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Abstract: With the rapid development of smart grid and renewable energy, demand response mechanism has become a key means to 

balance microgrid supply and demand and improve energy efficiency. As the traditional power demand response algorithm is difficult to 

deal with the uncertainty of power demand and the adverse effects caused by customers, this paper proposes a power demand response 

algorithm based on deep reinforcement learning. Firstly, we study and design a price - based layered electricity energy demand response 

model. Then, the dynamic optimal pricing decision of power trading market is described as Markov decision process, and the learning 

mechanism under the framework of deep reinforcement learning is expounded. Finally, a solution algorithm based on deep reinforcement 

learning is designed. The simulation results show that the proposed algorithm can adjust the electricity price adaptively according to the 

load demand, which can reduce the cost of users by about 17% and reduce the peak load demand. 
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1. Introduction 

With the development of social productivity, electric energy 

has become an indispensable existence for people. The 

traditional power system mainly relies on thermal power 

generation. By dispatching conventional generator sets, the 

power load curve is tracked, the instantaneous balance of 

system power is maintained, and the source is actuated with 

load. However, with the rapid expansion of electricity 

demand, the continuous shortage of fossil fuel resources, and 

the combustion of fossil fuels in thermal power generation 

produces a large number of harmful gases, resulting in 

environmental pollution and other negative effects. In recent 

years, under the policy of actively and steadily promoting 

carbon peak and carbon neutrality in China, with the access of 

new energy such as photovoltaic and wind power with a high 

proportion, due to the intermittent nature of new energy, it is 

difficult to adapt to the traditional way of dispatching 

conventional generator sets, and there is an urgent need for a 

new type of power system to realize the collaborative 

interaction of transmission, distribution, utilization and 

storage, and realize the revolutionary transformation from 

traditional power grid to smart grid [1]. In recent years, the 

concept of demand-side management (DSM) has attracted a 

lot of attention in smart grids [2]. As a typical approach to 

DSM, demand response (DR) is widely seen as the most 

cost-effective and reliable solution for improving the 

efficiency and reliability of power systems [3]. 

DR Refers to when the reliability of the power system is 

threatened or the price of electricity rises, the user receives the 

incentive information of the power load usage process or the 

signal of the retail price rise. By changing their consumption 

habits and reducing or delaying the power load during peak 

hours, the user can improve energy efficiency, reduce user 

costs, reduce carbon emissions and improve the stability of 

the power grid [4]. 

2. Related work 

At present, demand response algorithms are mainly studied 

from two categories: incentive-based and price-based. 

Customers who participate in incentive-based DR Programs 

can receive discounted retail prices or separate incentive 

payments for pre-signing or measured load reduction. 

Price-based DR, including time-of-use (TOU) rates [5] and 

real-time pricing (RTP) [6], refers to plans where customers 

respond to time-varying changes in retail electricity prices. 

Although both of these demand response mechanisms can 

promote active participation of loads, as described in [7], 

price-based demand response management is more common 

than incentive-based demand response research management, 

so this study focuses on price-based demand response. 

 

The price-based DRM project has carried out a number of 

research efforts around the world [8], [9], and the energy 

consumption of household appliances is a major factor in 

price-based DRM programs. For example, systems based on 

mixed integer linear programming (MILP) have been 

designed to determine optimal equipment scheduling, thereby 

improving energy efficiency and reducing consumer costs 

[10,11]. 

 

Aiming at maximizing the profit of microgrid retailers, the 

author transforms the electricity price and microgrid 

scheduling problems into a mixed integer quadratic 

programming problem, and studies the dynamic pricing 

strategies of microgrid retailers in integrated energy systems 

[12]. 

 

Similarly, Yu and Hong [13] proposed a DRM method based 

on real-time price. Through Stackelberg game, the power 

retailer of the facility energy management center is 

established, and users purchase resources from it to achieve 

the optimal load control of the equipment, thus forming the 

optimal strategy. 

 

Hande Yaman et al. [14] proposed a multi-stage stochastic 

programming model and established their own optimization 

equations for different models of typical scenes respectively. 

However, the optimization accuracy was limited when 

encountering more complex models and unexpected 

situations. 
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At present, most methods rely on traditional deterministic 

rules or abstract models that do not ensure optimality when 

dealing with unstable energy systems, have limited 

optimization accuracy when models are more complex and 

encounter difficult to predict situations, and game theory 

faces scalability problems due to large numbers of binary 

values when the system is large. 

 

In order to solve the above problems, reinforcement learning 

(RL) is a prominent solution. By interacting with the random 

environment, the agent selects actions to make decisions to 

the environment, and the environment generates new states 

and rewards to the agent, and adaptively learns the best 

behavior, thus maximizing the cumulative rewards [15]. 

 

Literature [16] proposed the demand response of residential 

and small commercial buildings based on Q-learning, 

designed the uncertain load demand and power grid 

information as the state quantity of the system, and explored 

the optimization scheme. 

 

Similarly, Q-learning algorithm is used in literature [17] to 

solve the price-based demand response problem of microgrid. 

However, when high-dimensional space is involved, Q-table 

method consumes a lot of storage space and computing 

resources, and its practical application has limitations. 

 

Deep reinforcement learning (DRL) combines the 

decision-making ability of RL with the information 

perception ability of deep learning (DL), uses the 

generalization ability of DL itself to deal with the uncertainty 

of load demand, and solves the problem that RL involves 

continuous states and actions, which requires huge storage 

and computing resources, and obtains the optimal solution. A 

model-free algorithm to solve complex control problems [18]. 

 

In recent years, there have been some attempts to apply DRL 

algorithm to DR. a DRL-based energy management algorithm 

was developed in [19] to minimize the cost of electricity for 

smart homes, The uncertainties of the model and parameters 

are also considered. 

 

The paper [20] designs a role-critic based DRL algorithm to 

determine the optimal energy management strategy for 

industrial facilities. All of these papers express DR Control as 

a Markov decision process (MDP) and use their respective 

DRL algorithms to make complex DR Decisions adapted to 

specific constraints. 

 

Therefore, this paper studies the power demand response 

method based on DRL. The main contributions are as follows: 

1) Considering the user's power load usage, a dynamic pricing 

DR Method for power demand response in hierarchical power 

market is proposed; 2) Deep reinforcement learning algorithm 

is proposed to illustrate the hierarchical decision-making 

framework, and the dynamic pricing of retail electricity price 

is expressed as a Markov decision process (MDP), and the 

optimal pricing is solved based on DDQN algorithm; 3) Solve 

the uncertainty of power grid load demand curve through 

online learning, and coordinate the impact of users' private 

preferences on the market through the unsatisfactory cost 

function. 

 

The rest of this article is organized as follows. The first 

section describes the overall framework and MDP modeling. 

The second section introduces the demand response algorithm 

based on DRL in detail. The third section provides the 

numerical experimental results. Finally, the fourth section 

summarizes the thesis. 

3. Electricity energy demand response system 

This paper aims to construct a price-driven electricity energy 

demand response (EEDR) model based on electricity 

integrated energy market. This model is a microgrid system 

including grid operator, electricity service provider and 

multiple electricity users. As shown in Figure 1, in this 

demand environment, electricity service provider buys 

electricity from grid operator at wholesale electricity price, 

and then sells electricity to power users at retail electricity 

price. Users change their electricity demand according to their 

own load demand and the electricity price signal given by 

electricity service provider. 

 
Figure 1: Hierarchical model of electricity 

3.1 electricity service provider model 

As a participant in the electricity wholesale market, the 

electricity service providers cooperate closely with the power 

grid to jointly maintain the stable operation of the market. At 

each specific time period, the electricity service provider 

purchases electricity at the wholesale price set by the grid, sets 

its own retail price on this basis, and sells the energy to the 

end electricity user. The core of this model is that electricity 

service providers can flexibly adjust retail prices according to 

market supply and demand conditions, electricity costs and 

other factors to meet the needs of different users. 

 

The object function of the electricity service provider is to 

implement a dynamic determination of the retail price to 

maximize its profit, as shown below 

( ) ( )curt critic

, , ,

1 1

max
N T

t n t t n t n

n t

e e 
= =

−  +
 

(1) 
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Where, ,t n represents the retail price of electricity, t  

represents the wholesale price of electricity, 
curt

,t ne represents 

the actual electricity consumption that can be reduced, and 
critic

,t ne represents the actual electricity consumption that cannot 

be reduced. 

3.2 electricity user model 

electricity users participating in demand response, after 

receiving the price signal issued by the electricity service 

provider, will make the corresponding power energy demand 

response decision based on the comprehensive consideration 

of economic cost and user satisfaction. 

The objective function for user n is to minimize its overall 

cost, as described below 

( )curt critic

, , , ,

1

min
T

t n t n t n t n

t

e e 
=

  + +
 

 

(2) 

,t n Represents the unsatisfied cost of ginseng when the user 

reduces the energy demand for time period t, the calculation is 

as follows: 

( ) ( )
2

, , , , ,
2

curt curt curt curtn
t n t n t n n t n t nE e E e


 = − + −

 
(3) 

Where n and n  is the user dependent parameter, 

n representing the preference parameter of user n for 

reducing energy load, and its range is between [0,1]. This 

means that if the value of n  is larger, the user will be 

unwilling to make a higher price reduction, and the user's 

satisfaction will be higher. n is the default parameter for 

the cost of user dissatisfaction, with a value between {0,1}. 

,

curt

t nE indicates that the user can reduce the expected 

consumption of load. 

The utility function for reducing energy load is defined as 

follows [4]: 

,

, ,e (1 )
t n tcurt curt

t n t n t

t

E
 




−
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Where, the elastic coefficient of time period t is t  

3.3 model objective function 

In this paper, the objective function is the balance between the 

electricity profit of the electricity service provider and the 

electricity cost of the user. The formula is as follows: 

( )
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critic

, , ,

curt

t n t n t ne e e= +  (6) 

Where, 


 indicates that the weight factor ranges between 

(0,1) to represent the relative importance of the user's 

electricity energy bill and the profit of the electricity service 

provider. 

4. DRL-based optimal dynamic tariff model 

4.1 model objective function 

The basic idea of RL is to learn the optimal strategy to 

maximize the cumulative reward value or achieve a specific 

goal through the interaction between agents and the 

environment [21]. In RL solving problems, the environment is 

usually normalized as a Markov decision process (MDP). 

MDP is a sequential mathematical model composed of three 

basic elements: state, action and reward. Its characteristics can 

be understood as that the action taken by the agent in the 

current state not only affects the current feedback, but also 

affects the next state and feedback [21]. 

 

Figure 2: The overall diagram of the proposed MDP 

In this paper, the dynamic retail pricing problem is first 

expressed as MDP, as shown in Figure 2, in which the 

electricity service provider acts as an agent, the electricity 

user represents the environment, the retail price represents the 

action the service provider sends to the user at every moment, 

the energy information of the user (energy demand and 

consumption) represents the state, and the profit of the 

electricity service provider and the cost of the user represent 

the reward. 

The action space of the agent is mainly the retail electricity 

price ,t n  set by the electricity selling service provider to the 

user n at different times. The upper and lower bounds of the 

retail electricity price are 
max and 

min respectively. 
min max

,t n   
 

The agent reward function is used to help the agent judge 

whether the selection action is good or bad. The goal is to 

maximize the profit of the electricity service provider and the 

user cost. The measurement index is the maximum 

cumulative reward that can be obtained from the environment 

designed around this goal 

( ) ( )

( )
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4.2 solving algorithm based on Dueling DQN 

After defining the state, action and reward functions in the 

above section, the goal of the power energy demand response 

system is to find the control action to maximize the profit of 

the power supplier and the cost of the user, and the dynamic 

optimal price. This paper determines the optimal pricing 

method for the power energy system based on the DDQN 

algorithm. 

 

 
Figure 3: Algorithmic model based on DDQN 

The value function approximation process based on DDQN is 

shown in Figure 3. The input of DDQN and DQN is the same, 

both of which are state information, but the output is different. 

Traditional DQN only includes a state action estimation 

network, while the output of Dueling algorithm includes state 

value V and the advantage value of each action. Finally, the 

action value of each action can be obtained by combining the 

state value with the advantage value through the depth model. 

The significant difference between DDQN and DQN is the 

structure of the estimated neural network. Unlike traditional 

DQN, which contains only one state action estimation 

network, DDQN architecture represents both the state value 

network ( )tV s  and the action dominance network 

( ),t tA s a , and uses a single depth model whose output 

combines the two to produce the state-action value 

( ),t tQ s a . The Q function based on DDQN structure is 

defined as (10): 

( ) ( ) ( ) ( )
A

1
, , ,

| A |
t

t t t t t t t

a

Q s a V s A s a A s a






 
= + − 

  
  (8) 

Where A is the set that contains all the executable actions, and 

|A| is the number of all the executable actions. The action 

advantage function is set as a single action function minus the 

average value of all action advantage functions in a certain 

state to eliminate redundant degrees of freedom and improve 

the stability of the algorithm. 

 

The pseudo-code of the solution algorithm based on DDQN is 

shown in the table. The algorithm can be decomposed into 

three stages: initialization (lines 1~2), experience 

accumulation (lines 4~10), and experience learning (lines 12 

~ 18). During initialization, set the hyperparameters of the 

DRL algorithm. Then, the DDQN is initialized with the 

random parameter w, and the experience pool is initialized to 

the empty set. Starting with line 3, the algorithm enters 

scenario iteration. At the beginning of each episode, the initial 

state is randomly reset to remove the coupling between the 

sample and time during the learning process. The algorithm is 

experienced from lines 4 to 10. The step counter t is increased 

in detail, the actions are selected according to the ε-greedy 

strategy, and the state action transition tuples are successively 

stored in the experience pool. When the number of samples in 

the pool accumulates beyond the replay start size M, the 

experiential learning process is performed from line 12 to line 

18. Specifically, take a random batch of samples numbered n 

from the pool in line 12. Then, the target Q value and the 

predicted Q value of the sample are calculated respectively in 

line 13, on which the loss function is calculated as shown in 

line 15. Finally, in line 16, the weights in the DDQN are 

updated using the batch gradient Descent (BGD) method. 

 

Algorithm 1: Demand response algorithm of electric energy 

management based on DDQN 

1: Randomly initialize DDQN parameters  

2: Initialize replay buffer 

3: for each epoch do 

4:  observe ts ; 

5:  for each time do 

6:  choose an action ta using the greedy −  

7:  obtain reward ta , and observe the next state 1ts +  

8:   If sample size > N 

9: remove the oldest observation sample 

10:  store ( )1, , r ,st t t ts a +  into the experience pool； 

11:   If sample size > M 

12: 
 sample random mini-batch of ( )1, , r ,st t t ts a +  with 

number n from experience pool 

13: 
obtain the target Q values and the predicted 

Q values respectively 

14:  calculate the loss function 

15: update the parameters  by BGD method  

16:  end for 

17: end for 

 

5. Analysis of Experimental Results 

The previous section introduced the overall technical method, 

and this section will give the numerical simulation results to 

evaluate the performance of the dynamic pricing demand 

response algorithm. For ease of explanation, this section 

conducts simulation on the basis of one electricity supplier 

and three power users to verify the effectiveness of the 

algorithm. In this paper, one power user is selected to describe 

the performance of the experiment. 

5.1 example and input data 

Sample load demand curves of the power grid at various 

periods were obtained from SDG&E [] as input in the 

flowchart shown in the experiment. The entire event cycle 

was divided into 24 time intervals, representing 24 hours of a 

day. Figure 3 shows the load demand graph of a power user: it 

shows the critical load and the adjustable load of the user. The 

critical load is the load that the user must use daily, which 

does not change with the change of the electricity price, and 

the adjustable load changes with the change of the electricity 

price. 
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Figure 4: User load information 

The user comfort correlation coefficient n  and n  of user 

1 is set to 0.8 and 0.1 respectively. The elasticity index is 

shown in Table 1, with different responses during 

off-peak/mid-peak/peak hours. 

Table 1: Load elastic coefficient 

 off-peak mid-peak ghts 

t  -0.3 -0.5 -0.7 

 

Figure 5 shows the online data of wholesale electricity price 

shown by ComEd. The range of retail electricity price is 

represented by a certain wholesale electricity price 

coefficient. The weight coefficient ρ in this study is assumed 

to be 0.9, indicating that the profit of the electricity selling 

service provider has greater relative importance than the cost 

of the user. 

 
Figure 5: Wholesale electricity prices 

The summary of the hyperparameters of algorithm 1 used in 

the simulation is shown in Table 2, and other hyperparameters 

related to neural networks are determined according to the 

conventions recommended by the deep learning community. 

Table 2: Algorithm hyperparameter 

hyperparameter value 

discount factor 0.7 

learning rate 0.01 

small batch size  30 

learning steps 3000 

experience pool 1000 

restart size 100 

5.2 electricity price optimisation results and analysis 

After running the simulation, the main output is the optimal 

retail price for the power user. Figure 6 shows the optimal 

retail price and wholesale price signals for the three cu's, as 

well as the energy demand and actual energy consumption for 

the adjustable load. Because critical load demand does not 

change with retail prices, only adjustable load energy 

information is displayed. 

 

As can be seen from Figure 6, the trend in retail prices is 

similar to the trend in wholesale prices, reflecting the cost of 

purchasing electric energy from the grid; From time period 6 

to time period 12, the retail price per user increases in order to 

make more profit for the service provider selling electricity, 

but a sudden decline is observed at time period 14. This is 

because at time period 14, the elasticity coefficient changes 

from −0.3 to −0.5 to reflect the mid-peak period, and a 

sustained increase in retail prices will lead to a greater 

reduction in energy during this period. Compared with 

off-peak hours, the electricity price gap in peak hours is 

smaller than that in off-peak hours, but the energy 

consumption reduction gap (energy demand-energy 

consumption) is larger. This is because electricity demand is 

more elastic during peak hours and greater energy reductions 

can be achieved. 

 
Figure 6: Algorithm optimisation results 

5.3 verification of convergence of the algorithm 

When PyTorch, an open-source Deep learning framework 

developed by Facebook, was used to evaluate the 

performance of neural networks, the loss functions of DDQN 

(Dueling Deep Q-Network) and traditional DQN (Deep 

Q-Network) structures were compared during iterative 

training. The comparison results are shown in Figure 7. 

Compared with DQN, the loss function using DDQN 

structure decreases faster and eventually reaches a smaller 

value. At the same time, the fluctuation of the loss function is 

smaller, indicating that the algorithm using DDQN is more 

stable. 
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Figure 7: Loss function values for different algorithms 

In order to prove the convergence of the proposed algorithm, 

the cumulative reward comparison between DDQN and DQN 

in the iterative training process is shown in Figure 8. It can be 

clearly seen from Figure 8 that the agent does not know how 

to select an action to obtain a high q value at the beginning, 

but with the progress of iteration, the cumulative reward 

gradually increases with the continuous trial-and-error 

learning of the power selling service provider from the 

environment, and finally converges to the maximum value. 

Compared with DQN, the maximum cumulative reward of 

DDQN is much larger around the 500th time, and the optimal 

strategy is generated, that is, the optimal behavior with the 

maximum cumulative reward is selected. 

 
Figure 8: Cumulative rewards for different algorithms 

Although there are some fluctuations in the training process 

due to the random action of the ε-greedy strategy, the overall 

trend of the curve proves the convergence of the algorithm 

5.4 validation of the effectiveness of the algorithm 

Figure 9 shows the total energy consumption reduction of 

each user after adding the dynamic pricing DR Algorithm 

proposed in this paper, and the green part represents the 

difference of the cumulative payment of the user's actual 

energy consumption before and after the demand response. As 

shown in Figure 9, user 1 reduced energy consumption by 

approximately 18%. Therefore, demand response provides an 

opportunity for power market to balance energy supply and 

demand, which can effectively eliminate system overload and 

improve the reliability of power system 

 

 
Figure 9: Cumulative payments by user 

In order to study the effect of the weight factor ρ, we simulate 

the change of ρ between 0 and 1. Figure 10 and Figure 11 

show the average retail electricity price and average profit of 

the RHO coupling of the service provider and the user, 

respectively. From these two graphs, we can observe that an 

increase in ρ from 0 to 1 leads to an increase in the average 

retail price and the average profit of the service provider 

selling electricity; However, the average profit of the league is 

down. 

 
Figure 10: Impact of weighting factors on retail price 

Because as ρ increases, the profit of the selling service 

provider becomes more important relative to the cost of the 

user. Especially in the case of ρ = 1, the electricity sales 

service provider aims to maximize its own profit, regardless 

of the cost of the user, so the electricity sales service provider 

chooses a relatively high retail price. In contrast, when ρ=0, 

the system tends to minimize the cost to the user; Therefore, 

the electricity service provider chooses a relatively low retail 

price to the user. 

 
Figure 11: Impact of weighting factors on profits 

6. Conclusion 

With the rapid development of power grid construction and 

intelligent technology, the structure of electric power energy 

system is increasingly complex and diversified, and it is 
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necessary to balance supply and demand through electric 

power energy demand response to improve system stability. 

Traditional demand response strategies often operate based on 

preset rules or fixed feedback models, which to some extent 

limits their ability to adapt to complex and dynamic grid 

environments. Therefore, new, more flexible and adaptable 

energy demand response strategies need to be developed to 

ensure the stable operation of the power system and 

sustainable energy supply. Therefore, this paper proposes an 

electric energy demand response algorithm based on deep 

reinforcement learning DDQN. First, this chapter transforms 

the demand response problem into a Markov decision 

problem, then gives a complete definition of the demand 

response model with Markov properties, and then designs the 

EEDR-DDQN algorithm in detail. The contribution of this 

algorithm is as follows: 

 

Therefore, a new power demand response algorithm based on 

deep reinforcement learning is proposed in this study. The 

main contributions are as follows: 

 

(1) Considering the power load usage of users, a dynamic 

pricing DR Method of power energy demand response 

stratified power market is proposed. 

 

(2) Deep reinforcement learning algorithm is used to illustrate 

the hierarchical decision-making framework, and the dynamic 

pricing of retail electricity price is expressed as a Markov 

decision process (MDP), and the optimal pricing is solved 

based on DDQN algorithm. 

 

(3) Solve the uncertainty of power grid load demand curve 

through online learning, and coordinate the impact of users' 

private preferences on the market through the unsatisfactory 

cost function. 
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