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Abstract: The operating conditions of rolling bearings of wind turbines are variable and complex, so it is of great significance to 

accurately analyze the type of bearing failure, damage degree and fault location for improving the safety of wind turbines. In this study, a 

method of fault signal separation for rolling bearing of wind turbine based on multi-channel DCNN is proposed, and a kurtosis and 

envelope spectrum comparison method is proposed to evaluate the blind source signal separation effect. Firstly, the bearing signal was 

analyzed by Short Time Fourier Transform (STFT) to generate a Binary Time-Frequency Mask (BTFM) that can characterize the 

bearing fault. Secondly, the multi-channel DCNN signal separation model is established, and the time spectrum and binary 

time-frequency mask are used as training samples to train the model. Then, the mixed bearing time spectrum is used as the input of the 

model to obtain the binary mask of each fault. Finally, multiplying the mixed time-frequency spectrum by the corresponding fault 

time-frequency mask can obtain the time-domain signal that contains various faults in the mixed signal. Experimental results on vibration 

data set of Case Western Reserve University show that the proposed method can effectively separate bearing fault signals and obtain 

accurate information such as fault type, damage degree and fault location. This method can realize automatic bearing fault feature 

learning and fault signals and the separation of mixed signal, to improve the safety of the wind turbine. 

Keywords: Wind turbine, rolling bearing, fault characteristic analysis, multi-channel DCNN, blind source signal separation, binary 

time-frequency mask.  

1. Introduction 

 

With the increasingly serious problems such as global 

environmental pollution and non-renewable primary energy, 

wind power generation, relying on its mature technology and 

high-quality wind energy resources, has been strongly 

supported by investors and governments around the world, 

especially in the past decade, the development of China's wind 

power industry has achieved explosive growth [1]. Rolling 

bearings are crucial precision parts in rotating machinery 

equipment, responsible for supporting and transmitting 

power, but also the most easily damaged parts. According to 

statistics, about 30% of mechanical failures are caused by 

rolling bearings [2-4]. For wind farms, timely and accurate 

fault analysis has very high engineering application value, 

which can not only reduce the economic loss caused by faults, 

but also avoid personal safety accidents, which is of great 

significance for the safe and stable operation of wind turbines. 

 

Blind source signal separation refers to the process of 

extracting and restoring various original signals that cannot be 

directly observed from mixed signals, which can be divided 

into Independent Component Analysis (ICA), Sparse 

Component Analysis (SCA), Non-negative Matrix 

Factorization (NMF) and Bounded Component Analysis 

(BCA) based on signal independence, sparsity, non-negative 

and geometric characteristics [5].ICA is the core technology 

in the field of blind source separation, which is mainly applied 

to multi-channel separation problems, but its prerequisite is 

that the source signals are independent from each other [6,7]. 

The sparsity of the signal means that the possibility of two or 

more source signals appearing at the same frequency is low, 

that is, most of the energy at any frequency belongs to a single 

source. SCA converts the problem of signal separation into 

the problem of data classification, and takes the sparsity of 

signals as a prerequisite to realize the blind source separation 

of signals [8]. NMF is a matrix decomposition method 

proposed by Lee and Seung et al. [9], which can ensure that all 

components after decomposition are non-negative. Since 

second-order statistics, fourth-order statistics or higher-order 

spectra are needed to construct a mixed matrix, the 

computational complexity is relatively high. BCA uses the 

geometric characteristics of the source signal character set and 

the convex set principle to establish the cost function, which 

has superior separation performance under the premise of 

short data blocks and high signal-to-noise ratio. Its 

disadvantage is that it is greatly affected by noise and has poor 

anti-noise ability [10]. 

 

The bearing vibration signal collected by the sensor contains 

not only the fault characteristic signal, but also a large number 

of noise signals generated by the running vibration of the 

bearing. Therefore, the original vibration signal must be 

extracted before the bearing fault analysis. Traditional 

methods of feature extraction are mainly divided into three 

categories: time domain, frequency domain and 

time-frequency domain [11]. Time domain signal is a way to 

describe the amplitude of vibration signal with time. The 

commonly used time domain statistical parameters include 

peak value, kurtosis and root mean square. The frequency 

domain method is to convert the time domain signal into 

spectrum, and then analyze the frequency of the vibration 

signal. The frequency domain feature extraction methods 

generally include envelope spectrum analysis, cepstrum 

analysis and high order spectrum analysis. Feature extraction 

methods based on time-frequency analysis include STFT, 

wavelet transform and Hilbert transform, etc. [12,13]. 

 

The operating conditions of wind turbines are very complex, 
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and wind turbines often operate in extremely harsh 

environments, which make the vibration signal collected by 

bearing condition monitoring contain a large number of noise 

signals, and the fault signal and noise signal will be modulated 

between each other. At this time, the bearing fault signal 

cannot meet the common blind source separation method 

required by the independence, sparsity and other 

preconditions. The neural network model can analyze the 

fault characteristics of any frequency points, and realize an 

end-to-end fault signal separation model of rolling bearing. 

On this basis, this study proposes a multi-channel DCNN 

model, uses the STFT and BTFM to construct a matrix that 

can characterize the bearing fault characteristics, and 

separates the possible fault signals of the bearing from the 

collected mixed signals in order to find faults and eliminate 

hidden dangers in time. Finally, the bearing vibration case 

data, combined with the frequency domain analysis method of 

vibration signals, and the peak value and envelope spectrum 

comparison method were used to evaluate the blind source 

signal separation results and verify the effectiveness and 

feasibility of the proposed method. The overall scheme of the 

model is presented in Figure 1. 

 

 
Figure 1: The overall scheme of the model 

 

2. Materials and Methods 

2.1Fault characteristics of rolling bearings 

 

Bearing is one of the most important components in 

mechanical equipment, and its main role is to reduce rotary 

friction and reduce the noise of machine operation. Roller 

bearings are a kind of rolling bearings, usually composed of 

an inner and outer ring, a rolling body (ball or roller) and a 

cage. The inner ring rotates with the rotating axis, the outer 

ring remains static, and the rolling body rotates between the 

inner and outer rings, which can greatly reduce the contact 

area between the mechanical parts, thereby reducing friction 

and wear. This structure and principle make bearings widely 

used in automotive, machinery, aerospace and other fields, 

and play a very important role in improving the reliability, life 

and safety of mechanical systems [14,15]. The bearing 

structure is shown in Figure 2. 

 
Figure 2: The basic structure of rolling bearing (𝑟1 is the 

radius of the outer raceway; 𝑟2 inner ring raceway radius;𝐷 

is the diameter of the bearing pitch circle;𝑑 is the diameter of 

the rolling element; 𝛼is the contact Angle) 

From the point of view of diagnosis, only the characteristic 

information of bearing fault can be extracted to the actual 

analysis, and the energy of the vibration signal is very small 

when the bearing is in the normal state. When analyzing the 

bearing fault spectrum, it is found that the characteristic 

frequency of bearing fault has certain periodicity and obvious 

peak value in the harmonic component. For a single defect 

fault type, the formula for calculating the fault characteristic 

frequency of the rolling element, inner ring and outer ring is as 

follows: 

𝑓𝑏 =
𝐷

2𝑑
  𝑓𝑎 − 𝑓𝑟

   1 −
𝑑2

𝐷2 𝑐𝑜𝑠2 𝛼  (1) 

𝑓𝑖 =
𝑍

2
  𝑓𝑎 − 𝑓𝑟

   1 −
𝑑

𝐷
𝑐𝑜𝑠 𝛼  (2) 

𝑓0 =
𝑍

2
 𝑓𝑟 − 𝑓𝑎   1 +

𝑑

𝐷
𝑐𝑜𝑠 𝛼  (3) 

When local damage occurs at a fixed point on a rolling 
bearing component, f_b, f_i and f_0 refer to the characteristic 
frequency of the impact of the single damage point on the 
bearing component, respectively, and are therefore also 
known as the fault characteristic frequency of the rolling 
element, inner ring and outer ring [16]. 

2.2   Bearing signal analysis based on STFT and BTFM 

 

Signal is the carrier of information, is the physical expression 

of information, can be regarded as a function of time, or a 

function of frequency. By Fourier transform the time domain 

signal, you can check the frequency transformation of the 

signal. The signal of rolling bearing of wind turbine is 

non-stationary and contains a lot of noise, which brings great 

difficulty to bearing fault analysis and diagnosis. STFT is a 

time-frequency analysis method for non-stationary signals, 

which can convert time domain signals into characteristic 

time spectrum including time domain and frequency domain. 

Binary time-frequency mask was first used for single-channel 

signal separation, which can separate multiple source signals 

from aliasing signals and analyze sparse signals in the 

time-frequency domain [17,18]. Firstly, the STFT is applied 

to the bearing fault signal to obtain the two-dimensional time 

spectrum of bearing fault characteristics. Then the binary 

mask is used to calculate the mask of each type of fault 

feature, and the hybrid fault signal of the bearing is multiplied 

with the mask of the corresponding fault to obtain the 
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separation spectrum of the fault. Then the inverse STFT is 

performed on the frequency spectrum to obtain the time 

domain signal after the separation of the fault. Figure 3 shows 

the fault signal separation framework, which includes four 

types of signals: rolling element fault, inner ring fault, outer 

ring fault and normal state. 

 
Figure 3: The fault signal separation framework 

2.2.1   Short-time Fourier Transform (STFT) 

Fourier transform is a method used to analyze synthetic 

signals. The time-domain signal is represented as the integral 

form of a complex exponential function, the original function 

is 𝑓 𝑡 , and the image function is 𝐹 𝜔 . The calculation 

formula is as follows [19] : 

𝐹 𝜔 =  𝑓 𝑡 
+∞

−∞
𝑒−𝑖𝑤𝑡 𝑑𝑡 (4) 

The inverse transformation of the continuous Fourier 
transform is shown in the following formula: 

𝑓 𝑡 =
1

2𝜋
 𝐹 𝜔 

+∞

−∞
𝑒−𝑖𝑤𝑡 𝑑𝑡 (5) 

The STFT can only show that there is a certain frequency 

feature in the signal, but it cannot accurately express the time 

localization information of the relevant frequency feature. 

The rolling bearing signal is generally non-stationary and 

time-varying, which is reflected in that it is sometimes 

prominent in the time domain and sometimes in the frequency 

domain [20]. STFT can combine the advantages of time 

domain analysis and frequency domain analysis to make a 

comprehensive analysis of the fault signal, among which the 

time domain diagram and time spectrum of the outer ring fault 

are shown in Figure 4. 

 
Figure 4: The time domain diagram and time spectrum of 

outer ring fault 

The basic idea is to multiply the window function with the 

original signal and translate it continuously after Fourier 

transform. The calculation formula of STFT is as follows: 

𝐺𝑓 𝜔, 𝑢 =  𝑓 𝑡 
+∞

−∞
𝑔 𝑡 − 𝑢 𝑒−𝑖𝑤𝑡 𝑑𝑡(6) 

where 𝑓 𝑡   is the original signal; 𝑔 𝑡 − 𝑢  is the window 

function; 𝐺𝑓 𝜔, 𝑢  is the result of STFT and the value of 

real-time frequency energy density [21]. 

2.2.2   Binary time-frequency mask technique(BTFM) 

The binary mask is used to extract the abnormal signal from 

the mixed signal which is different from the characteristic 

signal. According to the energy difference of the feature 

signal at different frequency points, it uses linear mapping 

method to compare the target signal with the interference 

signal and separate the feature value in the target signal 

[22,23]. In this study the bearing fault signals are divided into 

four categories. Firstly, the ideal ratio mask (IRM) is 

calculated. When one of the fault states is the target signal, the 

other three types of fault signals are interferences. The value 

range of this matrix is [0,1]. Formulas (8) and (9) are then 

used to find the BTFM of each type of fault. The bearing time 

spectrum and BTFM results are shown in Figure 5. 

𝐼𝑅𝑀 =
𝑆𝑡𝑎𝑟𝑔𝑒𝑡

2

𝑆𝑡𝑎𝑟𝑔𝑒𝑡
2 +𝑆𝑖𝑛𝑡𝑒𝑟𝑓 1

2 +𝑆𝑖𝑛𝑡𝑒𝑟𝑓 2
2 +𝑆𝑖𝑛𝑡𝑒𝑟𝑓 3

2 (7) 

𝐵𝑅𝐹𝑀 =  
1, 𝐼𝑅𝑀 ≥ 0.5
0, 𝐼𝑅𝑀 < 0.5

 (8) 

 
Figure 5:The bearing fault time spectrum and binary time 

frequency mask 

2.2.2   Deep convolutional neural networks (DCNN) 

Convolutional neural network is a kind of neural network with 

deep hierarchical structure and automatic feature extraction 

through convolutional pooling calculation. In the training 

process, backpropagation algorithm is adopted to constantly 

adjust parameters and optimize the network structure, and an 

approximate result is obtained [24]. The basic structure of the 

convolutional neural network includes input layer, 

convolutional layer, pooling layer, fully connected layer and 

output layer. The basic structure of the convolutional neural 

network in this paper is shown in Figure5. 

 
Figure 6: Basic structure of convolutional neural network 

In the convolution layer, multiple convolution check input 

sets are convolved and a series of feature graphs are obtained 

by activation function. Each feature graph can share weights, 
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and different convolution layers require different convolution 

kernels. The mathematical formula for the convolution 

process is as follows [25]: 

𝑎𝑖 ,𝑗 = 𝑓   𝑤𝑚 ,𝑛𝑥𝑖+𝑚 ,𝑗 +𝑛 + 𝑤𝑏
2
0

2
0  (9) 

Where 𝑤𝑚 ,𝑛  and 𝑥𝑖+𝑚 ,𝑗 +𝑛  are the weights corresponding to 

the convolution kernel and a local region, and 𝑤𝑏  is the offset 

value of the convolution kernel. 

 

The pooling layer is connected behind the convolutional layer 

to reduce the dimension of the feature graph. It can aggregate 

the features of different locations in the local areainto one 

feature, so as to output the feature graph without redundant 

information. Common pooling layer methods include 

maximum pooling layer, average pooling layer and random 

pooling layer. In the process of pooling, there are no learning 

parameters, so there is no need for backpropagation and 

gradient calculation [26]. 

 

In convolutional neural networks, the fully connected layer 

classifies feature fragments and is usually applied to the last 

one or two layers of the network to classify and integrate the 

features after convolution and pooling, and map them to the 

sample label space. The fully connected layer retains and 

integrates all the features in the image, regardless of the 

position relationship, each neural network will be connected 

with the neurons of the previous layer, so the number of 

parameters and calculation is huge. In the convolutional 

neural network model, only 2-3 layers of the fully connected 

layer are usually set [27]. 

3. Experimental 

3.1Experimental environment 

 

The software environment used for the example is 

Ubuntun16.04, Python3.7, Keras2.0.0, Tensorflow1.1.0. The 

hardware environment is two Intel Xeon 

E5-2680v4@2.4GHz processors, 128GB of RAM, and two 

Nvidia GTX-3060. 

3.2   Experimental data set 

 

In this study, the vibration data set of Bearing Failure 

Laboratory, Electrical Engineering Laboratory, Case Western 

Reserve University, USA, is used to verify the validity and 

practicability of the signal separation method. 

 

The laboratory has a 2 HP electric motor, a torque sensor, a 

power measuring instrument, and an advanced electrical 

control system. Through EDM technology, we place multiple 

fault points on the bearing under test, and simulate the 

severity of the fault according to the damage diameter of each 

fault point. The fault diameters are 0.007, 0.014, 0.021, 0.028 

and 0.040 inches, respectively. In this study, we selected SKF 

deep groove ball bearings to detect the first three fault 

diameters, and used the same model of NTN deep groove ball 

bearings as test bearings for the remaining two fault 

diameters. The fault types include inner ring fault, rolling 

element fault and outer ring fault, and the damage point of the 

outer ring fault is set at 3 o 'clock, 6 o 'clock and 12 o 'clock of 

the clock. The bearing is driven to rotate under the rotation of 

the motor with different power, and the speed is 1797, 

1772/1750 and 1730 revolutions per minute, and the different 

speed indicates the different operating conditions. 

Acceleration sensors were used to collect vibration signals. 

The acceleration sensor is installed at the 12 o 'clock position 

of the drive end and the fan end of the motor housing through 

the magnetic base. At the same time, the vibration 

acceleration signal of bearing fault is collected. The vibration 

signal is collected by a 16-channel data logger with a 

sampling frequency of 12kHz. Because the characteristic 

frequency of the bearing's outer ring fault is the same at 

different positions, the vibration signal at 3 o 'clock of the 

above outer ring fault is selected as the vibration data of the 

bearing's outer ring fault in this study. 

 

Bearing failure frequency can be calculated from formula (1) 

to formula (3). Bearing failure characteristic frequency is 

shown in Table 1 and bearing specification parameters are 

shown in Table 2. 

Table 1:Driving end bearing specification (unit: mm) 

Inner ring 

diameter 

Outer ring 

diameter 

Thickness Rolling 

diameter 

Pitch 

diameter 

25 52 15 7.94 39.04 

Table 2:Failure frequency (unit: Hz) 

 Inner ring fault Outer ring fault Rolling element fault 

162.18 107.36 141.16 

(Rotation frequency: 1797r/min) 

3.3   Data preprocessing 

 

In this study the fault types of rolling bearings are initially set 

to include four types: outer ring fault, inner ring fault, rolling 

element fault and normal state. In order to simulate the 

complex operating conditions and operating environment of 

wind turbines, the data of test bearings under different 

working conditions and samples under different damage 

degrees are mixed together. The process of data preprocessing 

is shown in Figure 7. 

 

 
Figure 7:Data preprocessing process 

 

The time domain signal of the bearing shows the amplitude 

variation of the bearing vibration with time during operation, 

and the corresponding two-dimensional time spectrum STFT 

(t,f) is obtained by short-time Fourier transform. Using 

Hamming window function, the length of Fourier transform is 

100 points, the number of overlapping samples in each 

segment is 64, the sampling frequency is 12kHz, and the time 
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spectrum of bearing vibration signal is calculated. The 

horizontal axis is time t, and the vertical axis is frequency f. 

The binary time-frequency masks of four types of bearing 

fault types are calculated by formula (8) and formula (9) to 

form the input data set of the model. 

3.4   Sample characterization data 

 

Bearing time domain signal is a kind of time series signal, 

embedded in the signal time dependence, in a given time 

range, each moment of the spectrum signal has a certain 

correlation. Therefore, when setting the model of the neural 

network, it should be taken into account that setting this time 

interval needs to be able to capture the characteristic signal of 

the bearing fault, so that the neural network model can learn 

the fault characteristics. The sampling frequency of data is 

12kHz,the window size of STFT is 100, and the number of 

overlapping samples is 64, so a single STFT frame is about 

(~5.33ms≈64/12000), and 25 STFT frames in the target 

context are about 133.3ms. The sample data representation 

structure of multiple fault types is shown in Figure 8. 

 
Figure 8: Data representation structure for multiple faults 

3.5   Multi-channel DCNN model construction 

The selection of parameters such as the size and number of 

convolutional nuclei, the size and number of pooled layers, 

and the number of neurons in the fully connected layers in the 

convolutional neural network affect the separation results of 

the model [28]. Based on LetNet-5, this paper modified its 

network parameters to find a multi-channel DCNN model 

suitable for signal separation, in which the single-channel 

model contains 4 convolutional layers, 4 maximum pooling 

layers and 2 fully connected layers. Both the convolution 

kernel size and the pool window size of the maximum pool 

layer are 3. The single-channel model structure is shown in 

Figure 9. 

 
Figure 9: Single-channel DCNN model structure 

The binary time-frequency mask is obtained by preprocessing 

the original data set of bearing signal, and the binary 

time-frequency mask is fed into the neural network model. 

The input of the model is (None,51,25,1), and the output of 

51×25×32 is obtained by feature extraction of 32 3×3 

convolution kernels. The 51×25×32 feature vectors are 

transformed into 16 51×25 outputs by convolution operation 

of 16 3×3 convolution kernels in the second layer. The 

maximum pooling layer is used to compress the feature map 

and remove the redundant information to get a 17×8×16 

output. The activation layer adopts the nonlinear function 

LeakyRelu to activate each layer and increase the model 

expression ability. 

 

Then, each point of the feature map is processed accordingly 

to get a 17×8×16 output feature map. Next, this feature map 

goes through 64 3×3 convolutions and 16 3×3 convolutions, 

along with a Max pooling layer to produce a 5×2×16 output. 

The output is then one-dimensional through the Flatten layer, 

with an output of 160. Finally, the fault values of single-class 

faults are output through two fully connected layers. 

 

Bearing fault signals are divided into four categories, so it is 

necessary to build four convolutional neural network branches 

to extract the energy distribution of corresponding faults in 

the time spectrum respectively. The overall results of the 

model are shown in Figure 10. 

 
Figure 10:Multi-channel DCNN model structure 

At the end of the model, the Dense layers of the four channels 

are joined together through the Concatenate layer. The output 

of the model is (None, 204), and each fault type corresponds 

to 51 values, respectively corresponding to the bearing's outer 

ring fault, inner ring fault, rolling element fault and normal 

state. The output structure of the model is shown in Figure 11.  

 
Figure 11: Model output structure 
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The minibatch number of the network is 128, the initial 

knowledge learning rate is 0.01, the learning rate reduction 

factor is 0.1, the learning rate adjustment cycle is 50, the data 

is scrambled before each round of training or verification, and 

the maximum number of rounds is 200. 

3.6   Evaluation parameter 

The evaluation indexes of the model can quantify the error 

characteristics of the model, and different evaluation indexes 

can analyze the model from different dimensions. The neural 

network model mainly evaluates the ability of multi-channel 

neural network to characterize the nonlinear relationship of 

training data based on the error between the real value and the 

predicted value of the model output, and adopts Root Mean 

Square Error (RMSE), Mean Absolute Error (MAE) and 

Mean Absolute Percentage Error (MAPE) to evaluate the 

model [29]. Secondly, bearing signal separation must be 

returned to the time domain and frequency domain signals 

used in bearing fault diagnosis. Therefore, a contra-analysis 

method of kurtosis and envelope spectrum is proposed to 

evaluate the model from the time domain and frequency 

domain perspectives. 

3.6.1   Evaluation of neural network model 

The RMSE, MAE and MAPE of the three model evaluation 

indexes are calculated as follows: 

𝛾𝑅𝑀𝑆𝐸 =  1

𝑁
 （𝑦𝑖 − 𝑦 𝑖）

2
𝑁
𝑖=1 (10) 

𝛾𝑀𝐴𝐸 =
1

𝑁
   𝑦 𝑖 − 𝑦𝑖   

𝑁
𝑖=1 (11) 

𝛾𝑀𝐴𝑃𝐸 =
1

𝑁
   

𝑦 𝑖−𝑦𝑖

𝑦𝑖

  𝑁
𝑖=1 (12) 

Where: 𝑁  is the total number of predicted data; 𝑦 𝑖  is the 

predicted value for the 𝑖 th data. 

3.6.2Evaluation of signal separation results 

Peak state refers to the tail measurement of the probability 

distribution of random variables, which can be used to study 

the singular value of the bearing class changing after the 

occurrence of anomalies [30]. The calculation formula is the 

difference between the fourth order distraction moment and 

the variance of the random variable. The calculation formula 

is as follows: 

𝐾𝑢𝑟𝑡 𝑋 = 𝐸   
𝑋−𝜇

𝜎
 

4

 =
𝐸  𝑋−𝜇 4 

 𝐸  𝑋−𝜇 2  2(13) 

The envelope demodulation method can amplify the high 

frequency natural vibration generated by the fault impact, and 

extract the fault characteristics of the rolling bearing through 

envelope detection and spectrum analysis. Due to the low 

frequency signal as a base band signal amplitude modulation, 

and the high frequency vibration amplitude is not equal, 

change, and therefore in the envelope spectrum can get to the 

fault characteristic frequency as the base wave frequency of 

harmonic signals. 

 

For a given time-domain signal 𝑥 𝑡 , the Hilbert 

transformation is as follows: 

𝐻 𝑥 𝑡  =
1

𝜋
 

𝑥 𝜏 

𝑡−𝜏

+∞

−∞
𝑑𝜏(14) 

The analytic expression of construction is as follows: 

𝑧 𝑡 = 𝑥 𝜏 + 𝑗𝐻 𝑥 𝑡  (15) 

The envelope spectrum of the signal is as follows: 

  𝑧 𝑡   =  𝑥2 𝑡 + 𝐻2 𝑥 𝑡  (16) 

Where,   𝑧 𝑡    is the envelope of signal 𝑥 𝑡 , and the envelope 

spectrum of the envelope signal can be obtained by spectral 

analysis of   𝑧 𝑡    [31]. 

4. Experimental and Discussion 

4.1   Neural network model results 

In order to verify the effectiveness and accuracy of the 

proposed multi-channel DCNN based fault signal separation 

of wind turbine rolling bearings, taking wind turbine rolling 

bearings as test objects, the comprehensive loss value of four 

states during the training process of this method changes with 

the number of iterations, as shown in Figure 12. 

 
Figure 12: Loss curve of the proposed method on the dataset 

The research results show that after 200 iterations of the data 

set, the final training loss is close to 0, which fully proves that 

the model in this study can successfully realize the fault 

analysis of rolling bearings. 

 

In order to verify the superiority of the proposed method, 

Convolutional Neural Network (CNN), Long Short-Term 

Memory Network (LSTM) and Deep Residual Network 

Method based on Short Time Fourier Transform 

(STFT-DRNN) were respectively used to conduct feature 

extraction comparative experiments on bearing faults from 

four dimensions of training RMSE, MAE, MAPE and training 

time. The comparison results of each network model are 

shown in Table 3 (Error value and training time are taken as 

the training average of the four states). 

Table 3：Comparison of experimental results 

 Method 𝛾𝑅𝑀𝑆𝐸 /(𝑚
• 𝑠−1) 

𝛾𝑀𝐴𝐸 /(𝑚
• 𝑠−1) 

𝛾𝑀𝐴𝐸 /% 

CNN 3.621 2.499 33.712 

LSTM 3.358 2.401 33.581 

STFT+DRNN 3.159 2.393 31.647 

Ours 2.796 2.037 25.614 
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As can be seen from the above table, based on the open 

database of Western Reserve University (CWRU), the 

multi-channel sample constructed by the method proposed in 

this study is used for fault type diagnosis. After 200 iterations, 

The root mean square error, mean absolute error and mean 

absolute percentage error of the dataset reached 2.796(𝑚 •
min−1), 2.037(𝑚 • min−1) and 25.614%, respectively. The 

three error indexes are significantly lower than the errors of 

the traditional methods of CNN, LSTM and STFT+DRNN, 

which fully verifies that our proposed model has good 

generalization ability and can effectively extract the feature 

distribution of bearing fault signals. 

4.2   Signal separation result 

In Table 2, according to the specifications of the rolling 

bearing, it is calculated that the fault characteristic frequency 

of the outer ring of the bearing is 107.36Hz, and that of the 

inner ring is 162.18Hz. The envelope spectrum is more 

sensitive to the bearing fault impact, which can eliminate 

unnecessary interference and highlight the bearing fault 

impact frequency, so the envelope spectrum analysis is more 

common in the bearing fault diagnosis. As shown in Figure 

13, the envelope spectrum analysis of signals shows that the 

frequencies of 161.695, 323.391 and 485.096 are very similar 

to the integer multiple of the characteristic frequency of the 

inner circle fault 162.18. Therefore, the fault signal can be 

judged as the inner circle fault, whether it is the original signal 

or the fault signal after separation. Envelope spectrum 

analysis can diagnose the fault type of the signal. The analysis 

of the outer ring fault envelope spectrum is shown in Figure 

14. It can also be seen that the characteristic frequency 107.36 

overlaps with its harmonic signal, which shows the 

effectiveness of the signal separation method we used. 

 
Figure 13:Inner ring fault signal analysis 

 
Figure 14:Outer ring fault signal analysis 

The kurtosis value is used to evaluate the outlier value of the 

time-domain signal and reflect the cusp of the peak. In the 

signal separation results in Figure 13 and Figure 14, the 

original signal kurtosis value of the outer ring is 4.2393, and 

the signal kurtosis value after separation is 4.2187, the 

difference between the two is only 0.0206. The direction of 

the original signal and the separated signal is basically the 

same, which shows the reliability and authenticity of the 

proposed signal separation method. 

5. Conclusion 

Based on STFT, BTFM and multi-channel DCNN, a fault 

signal separation method for rolling bearing of wind turbine 

based on multi-channel DCNN is proposed in this paper. This 

method makes STFT of bearing time domain signals, draws 

reference from the outstanding performance of DCNN in the 

field of image classification, builds multiple neural network 

branches combined with multi-channel, fully extracts the 

feature distribution of bearing fault signals, and finally 

separates all kinds of fault signals in bearing mixed signals. It 

can be seen from the actual bearing data that the algorithm can 

still separate high-precision bearing fault signals from strong 

noise and non-stationary signals. 
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