
International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2024): 7.741

Volume 12 Issue 1, January 2024

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

A New Privacy Protection Method for Federated

Learning in Smart Grids

Jianguo Wei

North China Electric Power University, School of Control and Computer Engineering

No. 2 Beinong Road, Changping District, Beijing, China

Email: 2582686754[at]qq.com

Abstract: With the development of grid technology, smart meters have become part of people's lives. Compared to conventional meters,

smart meters collect more abundant data and provide more intelligent monitoring information. However, in the power grid, data is often

scattered across different locations, making it difficult to fully utilize its value. To better utilize the data, we adopt federated learning to

aggregate training data and improve the model's performance, in order to plan local electricity scheduling more effectively. Due to

concerns about data privacy, differential privacy with added noise is commonly used, but this approach can significantly impact model

accuracy. To address these challenges, we propose a Federated Learning method based on Wiener Filtering for Adaptive Differential

Privacy (WADP-FL). WADP-FL adaptively adds noise based on the importance of each layer and utilizes Wiener Filtering to maximize

data privacy while preserving model accuracy. Through simulation experiments, we demonstrate that WADP-FL can effectively preserve

data privacy in testing neural network models using the MNIST, FMNIST, and CIFAR-10 datasets. Compared to common differential

privacy-based federated learning approaches, WADP-FL achieves a significantly improved model accuracy of 4.3%, 2.07%, and 1.86%

on different datasets, respectively.

Keywords: Federated Learning; Differential Privacy; Smart Grid; WADP-FL

1. Introduction

Since the 21st century, the power grid [1-5] has been

continuously developing towards intelligence and

digitization. Sensors distributed widely in various places

continuously return power-related data from all aspects, and

these sensors are based on smart meters and are equipped with

GPS systems. The new generation of 5G communication

technology ensures efficient information transmission.

However, due to the fact that different power companies have

consumer's personal information in their local data, using this

data can pose a serious threat to their privacy. Therefore, we

hope to adopt a way to achieve the final model effect without

uploading local data, so we use federated learning to solve

such problems.

Federated learning was first proposed by Google in 2016 to

solve the problem of updating models on Android mobile

terminals locally [6]. The ultimate goal is to achieve

collaborative modeling while ensuring data privacy, security,

and compliance, thereby achieving the effect of AI models.

Introducing federated learning into the power system can

effectively solve the problem of data silos within the power

system. However, unfortunately, there are not many studies on

the application of federated learning in the field of smart grids.

Federated learning can play a good role in updating models,

but privacy leaks cannot be completely avoided. Attackers can

launch attacks from uploaded gradients. After gradient

reversal, they can obtain the original data and thus obtain

sensitive information. In such solutions, homomorphic

encryption or differential privacy is usually used to address

the issue. Homomorphic encryption allows plaintext to be

transformed into matching ciphertext operations. In federated

learning, the Paillier additive homomorphic encryption

algorithm is widely used, which allows additional operations

on ciphertext. This can solve the problem of data fusion

calculation and data privacy protection to some extent, but

due to the large computational burden, using homomorphic

encryption algorithms will bring a huge burden to smart

meters. Differential privacy can solve the problem of large

computation, but conventional differential privacy algorithms

are usually achieved by adding noise, which can affect the

final model accuracy.

In light of the above issues, we have proposed a novel

differential privacy scheme and combined it with a Wiener

filter to ensure the final model accuracy.

The contributions of this paper are as follows:

1) We propose a novel scheme (WADP-FL) based on

differential privacy and Wiener filtering in the smart grid.

The multi-party collaborative model for protecting data

privacy is proposed to better ensure model accuracy

while preserving privacy.

2) We propose a differential privacy hierarchical

perturbation algorithm that adaptively adds noise

according to the importance of different layers, thereby

more reasonably protecting user privacy and security.

3) We propose a Wiener filtering method to reduce model

noise, which reduces the noise introduced by the

differential privacy mechanism and further improves the

accuracy of the model.

4) Comparative experiments on relevant datasets show that

compared with traditional federated learning algorithms

based on differential privacy, the WADP-FL algorithm

maximizes model accuracy.

Paper ID: SE24123194752 29 of 33

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2024): 7.741

Volume 12 Issue 1, January 2024

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

2. Model and Algorithm

2.1 Method Overview

The training process of the system includes the following

steps: First, the server sends the global model to each local

aggregation center[7]. The local aggregation centers train the

model using collected smart meter data. After the trained

gradient is processed by an adaptive differential privacy

algorithm, the gradient parameter is uploaded to the central

server. Then, a filtering algorithm is applied to the aggregated

result. Finally, the central server sends the aggregated result

back to the users, and each local aggregation center updates

their own model and the process is iterated continuously to

complete the entire training process. The final model

parameters will be shared by all local aggregation centers.

Algorithm 1: Overall Steps of Federated Learning

Initialize t on the server side

Local aggregation centers collect local smart meter data

Add output layer and softmax activation layer for each training

round t = 1,2,3... do

 Select m = c*k clients ,c∈ (0,1) clients

 Download t to each client k

 Differential privacy disturbance parameters

 for each client k∈m do

 wait for Client to synchronize

 Noise reduction using Wiener filter algorithm

 Aggregate local model

 end

end

2.2 Detailed description of the Algorithm

In this section, we will provide a detailed description of our

method. Table 1 defines the important symbols that we

frequently use.

Symbol Definition

w Local model parameters on the client side

tw

Global model parameters in the t-th round of global

training

,t cw

Model parameters of the C-th client in the t-th round of

global training

T Total number of global training rounds

g

Local gradient

b Training round

D Datasets
 Privacy budget

AIM Layer importance

J Sample loss function

f

Sensitivity

L Total number of layers

C Gradient clipping value
 Learning rate

2.3 Adaptive differential privacy algorithm

2.3.1 General Description

The adaptive differential privacy scheme based on different

layers mainly includes the following steps. Unlike traditional

Federated Learning algorithms, firstly, each client uses local

data samples to pretrain the adopted model, and calculates the

importance of each layer in the trained model[8]. Then, the

central server distributes the current initial model to the

selected clients according to the range needed by clients. The

selected clients train their local data and calculate the local

gradients using the gradient descent algorithm. Gaussian noise

is added to the gradient parameters of different layers

according to the importance of the model's different layers.

Afterwards, the noisy gradients are uploaded to the central

server. Then, the central server uses relevant algorithms to

filter and fine-tune the global model using a public dataset,

further improving the model's accuracy.

The algorithm steps are shown in the figure below:
Algorithm 2: Client-side adaptive noise addition algorithm process

Update local model parameter tw w

for round t = 1,2,3... do

 for each batch kb D

 Calculate gradient
(,)wg J w b

 if i = E：

 for each layer，j = 1,2,...L do

 Calculate gradient clipping value for each layer
() []jc c j

 Clip each layer
()

2/ max(1,|| || /)jg g g c

 Update parameters
w g w

 end for

end for

Calculate model difference: t tw w w

for Parameters of each layer：j = 1,2,...L do

 Calculate sensitivity

()2 j

if ac

 Calculate privacy budget:

() ()(/)*
1

j j

i

L
AIM AIM

j

 Add noise:

(/)i i

t t i iw w Guass f

end for

return tw

2.3.2 Details of the noise addition algorithm

Firstly, the client obtains the initial model and uses local data

to train the model. Then, we use a small portion of the data

samples to calculate the importance of each layer. Inspired by

Hu et al.'s [9] APoZ method for calculating the importance of

neurons, we propose a method called AIM for calculating the

importance of layers. The calculation formula is shown in the

figure as follows:

()

()

(() 2)
1 1

*

i

j

i

H K
f o m

h j
AIM

H K

 (4)

Paper ID: SE24123194752 30 of 33

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2024): 7.741

Volume 12 Issue 1, January 2024

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

In the formula, represents the value of the jth neuron in the ith

layer of the model before inputting the Sigmoid activation

function when the mth validation sample is input to the model.

H is the number of validation samples and K is the number of

neurons in the ith layer of the model. Due to the characteristic

of the Sigmoid activation function having a value range

between 0 and 1, when approaches negative infinity, the value

of the neuron after the activation function tends to be 0. Due to

the calculation process of multiplication, addition, and

activation unique to neural network models, neurons with

output values close to 0 have little contribution to the output of

subsequent layers and the final results. Since Sigmoid(-2) ≈

0.1, the threshold for AIM is set to -2. When the input value of

the function in the formula is greater than -2, the result of the

function f() is 1; otherwise, the result of the function f() is 0.

Based on the calculated importance of each layer, we add

different amounts of noise to the model. We add more noise to

the layers with higher importance and less noise to the layers

with lower importance. In the overall training process, we

selectively add noise to ensure the accuracy of the final data

model. The amount of noise added is controlled by the privacy

budget, and the calculation formula for the privacy budget is

as follows:

1

i

i

i

AIM

N
AIM

i

 (5)

where N represents the total number of layers in the model, i

represents the ith layer of the model, represents the privacy

budget of the model. In the scenario where the privacy budget

is not allocated based on layer importance, the privacy budget

for each layer is calculated as / .i N

2.4 Noise filtering method based on Wiener filtering

During the aggregation process, Wiener filtering is used to

process the gradient model parameters provided by each local

node, denoise the parameters, and aggregate them to obtain

new global model parameters for the next round of iteration

until the model converges.

Since the noise we add follows a Gaussian distribution with a

mean value of 0, we can use Wiener filtering to denoise the

model parameters. The specific process is as follows:

1) Update of model parameters

After model training, the parameter update equation is:
'

1 ,

2 2

1,1 ,1 ,1

2 2

1, , ,

(0,)

...

(0,)

t t t c

c C

t t t

t c t c t c

w w g

w w g N M I

w w g N M I

 (8)

Where tw represents the global model parameters of global

training in the t-th round, 1tw represents the parameters for

the next round of iteration, 2 2(0,)N M I represents the

noise mechanism that satisfies the Gaussian distribution. We

add Gaussian noise in each round of iteration.

To transform the parameter equation for each round of model

training into matrix form, The parameter vector formed by the

node models is:
,1 ,2 ,[, , ...]t t t t t Nw w w w w ,The gradient vector

formed by all gradient values is: ' ' ' '

,1 ,2 ,[0, , ...]t t t t cG g g g .

2) Parameter update correction

In Wiener filtering, we use the frequency-domain Wiener

filtering approach, where
()kH w

 is the coefficient of the

Wiener filter and
()kY w

 is the noisy signal parameters that

are transmitted.

Firstly, we perform a Fourier transform on the noise signal

() ()x h n y n in the time domain to transform it to the

frequency domain. The result is:
' () ()kX H w Y w (9)

The resulting error is:

 () () () ()k k k kE w X w H w Y w (10)

According to the principle of minimum mean error, we can

obtain:

2E[| ()|] {[() () ()]

*[() () ()]}

k k k k

k k k

E w E X w H w Y w

X w H w Y w

 (11)

Expanding and setting :
2() [| () |]yy k kP w E Y w (12)

*() [() ()]dy k k kP w E Y w D w (13)

Taking the derivative of H yields:

 [() () ()] 0
()

k yy k dy k

k

E
H w P w P w

H w

 (14)

Simplifying the derivation results in:

()

()
()

yy k

k

dy k

P w
H w

P w
 (15)

Where，

* *() [() ()] [() ()]

()

dy k k k k k

xx k

P w E X w X w E X w N w

P w

 (16)

() () ()yy k xx k nn kP w P w P w

 (17)

Substituting the given values yields the result:

()
()

() ()

xx k

k

xx k nn k

P w
H w

P w P w

 (18)

Define prior signal-to-noise ratio:

()

()

xx k

k

nn k

P w

P w
 (19)

Substituting the prior signal-to-noise ratio into H

yields:

1

() k

k

k

H w

 (20)

Paper ID: SE24123194752 31 of 33

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2024): 7.741

Volume 12 Issue 1, January 2024

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

3. Experimental Procedure

3.1 Description of the experiment

(1) Model structure

The CNN model [10]structure used in this experiment consists of 3 convolutional layers and 1 fully connected layer, as shown in

the diagram below:

CONV 5*5

Sigmoid Sigmoid Sigmoid

Flatten FC
CONV 5*5 CONV 5*5INPUT

Figure 2: Model accuracy on different Federated Learning aggregation methods

(2) Specific parameter settings

In the Federated Learning experiment, a Federated Learning

framework with 20 clients and one central server was used.

The local clients in the framework used the same parameters,

with a local iteration epoch set to 100, learning rate set to 0.01,

and SGD momentum set to 0.9. The model on the central

server was trained for 50 times, and the probability of

selecting a client was set to 0.7.

For the MNIST and Fashion-MNIST experiments, 1000

randomly sampled test samples were selected as the public

dataset for fine-tuning the global model. For the CIFAR10

experiment, 3000 randomly selected test samples were used as

the public dataset for fine-tuning the model.

3.2 Experimental results

(1)Traditional differential privacy versus adaptive

differential privacy

We first trained a model on the CIFAR10 dataset with an

accuracy of 97.56% and used it as a benchmark for

comparison. We then trained the model under two conditions:

normal noise addition and noise addition using adaptive

privacy budget. To control variables, we used filtering for

both algorithms and compared the model accuracies, as shown

in Table 1 below:

Table 1: Comparison of training accuracy between traditional

differential privacy and adaptive differential privacy models
Privacy

budget

Baseline

(ACC)

Adaptive-DP

(ACC)

DP

(ACC)

Growth

rate

𝜺 = 0.5 97.56% 26.98% 22.43% 19.88%

𝜺 = 1.0 97.56% 85.65% 43.66% 96.17%

𝜺 = 5.0 97.56% 92.67% 86.65% 6.9%

𝜺 = 10.0 97.56% 95.81% 90.53% 5.8%

As shown in Table 1:

a) Adding noise will affect the training accuracy of the

model to a certain extent, especially when the privacy

budget is small. Adding noise in this case will have a

significant impact on the final model accuracy

b) Compared to traditional methods, the stratified additive

adaptive differential privacy method greatly improves the

accuracy of model training.

c) As the privacy budget increases, the accuracy of the

adaptive differential privacy model approaches the

accuracy of the baseline model without noise.

(2) Validation on different datasets

We validate our approach using the Fashion-MNIST and

CIFAR10 datasets, with privacy budgets of 1.0 and 5.0 for

WADP-FL on these two datasets, respectively. After training

for a certain number of epochs, the experimental results

shown in Table 2 indicate that this model is applicable to other

datasets and has better compatibility.

In addition, tests were performed on different neural network

models, ResNet [11] and AlexNet [12], and WADP-FL

showed improved accuracy compared to the DP-FedAvg

method, indicating that this approach is compatible with

different neural network structures.

Table 2: Comparison of model training accuracy on different

datasets

 F-MNIST(ACC) CIFAR10 (ACC)

solution 𝜺= 1.0 𝜺= 5.0 𝜺= 1.0 𝜺= 5.0

FedAvg 85.66% 87.65% 84.66% 87.37%

DP-FedAvg 83.56% 85.46% 82.68% 85.35%

WADP-FL-Fed 84.29% 87.23% 83.89% 86.94%

4. Conclusion

This article proposes an adaptive differential privacy

Federated Learning scheme based on Wiener filtering. The

method calculates the importance of different layers in the

model structure, adds different amounts of noise, and

combines Wiener filtering algorithm to filter the noise after

aggregation. Through experiments on relevant datasets such

Paper ID: SE24123194752 32 of 33

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

Impact Factor (2024): 7.741

Volume 12 Issue 1, January 2024

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

as MNIST, F-MNIST, CIFAR10, and experiments on various

neural network models, the method's ability to ensure model

accuracy and improve model precision is validated by

comparison with other popular methods, thus effectively

solving the problem of differential privacy in Federated

Learning, which affects the final model accuracy due to blind

noise addition.

However, since it is difficult to obtain real-world data from

smart grids, the experimental results may not be fully

applicable to real-world applications. Therefore, this article

still has many shortcomings that need to be further

supplemented and strengthened. The proposed method

requires a certain level of computational power on the

terminal, and future work should continue to consider the

diversity of scenarios to better address the application of

real-world scenarios.

References

[1] M. L. Tuballa and M. L. Abundo, “A review of the

development of Smart Grid technologies,” Renew.

Sustain. Energy Rev., vol. 59, pp. 710–725, Jun. 2016.

[2] Hasan M K, Habib A K M A, Shukur Z, et al. Review on

cyber-physical and cyber-security system in smart grid:

Standards, protocols, constraints, and recommendations

[J]. Journal of Network and Computer Applications,

2023, 209: 103540.

[3] Dewangan F, Abdelaziz A Y, Biswal M. Load

Forecasting Models in Smart Grid Using Smart Meter

Information: A Review[J]. Energies, 2023, 16(3): 1404.

[4] Jafari M, Kavousi-Fard A, Chen T, et al. A review on

digital twin technology in smart grid, transportation

system and smart city: Challenges and future[J]. IEEE

Access, 2023.

[5] Li X, Wu F, Kumari S, Xu L, Sangaiah AK, Choo K-KR.

A provably secure and anonymous message

authentication scheme for smart grids. J Parallel Distrib

Comput 2019; 132:242-9.

[6] C. Dwork, “Differential privacy: A survey of results,” in

International conference on theory and applications of

models of computation, 2008.

[7] Jia Feixuan. Research on privacy-preserving methods of

federal learning based on differential privacy [D].

Xidian University, 2022.

DOI:10.27389/d.cnki.gxadu.2022.001637.

[8] HU H, PENG R, TAI Y W, et al. Network Trimming: A

Data-Driven Neuron Pruning Approach towards

Efficient Deep Architectures [J]. CoRR, 2016,

abs/1607.03250.

[9] Zhang J, He T, Sra S, et al. Why gradient clipping

accelerates training: A theoretical justification for

adaptivity[J]. arXiv preprint arXiv:1905.11881, 2019.

[10] Kavitha R, Jothi D K, Saravanan K, et al. Ant colony

optimization-enabled CNN deep learning technique for

accurate detection of cervical cancer[J]. BioMed

Research International, 2023.

[11] Targ S, Almeida D, Lyman K. Resnet in resnet:

Generalizing residual architectures [J]. arXiv preprint

arXiv:1603.08029, 2016.

[12] Alom M Z, Taha T M, Yakopcic C, et al. The history

began from alexnet: A comprehensive survey on deep

learning approaches [J]. arXiv preprint

arXiv:1803.01164, 2018.

Paper ID: SE24123194752 33 of 33

