browser. It will utilize this to

steal the user's cookie, session id, and so on.

Scenario for attack:

https://example.com/search?url=abcde

In this case, the attacker replaces „abcde‟ with an XSS

payload, and after the request is submitted, if this page

displays the alert-box, the reflected XSS vulnerability is

validated. The user's cookie and session id are then stolen,

among other things.

Stored XSS:

In this case, the attacker put the malicious code in server

side website and website saved on the application's server

and served to all users that visit the affected page [5]. The

XSS popup is not reflected on the browser or user screen in

this case but XSS will be triggered.

DOM-based XSS:

In a DOM-based XSS attack, malicious code is injected into

the affected page's Document Object Model (DOM) and

executed when the page is loaded.

The victim visits a URL that the attacker has created with

malicious JS code, and he receives a response free of

harmful content. The malicious code is executed at the client

side, and the attacker has access to the client side's sensitive

data. [5].

This allows an attacker to install malicious code into the

victim's web browser, potentially stealing personal

information or performing unauthorized actions.

Impact:

XSS vulnerabilities can cause extensive and detrimental

consequences. Through the injection of malicious scripts

into web pages, adversaries can manipulate user sessions,

extract confidential data, or deface websites. Exploiting XSS

vulnerabilities allows unauthorized access to user accounts,

jeopardizing sensitive information like passwords, financial

details, or private communications.

Remediation:

To address XSS vulnerabilities, various actions can be taken.

Firstly, it is essential to implement input validation to ensure

that user-provided data is properly sanitized and free from

any malicious scripts. Secondly, applying output encoding is

crucial when presenting user input or dynamic content to

prevent it from being treated as executable code.

Additionally, the adoption of a Content Security Policy

(CSP) can help restrict the execution of scripts and minimize

the impact of XSS attacks

3) Server Side Request Forgery (SSRF):

A specific kind of web vulnerability called Server-Side

Request Forgery (SSRF) enables an attacker to send requests

on behalf of the server or application that is being targeted.

In an SSRF attack, the attacker can force the application to

send HTTP requests to a pre-specified, arbitrary domain or

IP address. As a result, the attacker may be able to get

Paper ID: SE23725232857 75 of 79

https://example.com/search?url=abcde

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 7, July 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

around network limitations and access systems or sensitive

data that shouldn't be accessible via the open internet.

Steps to Reproduce:

a) First, we have to identify the parameters on which

interaction from the server is possible. Burp-collaborator

or interests is mostly use to identify the interaction with

the server.

b) Once the interaction is complete with the server, in burp

collaborator HTTP request is appeared which discloses

the IP address of the server system.

c) If the system is using some cloud service like AWS or

google cloud then metadata of that cloud service can also

be disclosed using this vulnerability.

Scenarios:

1) SSRF leads to AWS metadata expose:

An attacker tried to exploit a Server-Side Request Forgery

(SSRF) vulnerability. The attacker creates a malicious URL

that connects to the AWS metadata service endpoint, a well-

known URL for retrieving metadata about an AWS instance

http://169.254.169.254/latest/meta-data/.

The IP address 169.254.169.254 is reserved for link-local

addressing and is used by AWS as the metadata service IP

address [7]. An attacker can gain access to many types of

sensitive information by appending other paths or

parameters to this basic URL.

Well-known Sensitive Information directory path:

http://169.254.169.254/latest/meta-data/iam/security-

credentials/

Unaware of the potential security dangers, the server-side

code performs an HTTP request to the supplied URL.

Because the malicious URL points to the AWS metadata

service endpoint, the server-side malware collects the AWS

instance's sensitive metadata, such as access keys, security

group information, and other potentially sensitive

information using above URLs.

2) SSRF leads to internal port scan disclosed:

The attacker uses the SSRF vulnerability to scan and

enumerate open ports within the internal network in the

scenario of SSRF leading to internal port scanning. To

identify accessible services, the attacker redirects the SSRF

request to internal IP addresses and specified port numbers

rather than the AWS metadata service endpoint.

The attacker takes advantage of this by sending a malicious

URL including an internal IP address and a port number,

such as:

http://site.com/endpoint?url=http://192.168.0.1:8080

The attacker is attempting to scan the internal IP address

192.168.0.1 on port 8080 in this scenario. Because of the

SSRF vulnerability, the susceptible application will make a

request to the provided URL.

If the target internal system has open port 8080, the

vulnerable application will connect successfully, showing

that the port is open [7]. The attacker can then deduce that a

service is running on that port and continue scanning other

ports or performing more reconnaissance to learn more

about the internal network.

By exploiting the SSRF vulnerability in this manner, the

attacker is able to do internal port scanning, locate exposed

services, and perhaps discover misconfigurations or

vulnerabilities that can be used to gain unauthorized access

or launch additional attacks within the internal network [7].

Impact:

The impact of an SSRF attack can be severe, depending on

the capabilities of the vulnerable server and the data it has

access to. An attacker can potentially access internal

systems, read confidential data, and launch attacks against

other systems on the network.

Remediation:

To prevent SSRF attacks, developers should validate all

user-supplied URLs and ensure that they cannot be used to

access sensitive internal resources or private IP addresses.

Server administrators should also disable or restrict the use

of protocols such as file:// or gopher:// that can be used in

SSRF attacks.

4) IDOR (Insecure Direct Object Reference):

When a program fails to implement proper authorization or

validation checks while using user input to access objects, it

exposes an "insecure direct object reference" (IDOR)

vulnerability. Exploiting this vulnerability, attackers can

gain unauthorized access to sensitive information and

features, compromising the security of the application [8].

Attack Scenario: An attacker can manipulate the ID value in

the URL to bypass access restrictions and access

unauthorized resources. This is especially prevalent in

applications that utilize sequential numbers to identify user

accounts, orders, or other resources. In some cases, attackers

may employ brute-force techniques to discover valid object

references.

For instance, let's consider an online marketplace with an

"order" feature that allows users to view their previous

orders. Each order is assigned a unique ID, which is

included in the URL to fetch the order details. However, due

to an IDOR vulnerability, an attacker can modify the ID in

the URL to access other users' order details.

To exploit this vulnerability, the attacker first logs into their

own account and identifies the ID of one of their own orders.

They can then alter the ID in the URL to the ID of another

user's order, granting them access to their personal and

financial information.

For example, the URL for viewing an order might appear as

follows: https:/abc.com/view_order?id=0123. By changing

the ID to 3658, the attacker gains access to the details of a

different order [8].

Impact:

An Insecure Direct Object Reference (IDOR) attack can

have severe consequences as it grants unauthorized access to

sensitive data or enables malicious actions [8]. An attacker

exploiting an IDOR vulnerability may exploit it to gain

Paper ID: SE23725232857 76 of 79

http://169.254.169.254/latest/meta-data/
http://169.254.169.254/latest/meta-data/iam/security-credentials/
http://169.254.169.254/latest/meta-data/iam/security-credentials/
http://vulnerable-site.com/endpoint?url=http://192.168.0.1:8080
https://testsite.com/view_order?id=0123

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 7, July 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

unauthorized access to confidential user information,

manipulate or delete user data, or even take control of user

accounts.

Mitigation:

Access controls should be implemented based on user

privileges and permissions to prevent IDOR vulnerabilities.

It is crucial to ensure that users can only access resources for

which they have explicit authorization. The application

should employ randomized and unique identifiers that are

difficult for attackers to predict or manipulate.

5) Broken Access Control (BAC):

Attacking scenario:

An attacker can identify broken access control

vulnerabilities by examining the application's source code,

APIs, or network traffic. Once a vulnerability is identified,

an attacker can use various techniques to exploit it, such as

brute-forcing passwords, guessing object references,

manipulating input parameters, or using session fixation

attacks.

The flaw was caused by a misconfiguration in the web

application's access controls, especially the permissions and

limitations on resource access. To get access to the sensitive

data, the attacker exploited this misconfiguration and used a

Server-Side Request Forgery (SSRF) vulnerability.

The attacker made fraudulent queries to the web application,

fooling it into requesting metadata from the cloud hosting

provider. The attacker was able to get temporary access

credentials for the Capital One environment by altering the

requests, which provided them enhanced rights [9].

The attacker used the stolen credentials to access and

exfiltrate sensitive consumer information such as names,

addresses, credit scores, and social security numbers. The

event demonstrated the serious implications of a Broken

Access Control vulnerability.

Impact:
It can allow an attacker to gain unauthorized access to

sensitive data or functionality and it can lead to privilege

escalation of that access to increase the severity of the

vulnerability. Mainly the impact of a broken access control

vulnerability depends on the specific application and the

data it stores.

Remediation:

Implementing strategies like role-based access control, the

least privileged approach, input validation and sanitization,

access control testing, access control logging and

monitoring, routine system updates and patches, and security

awareness training are all part of fixing broken access

control vulnerabilities. By utilizing these methods,

businesses can lower the risk of unauthorized users

accessing and manipulating their data and systems.

6) Cross-Site Request Forgery (CSRF):

The attacker creates a request that appears to be coming

from a reliable source, like a user's browser, and sends it to

the target website. When the victim accesses the website,

their browser sends the malicious request unintentionally

along with their login information, enabling the attacker to

act on their behalf [10].

Attacking Scenario:

The attacker developed a malicious website or constructed a

malicious link and lured the victim (a Facebook user) into

visiting the website or clicking the link while logged into

their Facebook account.

The malicious website or link, unbeknownst to the user,

featured a hidden form that made a request to Facebook's

email address change tool.

The hidden form filled in the victim's Facebook account

information, such as their user ID or email address, as well

as the attacker's desired email address.

When the victim visited the infected website or clicked the

link, their browser submitted the hidden form, which

triggered a request to Facebook's email address change tool.

Because the victim was already logged in to Facebook, the

request seemed valid, and Facebook processed it.

Impact:
Using a CSRF attack, an attacker may do unauthorized

activities on the victim's behalf without the victim's

knowledge or agreement [10]. This category includes

changing account information, adding or deleting products

from a shopping cart,making fraudulent payments or

contributions, manipulating data or settings, and other

actions. The consequences might range from minor

annoyances to major security breaches that sensitive data,

cause monetary losses, or destroy a company's brand.

Remediation:

Developers may adopt approaches including implementing a

CSRF token, validating the referrer header, utilizing Same

cookies, HTTP headers, restricting the scope of sensitive

actions, and keeping the program updated [10]. Developers

may limit the danger of CSRF attacks and safeguard their

apps by applying these approaches.

7) Open Redirect

An open redirect vulnerability is a sort of security weakness

that enables an attacker to reroute a victim to any website or

page by using the redirect URL parameter of a susceptible

website [11]. This error occurs when a website fails to

validate user input or change URLs.

Attacking Scenario:

Let's imagine that abc.com‟s login page at

http://abc.com/login.php?redirect=http://attacker.com

has an open redirect vulnerability. The victim or user will be

sent to the login page of "example.com" when they click the

link, but the redirect parameter will take them to the

attacker's website, "attacker.com." The attacker can steal the

victim's or user's login information and use it for their own

objectives, which may be more detrimental to the victim or

user [11].

Paper ID: SE23725232857 77 of 79

http://abc.com/login.php?redirect=http://attacker.com

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 7, July 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

In this situation, an attacker can also reroute the user to their

website in order to collect private data such as the victim's

browser cookie and login.

XSS, SSRF, and account takeover vulnerabilities can also

result from open redirect vulnerabilities.

Attacking Scenario for Open redirect to SSRF:

Attackers created a product listing on ABC.com with an

external link and a URL parameter. The URL parameter was

altered by the attacker, who made it go to a malicious URL

under their control. They did present it as a legitimate

internet link, though.

When users clicked on the product listing, which appeared

genuine and reliable, they were directed to the modified

URL.

Unbeknownst to the users, the modified URL started a

server-side request within the architecture of ABC.com. An

internal system or an API endpoint that was open to SSRF

attacks received the request [7].

Due to the SSRF vulnerability, the attacker had access to

private data on ABC.com's internal network and could send

queries to other internal systems that were vulnerable.

Attacking Scenario for Open redirect to XSS:

On ABC.com, users have the option to include external links

in their postings or profiles. These links are meant to direct

visitors to other websites.

By changing the redirect parameter and including a script

payload, an attacker creates a malicious link that appears to

have come from a reputable source.

The attacker may present the malicious link as important

information or as a helpful resource in an effort to trick the

victim into clicking on it.

The user is sent to a website that appears legitimate although

is really under the attacker's control when they click the link.

The attacker's script payload encoded in the URL parameter

is performed as part of the redirect process on the safe

abc.com website.

The malicious script can now change or steal the user's

session cookies and other sensitive information because it

has access to them [6].

Impact:

Attackers can create a link that appears legitimate but

redirects any user to a malicious website or address. This

can be applied to phishing attacks, in which a hacker poses

as a reputable website to steal sensitive data or user

credentials.

Remediation:

It is required to validate all the user inputs that could lead to

a redirection. The URLs being redirected should be only

from trusted and approved sources. In the redirect URL, stay

away from using user-supplied parameters. whenever

possible, switch to server-side redirection from client-side

redirection.

8) Broken Authentication and Session Management

Broken authentication and session management

vulnerabilities happen when the mechanisms for

authentication or session management are weak, allowing

attackers to steal user credentials and session tokens or get

around the authentication process. Weak password policies,

session hijacking and fixation, poor authentication

procedures, inadequate encryption, and a lack of a multi-

factor authentication system can all contribute to this issue.

As a result, the attackers are able to get unauthorized access

to the system and server information.

Attacking Scenario:

User2 frequently shops on the internet at the site

"ABC.com" ABC.com 's authentication and session

management system is flawed, putting consumers at risk for

security breaches. User1 can use this vulnerability to access

user accounts without authorization and carry out nefarious

deeds [12].

Exploitation:

User1 learns that ABC.com's login process does not enforce

account lockouts after numerous failed login attempts or

necessitate stringent password restrictions.

Using a widely used password, User1 registers on ABC.com

as a user and logs into her own account. User1 observes

that ABC.com makes use of session IDs that are neither

generated or managed securely. User1 develops a strategy to

take advantage of this weakness. She wants to break into

User2's account without authorization and steal her personal

data.

User1 begins by impersonating a ABC.com promotional

email in order to send User2 a phishing email. A link in the

email sends User2 to a false login page that is disguised to

look like ABC.com's actual login page.

User2 submits her username and password on the fake login

page, thinking she is logging into her ABC.com account, not

seeing that it is a phishing attempt.User2's login information

is intercepted by the fake login page and sent to User1's

server [12].

User1 attempts to log in using User2's login information on

the genuine ABC.com website after receiving User2's login

information.

Due to improper techniques for identifying suspicious login

patterns, ABC.com's defective authentication system is

unable to recognize or prevent User1's login attempts

[12].User1 is able to successfully connect into User2's

account and gain access to all of the personal data, order

history, and payment information etc.

Impact
This is an extreme circumstance that could result in

unauthorized access to sensitive information or features,

such as user accounts, credit card data, or intellectual

property. Attackers may use this vulnerability to hijack user

sessions, evade authentication, steal passwords, or

Paper ID: SE23725232857 78 of 79

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2020): 6.733

Volume 11 Issue 7, July 2023

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

masquerade as other users, putting their own identities at

risk of theft, monetary loss, or reputational damage.

Remediation

 Implement the policies for secure passwords.

 Using features for multi-factor authentication

 After the user logs out, the running session should time

out promptly.

 Use HTTP-only and secure flags for sending sensitive

data, such as cookies.

2. Conclusion

Finally, the topic of web application security is crucial in

securing sensitive data and retaining user confidence.

Finding vulnerabilities necessitates a combination of

proactive steps and rigorous testing. This includes doing

rigorous security assessments, such as human code reviews,

penetration testing, and the use of automated technologies.

Developers may minimize typical vulnerabilities such as

injection attacks, cross-site scripting, and cross-site request

forgery by using security best practices such as input

validation, safe code, and session management. Continuous

monitoring and patch management are critical for dealing

with evolving threats. Using web application firewalls as a

defense mechanism can aid in the prevention of attacks and

reduce the danger of data breaches. Collaboration between

security specialists, developers, and system administrators is

critical in putting in place effective security policies.

References

[1] Nagendran, K., A. Adithyan, R. Chethana, P. Camillus,

and KB Bala Sri Varshini. "Web application

penetration testing." Int. J. Innov. Technol. Explor.

Eng 8, no. 10 (2019): 1029-1035.

[2] Clincy, Victor, and Hossain Shahriar. "Web

application firewall: Network security models and

configuration." In 2018 IEEE 42nd Annual Computer

Software and Applications Conference (COMPSAC),

vol. 1, pp. 835-836. IEEE, 2018.

[3] Mohammad, S., and Soulmaz Pourdavar. "Penetration

test: A case study on remote command execution

security hole." In 2010 Fifth International Conference

on Digital Information Management (ICDIM), pp.

412-416. IEEE, 2010.

[4] Begum, Afsana, Md Maruf Hassan, Touhid Bhuiyan,

and Md Hasan Sharif. "RFI and SQLi based local file

inclusion vulnerabilities in web applications of

Bangladesh." In 2016 International Workshop on

Computational Intelligence (IWCI), pp. 21-25. IEEE,

2016.

[5] Ma, Limei, Dongmei Zhao, Yijun Gao, and Chen

Zhao. "Research on SQL injection attack and

prevention technology based on web." In 2019

International Conference on Computer Network,

Electronic and Automation (ICCNEA), pp. 176-179.

IEEE, 2019.

[6] Liu, Miao, Boyu Zhang, Wenbin Chen, and Xunlai

Zhang. "A survey of exploitation and detection

methods of XSS vulnerabilities." IEEE access 7

(2019): 182004-182016.

[7] Luo, Haibo. "Ssrf vulnerability attack and prevention

based on php." In 2019 International Conference on

Communications, Information System and Computer

Engineering (CISCE), pp. 469-472. IEEE, 2019.

[8] KumarShrestha, Ajay, Pradip Singh Maharjan, and

Santosh Paudel. "Identification and illustration of

insecure direct object references and their

countermeasures." International Journal of Computer

Applications 114, no. 18 (2015): 39-44.

[9] Hassan, M., M. Ali, T. Bhuiyan, M. Sharif, and S.

Biswas. "Quantitative assessment on broken access

control vulnerability in web applications." In

International Conference on Cyber Security and

Computer Science 2018. 2018.

[10] Kombade, Rupali D., and B. B. Meshram. "CSRF

vulnerabilities and defensive techniques."

International Journal of Computer Network and

Information Security 4, no. 1 (2012): 31.

[11] Wang, Xianbo, Wing Cheong Lau, Ronghai Yang, and

Shangcheng Shi. "Make redirection evil again: Url

parser issues in oauth." Black Hat Asia (2019).

[12] Hassan, Md Maruf, Shamima Sultana Nipa, Marjan

Akter, Rafita Haque, Fabiha Nawar Deepa, Mostafijur

Rahman, Md Asif Siddiqui, and Md Hasan Sharif.

"Broken authentication and session management

vulnerability: a case study of web application." Int. J.

Simul. Syst. Sci. Technol 19, no. 2 (2018): 1-11.

[13] Twitter Official, “An incident impacting some

accounts and private information on Twitter”,

https://privacy.twitter.com/en/blog/2022/an-issue-

affecting-some-anonymous-accounts

[14] Uber security Officials, “Uber data breach”

https://www.uber.com/newsroom/security-update/

[15] Crypto.com security reports, “unauthorized crypto

withdrawals approximately US$66,200 in other

cryptocurrencies.”https://crypto.com/product-

news/crypto-com-security-report-next-steps

[16] “Insult on Prophet Muhammad: Malaysian hackers

attack over 70 Indian government websites”

https://sea.mashable.com/tech/20569/insult-on-

prophet-muhammad-malaysian-hackers-attack-over-

70-indian-government-websites

[17] Lori Aratani, “Hackers knock some U.S. airport

websites offline”

https://www.washingtonpost.com/transportation/2022/

10/10/hackers-cyber-attack-airport-website

Paper ID: SE23725232857 79 of 79

https://sea.mashable.com/tech/20569/insult-on-prophet-muhammad-malaysian-hackers-attack-over-70-indian-government-websites
https://sea.mashable.com/tech/20569/insult-on-prophet-muhammad-malaysian-hackers-attack-over-70-indian-government-websites
https://sea.mashable.com/tech/20569/insult-on-prophet-muhammad-malaysian-hackers-attack-over-70-indian-government-websites
https://www.washingtonpost.com/people/lori-aratani/?itid=ai_top_aratanilh

