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Abstract: With the development of grid technology, smart meters have become part of people's lives. Compared to conventional meters, 

smart meters collect more abundant data and provide more intelligent monitoring information. However, in the power grid, data is often 

scattered across different locations, making it difficult to fully utilize its value. To better utilize the data, we adopt federated learning to 

aggregate training data and improve the model's performance, in order to plan local electricity scheduling more effectively. Due to 

concerns about data privacy, differential privacy with added noise is commonly used, but this approach can significantly impact model 

accuracy. To address these challenges, we propose a Federated Learning method based on Wiener Filtering for Adaptive Differential 

Privacy (WADP-FL). WADP-FL adaptively adds noise based on the importance of each layer and utilizes Wiener Filtering to maximize 

data privacy while preserving model accuracy. Through simulation experiments, we demonstrate that WADP-FL can effectively preserve 

data privacy in testing neural network models using the MNIST, FMNIST, and CIFAR-10 datasets. Compared to common differential 

privacy-based federated learning approaches, WADP-FL achieves a significantly improved model accuracy of 4.3%, 2.07%, and 1.86% 

on different datasets, respectively.  
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1. Introduction 
 

Since the 21st century, the power grid [1-5] has been 

continuously developing towards intelligence and 

digitization. Sensors distributed widely in various places 

continuously return power-related data from all aspects, and 

these sensors are based on smart meters and are equipped with 

GPS systems. The new generation of 5G communication 

technology ensures efficient information transmission. 

However, due to the fact that different power companies have 

consumer's personal information in their local data, using this 

data can pose a serious threat to their privacy. Therefore, we 

hope to adopt a way to achieve the final model effect without 

uploading local data, so we use federated learning to solve 

such problems. 

 

Federated learning was first proposed by Google in 2016 to 

solve the problem of updating models on Android mobile 

terminals locally [6]. The ultimate goal is to achieve 

collaborative modeling while ensuring data privacy, security, 

and compliance, thereby achieving the effect of AI models. 

Introducing federated learning into the power system can 

effectively solve the problem of data silos within the power 

system. However, unfortunately, there are not many studies on 

the application of federated learning in the field of smart grids. 

 

Federated learning can play a good role in updating models, 

but privacy leaks cannot be completely avoided. Attackers can 

launch attacks from uploaded gradients. After gradient 

reversal, they can obtain the original data and thus obtain 

sensitive information. In such solutions, homomorphic 

encryption or differential privacy is usually used to address 

the issue. Homomorphic encryption allows plaintext to be 

transformed into matching ciphertext operations. In federated 

learning, the Paillier additive homomorphic encryption 

algorithm is widely used, which allows additional operations 

on ciphertext. This can solve the problem of data fusion 

calculation and data privacy protection to some extent, but 

due to the large computational burden, using homomorphic 

encryption algorithms will bring a huge burden to smart 

meters. Differential privacy can solve the problem of large 

computation, but conventional differential privacy algorithms 

are usually achieved by adding noise, which can affect the 

final model accuracy. 

 

In light of the above issues, we have proposed a novel 

differential privacy scheme and combined it with a Wiener 

filter to ensure the final model accuracy. 

 

The contributions of this paper are as follows: 

1) We propose a novel scheme (WADP-FL) based on 

differential privacy and Wiener filtering in the smart grid. 

The multi-party collaborative model for protecting data 

privacy is proposed to better ensure model accuracy 

while preserving privacy.  

2) We propose a differential privacy hierarchical 

perturbation algorithm that adaptively adds noise 

according to the importance of different layers, thereby 

more reasonably protecting user privacy and security. 

3) We propose a Wiener filtering method to reduce model 

noise, which reduces the noise introduced by the 

differential privacy mechanism and further improves the 

accuracy of the model. 

4) Comparative experiments on relevant datasets show that 

compared with traditional federated learning algorithms 

based on differential privacy, the WADP-FL algorithm 

maximizes model accuracy. 
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2. Model and Algorithm  
 

2.1 Method Overview 

 

The training process of the system includes the following 

steps: First, the server sends the global model to each local 

aggregation center[7]. The local aggregation centers train the 

model using collected smart meter data. After the trained 

gradient is processed by an adaptive differential privacy 

algorithm, the gradient parameter is uploaded to the central 

server. Then, a filtering algorithm is applied to the aggregated 

result. Finally, the central server sends the aggregated result 

back to the users, and each local aggregation center updates 

their own model and the process is iterated continuously to 

complete the entire training process. The final model 

parameters will be shared by all local aggregation centers. 

 
Algorithm 1: Overall Steps of Federated Learning 

Initialize t  on the server side  

Local aggregation centers collect local smart meter data 

Add output layer and softmax activation layer for each training 

round  t = 1,2,3... do 

   Select m = c*k clients ,c∈ (0,1) clients 

      Download t   to each client k 

   Differential privacy disturbance parameters 

  for each client k∈m  do 

        wait for  Client to synchronize 

        Noise reduction using Wiener filter algorithm 

         Aggregate local model  

    end 

end 

 

2.2 Detailed description of the Algorithm 

 

In this section, we will provide a detailed description of our 

method. Table 1 defines the important symbols that we 

frequently use. 

 
Symbol Definition 

w  Local model parameters on the client side 

tw
 

Global model parameters in the t-th round of global 

training 

,t cw
 

Model parameters of the C-th client in the t-th round of 

global training 

T Total number of global training rounds 

g
 

Local gradient 

b Training round 

D Datasets 
  Privacy budget 

AIM Layer importance 

J Sample loss function 

f
 

Sensitivity 

L Total number of layers 

C Gradient clipping value 
  Learning rate 

 

 

 

 

2.3 Adaptive differential privacy algorithm 

 

2.3.1 General Description 

The adaptive differential privacy scheme based on different 

layers mainly includes the following steps. Unlike traditional 

Federated Learning algorithms, firstly, each client uses local 

data samples to pretrain the adopted model, and calculates the 

importance of each layer in the trained model[8]. Then, the 

central server distributes the current initial model to the 

selected clients according to the range needed by clients. The 

selected clients train their local data and calculate the local 

gradients using the gradient descent algorithm. Gaussian noise 

is added to the gradient parameters of different layers 

according to the importance of the model's different layers. 

Afterwards, the noisy gradients are uploaded to the central 

server. Then, the central server uses relevant algorithms to 

filter and fine-tune the global model using a public dataset, 

further improving the model's accuracy. 

 

The algorithm steps are shown in the figure below: 
Algorithm 2: Client-side adaptive noise addition algorithm process 

Update local model parameter tw w
 

for  round t = 1,2,3... do 

    for each batch  kb D
 

      Calculate gradient 
( , )wg J w b 

 

      if i = E： 

         for each layer，j = 1,2,...L  do  

            Calculate gradient clipping value for each layer 
( ) [ ]jc c j

 

         Clip each layer 
( )

2/ max(1,|| || / )jg g g c  
 

      Update parameters  
w g w  

 

    end for 

end for 

Calculate model difference: t tw w w   
 

for Parameters of each layer：j = 1,2,...L  do 

    Calculate sensitivity 

( )2 j

if ac 
 

    Calculate privacy budget:

( ) ( )( / )*
1

j j

i

L
AIM AIM

j
 




 

   Add noise:  

( / )i i

t t i iw w Guass f     
 

end for 

return  tw
 

 

2.3.2 Details of the noise addition algorithm 

Firstly, the client obtains the initial model and uses local data 

to train the model. Then, we use a small portion of the data 

samples to calculate the importance of each layer. Inspired by 

Hu et al.'s [9] APoZ method for calculating the importance of 

neurons, we propose a method called AIM for calculating the 

importance of layers. The calculation formula is shown in the 

figure as follows:  

 

( )

( )

( ( ) 2)
1 1

*

i

j

i

H K
f o m

h j
AIM

H K

 
 



 
                (4) 
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In the formula, represents the value of the jth neuron in the ith 

layer of the model before inputting the Sigmoid activation 

function when the mth validation sample is input to the model. 

H is the number of validation samples and K is the number of 

neurons in the ith layer of the model. Due to the characteristic 

of the Sigmoid activation function having a value range 

between 0 and 1, when  approaches negative infinity, the value 

of the neuron after the activation function tends to be 0. Due to 

the calculation process of multiplication, addition, and 

activation unique to neural network models, neurons with 

output values close to 0 have little contribution to the output of 

subsequent layers and the final results. Since Sigmoid(-2) ≈ 

0.1, the threshold for AIM is set to -2. When the input value of 

the function in the formula is greater than -2, the result of the 

function f() is 1; otherwise, the result of the function f() is 0. 

 

Based on the calculated importance of each layer, we add 

different amounts of noise to the model. We add more noise to 

the layers with higher importance and less noise to the layers 

with lower importance. In the overall training process, we 

selectively add noise to ensure the accuracy of the final data 

model. The amount of noise added is controlled by the privacy 

budget, and the calculation formula for the privacy budget is 

as follows: 

   

1

i

i

i

AIM

N
AIM

i

  




                                          (5) 

where N represents the total number of layers in the model, i 

represents the ith layer of the model,  represents the privacy 

budget of the model. In the scenario where the privacy budget 

is not allocated based on layer importance, the privacy budget 

for each layer is calculated as / .i N 
 

 

2.4 Noise filtering method based on Wiener filtering 

 

During the aggregation process, Wiener filtering is used to 

process the gradient model parameters provided by each local 

node, denoise the parameters, and aggregate them to obtain 

new global model parameters for the next round of iteration 

until the model converges. 

 

Since the noise we add follows a Gaussian distribution with a 

mean value of 0, we can use Wiener filtering to denoise the 

model parameters. The specific process is as follows: 

 

1) Update of model parameters 

After model training, the parameter update equation is:       
'

1 ,

2 2

1,1 ,1 ,1

2 2

1, , ,

(0, )

...

(0, )

t t t c

c C

t t t

t c t c t c

w w g

w w g N M I

w w g N M I



 

 









  

   




  



                 (8) 

Where tw represents the global model parameters of global 

training in the t-th round, 1tw  represents the parameters for 

the next round of iteration, 2 2(0, )N M I represents the 

noise mechanism that satisfies the Gaussian distribution. We 

add Gaussian noise in each round of iteration. 

To transform the parameter equation for each round of model 

training into matrix form, The parameter vector formed by the 

node models is:
,1 ,2 ,[ , , ... ]t t t t t Nw w w w w ,The gradient vector 

formed by all gradient values is: ' ' ' '

,1 ,2 ,[0, , ... ]t t t t cG g g g . 

 

2) Parameter update correction 

In Wiener filtering, we use the frequency-domain Wiener 

filtering approach, where
( )kH w

 is the coefficient of the 

Wiener filter and
( )kY w

 is the noisy signal parameters that 

are transmitted. 

 

Firstly, we perform a Fourier transform on the noise signal 

( ) ( )x h n y n   in the time domain to transform it to the 

frequency domain. The result is: 
' ( ) ( )kX H w Y w                                               (9) 

 

The resulting error is:    

 ( ) ( ) ( ) ( )k k k kE w X w H w Y w                      (10) 

 

According to the principle of minimum mean error, we can 

obtain:        

 

2E[| ( )| ] {[ ( ) ( ) ( )]

*[ ( ) ( ) ( )]}

k k k k

k k k

E w E X w H w Y w

X w H w Y w

 


       (11)                                         

 

Expanding and setting : 
2( ) [| ( ) | ]yy k kP w E Y w                                       (12) 

        
*( ) [ ( ) ( )]dy k k kP w E Y w D w                                    (13) 

 

Taking the derivative of H yields: 

           [ ( ) ( ) ( )] 0
( )

k yy k dy k

k

E
H w P w P w

H w


  


           (14) 

 

Simplifying the derivation results in: 

           
( )

( )
( )

yy k

k

dy k

P w
H w

P w
                                                 (15) 

Where， 

* *( ) [ ( ) ( )] [ ( ) ( )]

( )

dy k k k k k

xx k

P w E X w X w E X w N w

P w

 


      

 (16) 

 
( ) ( ) ( )yy k xx k nn kP w P w P w 

                         
 (17)  

Substituting the given values yields the result: 

( )
( )

( ) ( )

xx k

k

xx k nn k

P w
H w

P w P w



                      

 (18) 

Define prior signal-to-noise ratio: 

 
( )

( )

xx k

k

nn k

P w

P w
                                      (19) 

Substituting the prior signal-to-noise ratio into H  

yields: 

  
1

( ) k

k

k

H w


 

                                        (20) 
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3. Experimental Procedure 
 

3.1 Description of the experiment 

 

(1) Model structure 

The CNN model [10]structure used in this experiment consists of 3 convolutional layers and 1 fully connected layer, as shown in 

the diagram below: 

 

CONV 5*5

Sigmoid Sigmoid    Sigmoid

Flatten FC
CONV 5*5 CONV 5*5INPUT

 
Figure 2: Model accuracy on different Federated Learning aggregation methods 

 

(2) Specific parameter settings  

In the Federated Learning experiment, a Federated Learning 

framework with 20 clients and one central server was used. 

The local clients in the framework used the same parameters, 

with a local iteration epoch set to 100, learning rate set to 0.01, 

and SGD momentum set to 0.9. The model on the central 

server was trained for 50 times, and the probability of 

selecting a client was set to 0.7. 

 

For the MNIST and Fashion-MNIST experiments, 1000 

randomly sampled test samples were selected as the public 

dataset for fine-tuning the global model. For the CIFAR10 

experiment, 3000 randomly selected test samples were used as 

the public dataset for fine-tuning the model. 

 

3.2 Experimental results  

 

(1)Traditional differential privacy versus adaptive 

differential privacy 

We first trained a model on the CIFAR10 dataset with an 

accuracy of 97.56% and used it as a benchmark for 

comparison. We then trained the model under two conditions: 

normal noise addition and noise addition using adaptive 

privacy budget. To control variables, we used filtering for 

both algorithms and compared the model accuracies, as shown 

in Table 1 below: 

 

Table 1: Comparison of training accuracy between traditional 

differential privacy and adaptive differential privacy models 
Privacy 

budget 

Baseline 

(ACC) 

Adaptive-DP 

(ACC) 

DP 

(ACC) 

Growth 

rate 

𝜺 = 0.5 97.56% 26.98% 22.43% 19.88% 

𝜺 = 1.0 97.56% 85.65% 43.66% 96.17% 

𝜺 = 5.0 97.56% 92.67% 86.65% 6.9% 

𝜺 = 10.0 97.56% 95.81% 90.53% 5.8% 

 

As shown in Table 1: 

a) Adding noise will affect the training accuracy of the 

model to a certain extent, especially when the privacy 

budget is small. Adding noise in this case will have a 

significant impact on the final model accuracy 

b) Compared to traditional methods, the stratified additive 

adaptive differential privacy method greatly improves the 

accuracy of model training. 

c) As the privacy budget increases, the accuracy of the 

adaptive differential privacy model approaches the 

accuracy of the baseline model without noise. 

 

(2) Validation on different datasets 

We validate our approach using the Fashion-MNIST and 

CIFAR10 datasets, with privacy budgets of 1.0 and 5.0 for 

WADP-FL on these two datasets, respectively. After training 

for a certain number of epochs, the experimental results 

shown in Table 2 indicate that this model is applicable to other 

datasets and has better compatibility. 

 

In addition, tests were performed on different neural network 

models, ResNet [11] and AlexNet [12], and WADP-FL 

showed improved accuracy compared to the DP-FedAvg 

method, indicating that this approach is compatible with 

different neural network structures. 

 

Table 2: Comparison of model training accuracy on different 

datasets 

 F-MNIST(ACC) CIFAR10 (ACC) 

solution 𝜺= 1.0 𝜺= 5.0 𝜺= 1.0 𝜺= 5.0 

FedAvg 85.66% 87.65% 84.66% 87.37% 

DP-FedAvg 83.56% 85.46% 82.68% 85.35% 

WADP-FL-Fed 84.29% 87.23% 83.89% 86.94% 

 

4. Conclusion 
 

This article proposes an adaptive differential privacy 

Federated Learning scheme based on Wiener filtering. The 

method calculates the importance of different layers in the 

model structure, adds different amounts of noise, and 

combines Wiener filtering algorithm to filter the noise after 

aggregation. Through experiments on relevant datasets such 
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as MNIST, F-MNIST, CIFAR10, and experiments on various 

neural network models, the method's ability to ensure model 

accuracy and improve model precision is validated by 

comparison with other popular methods, thus effectively 

solving the problem of differential privacy in Federated 

Learning, which affects the final model accuracy due to blind 

noise addition. 

 

However, since it is difficult to obtain real-world data from 

smart grids, the experimental results may not be fully 

applicable to real-world applications. Therefore, this article 

still has many shortcomings that need to be further 

supplemented and strengthened. The proposed method 

requires a certain level of computational power on the 

terminal, and future work should continue to consider the 

diversity of scenarios to better address the application of 

real-world scenarios. 
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