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Abstract: With the development of ultra-high voltage and smart grids, the issue of power grid harmonic pollution caused by nonlinear 

loads and equipment has become more prominent. Harmonic pollution leads to increased energy consumption and poses safety risks to the 

operation of the grid, resulting in significant economic losses. In the comprehensive management of grid harmonics, the classification of 

harmonic sources is an urgent issue that needs to be addressed. In this context, this paper proposes a harmonic source classification 

method based on the GRU network. This method utilizes the GRU model, which is capable of long-term memory, to extract inherent 

features from harmonic data for classification, achieving good classification results. It provides a necessary foundation for the effective 

implementation of harmonic analysis and management. 
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1. Introduction 
 

With the rapid development of ultra-high voltage and smart 

grids, the issue of harmonic pollution caused by nonlinear 

loads and devices has increasingly come to the fore. 

Equipment such as photovoltaic power stations, substations, 

converter stations, and power plants inject harmonics into the 

power grid, leading to waveform distortions in the system's 

current and consequently causing harmonic pollution in the 

grid. Harmonic pollution not only leads to energy and 

equipment consumption but, under certain "resonant" 

conditions, can also cause damage to key grid equipment, 

posing safety risks to the power system and resulting in 

substantial economic losses [1]. To address and prevent 

harmonic pollution issues, the first problem that needs to be 

resolved in the process of strengthening grid harmonic 

analysis and comprehensive management is the rapid and 

accurate localization of the sources of harmonics. 

 

Currently, the research on harmonic classification and 

recognition has formed a relatively mature approach. The 

common methods for classification and recognition mainly 

include: traditional state estimation methods [2], SE methods 

combined with the least variance [3], continuous state 

estimation methods [4], methods based on active power [5], 

and methods based on the characteristics of distorted loads 

[6]. 

 

However, traditional research on harmonic classification and 

recognition tends to start from an electrotechnical perspective, 

generally based on mechanistic models. It mainly relies on 

methods such as equivalent circuit models, harmonic state 

estimation, or harmonic impedance. Due to the time-varying 

nature of harmonic sources and their characteristics that are 

difficult to measure directly, traditional classification and 

recognition methods often struggle to obtain sufficient 

predictive values for computation. Therefore, the 

introduction of methods based on deep neural networks aims 

to optimize traditional harmonic source detection and 

recognition methods, enhancing their performance. The 

adaptive, self-organizing, and pattern recognition capabilities 

of neural networks allow for the automatic identification of 

nonlinear relationships between input and output 

values—relationships that are often difficult to define or 

explain. This approach can obtain initial values of harmonic 

source parameters and significantly reduce the number of 

detection devices required by traditional classification and 

recognition methods. 

 

The introduction of the Gated Recurrent Neural Network 

(GRU) was specifically aimed at better-capturing 

dependencies over long time steps within time series data[7]. 

It controls the flow of information through gates that are 

capable of learning. Among these, the GRU is a commonly 

used type of gated recurrent neural network. 

 

In summary, the research objective of this paper is to address 

the issue of harmonic source identification using electric 

power quality monitoring data. The study focuses on the 

recognition of harmonic sources, starting from the 

perspective of statistics and machine learning. It aims to 

transcend traditional methods by employing a GRU-based 

model for the classification of harmonic sources, exploring 

the intrinsic patterns within the data to achieve rapid and 

accurate identification of harmonic sources. The prediction 

results will be evaluated using precision, recall, and F1 score 

metrics, providing a necessary foundation for the effective 

implementation of harmonic analysis and management. 

 

2. Problem Formulation 
 

2.1 Power Grid Harmonic Problem 

 

Harmonics refers to the components obtained by 

decomposing a periodic non-sinusoidal electrical quantity, 

whose frequencies are integer multiples of the fundamental 

frequency. They are an important indicator of electric power 

quality. Harmonic pollution can lead to increased energy 

consumption and, in severe cases, may cause damage to key 

equipment in the power system, triggering significant safety 

issues and substantial losses. Harmonic distortion can result 

in a decline in electric power quality, affecting the efficiency 
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and lifespan of electrical equipment. Classifying harmonic 

sources helps in addressing the specific causes of reduced 

power quality. On the other hand, uncontrolled harmonics 

may lead to overheating of electrical components, causing 

equipment failure or even fire hazards. Precise identification 

of harmonic sources is crucial for ensuring the reliability and 

safety of the system. By accurately classifying harmonic 

sources, power companies can optimize the operation of their 

systems, reduce energy losses, and save on operational costs. 

The sources of voltage harmonics and current harmonics in 

power systems mainly fall into the following categories [8]: 

a) Electrical devices or power equipment containing 

rectifiers. Due to the unidirectional conduction 

characteristics of rectifying tubes, the input current 

waveform of the rectifier is non-sinusoidal, containing a 

large number of harmonic components. 

b) Thyristor phase-controlled regulating devices. Due to the 

chopper conduction of thyristors, the voltage and current 

waveforms become non-sinusoidal, which contain a large 

number of harmonic components. 

c) Electric arc furnaces and AC arc welding machines. 

Harmonic currents are generated due to the nonlinearity 

and variability of the equivalent impedance of the arc. 

d) Equipment containing iron cores such as transformers and 

motors. The magnetization current waveform is distorted 

due to the nonlinearity of the iron core's magnetization 

curve. 

 

Among various types of electrical equipment that inject 

harmonics into the power system, the most significant 

sources of harmonics are electrical devices, for example: 

photovoltaic power stations, power plants, substations, 

converter stations, electric arc furnaces, and electrified 

railways. The harmonic sources studied in this paper are 

aimed at these types of electrical equipment. 

 

2.2 GRU 

 

GRU is a variant structure of LSTM, in which GRU combines 

the input gate and forget gate of LSTM into an update gate 

and incorporates both the cell state and hidden state [9]. 

Compared to LSTM, the GRU neural network simplifies the 

three gates into an update gate and a reset gate, reducing the 

number of parameters required in the computation process 

[10]. Consequently, this reduction shortens the training time 

and accelerates the convergence speed. The reset gate and 

update gate in GRU are shown in Figure 1. 
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Figure 1: Reset and update gate in GRU 

 

 

 

The computational steps of GRU are as follows: 

 

For a given time step t, with the current input data as Xt and t

he hidden state from the previous time step as Ht-1, the calcul

ation formulas for the reset gate Rt and the update gate Zt are

 as follows: 

 1R ( )t t xr t hr rb −= + +X W H W  (1) 

 1( )t t xz t hz zb −= + +Z X W H W  (2) 

Where Wxr, Wxz, Whr, Whz are weight parameters, and br, 

bz are bias parameters. 

 

By combining the reset gate Rt with the conventional hidden 

state update mechanism, the candidate hidden state tH  for ti

me step t is obtained. 

 1tanh( ( ) )*t t xh t t hh hb−= + +H X W R H W  (3) 

 

Where Wxh and Whh are weight parameters, bh is the bias par

ameter, the symbol * represents element-wise multiplication, 

and the tanh non-linear activation function is used to ensure t

he values in the candidate hidden state remain within the inte

rval (-1, 1). 

 

The element-wise multiplication of Rt and Ht-1 can reduce th

e influence of previous states. Whenever the terms in the rese

t gate Rt approach 1, we revert to a regular recurrent neural n

etwork. For all terms in the reset gate Rt that is close to 0, the

 candidate hidden state is the result of a multilayer perceptron

 with Xt as the input. 

 

The above calculation results are only the candidate hidden s

tates, but they still need to be combined with the effect of the

 update gate Zt. The new hidden state Ht largely comes from 

the old state Ht-1 and the new candidate state tH . Below is th

e final update formula for the Gated Recurrent Unit. 

 1* (1 )*t t t t t−= + −H Z H Z H  (4) 

Whenever the update gate Zt approaches 1, the model tends t

o retain the old state. At this time, the information from Xt is 

essentially ignored, effectively skipping over the time step t i

n the dependency chain. Conversely, when Zt approaches 0, t

he new hidden state Ht will be close to the candidate state. Th

ese designs can help address the issue of vanishing gradients 

in recurrent neural networks and better capture dependencies 

over long sequences of time steps. For instance, if the update 

gate of all time steps in an entire subsequence is close to 1, r

egardless of the sequence length, the old hidden state from th

e starting time step of the sequence can easily be retained and

 passed to the end of the sequence. 

In summary, the Gated Recurrent Unit possesses two signific

ant features:  

(a) The reset gate helps capture short-term dependencies wi

thin a sequence.  

(b) The update gate aids in capturing long-term dependenci

es within a sequence. 

 

3. Experimental Scheme 
 

3.1 Data Analysis 

 

Approximately 1000 sample data points were collected for 

each of the nine types of harmonic sources, which include: 

electric vehicle charging stations, electric heating systems, 
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electrified railways, wind farms, photovoltaic power stations, 

urban rail transit, converter substations grid-side outputs, 

converter stations AC outputs, and rolling mills, comprising 

nine types of harmonic source data. These nine types of 

harmonic sources are correspondingly assigned to labels 0-8, 

as shown in Table 1. 

 

Table 1: Nine harmonic sources 
Types of Harmonic Sources Label 

Electric Vehicle Charging Stations 0 

electric heating systems 1 

electrified railways 2 

wind farms 3 

photovoltaic power stations 4 

urban rail transit 5 

converter substations grid-side outputs 6 

converter stations AC outputs 7 

rolling mills 8 

 

One sample data point is collected every three minutes for 

each category, totaling 9000 data points. Approximately 20% 

of the data (about 1800 data points) is uniformly extracted as 

the test set, 900 data points as the validation set, and 6300 

data points as the training set. The data set partitioning is 

shown in Table 2 

 

Table 2: Data set partitioning 
dataset quantity quantity 

training set 6300 70% 

test set 1800 20% 

Validation set 900 10% 

 

Each data point contains 72 feature values, which are the 

higher-order harmonics of the three-phase current at various 

moments. Upon comparison, the arrangement and direction 

of the higher-order harmonics within the same category are 

generally consistent. Moreover, since higher-order harmonics 

possess a sequential order, it is appropriate to use the GRU 

model for classification. 

 

3.2 Model Building 

 

The harmonic source classification problem is modeled and 

designed based on the deep learning model GRU, with the 

modeling architecture shown in Figure 2. 

 

 
Figure 2: Model architecture diagram 

The model consists of three parts: the data processing layer, 

the GRU layer, and the linear layer. The optimization 

algorithm used is Stochastic Gradient Descent (SGD). 

 

The data processing layer is responsible for importing the 

data, and dividing it into three parts: training set, validation 

set, and test set. It also batches the data and shuffles it 

randomly to improve accuracy. Each piece of data is treated 

as a time series, with the three phases of electrical current, A, 

B, and C, each considered as a feature, and each higher-order 

harmonic as a time step. Thus, the input data is a sequence 

with 3 features and 24 time steps. Once the data processing is 

complete, it enters the main body of the model for training. 

 

The GRU layer, serving as the core of the entire model, has 

update and reset gates that are highly suitable for extracting 

features from time series. The processed data is fed into the 

GRU for trained learning, extracting features contained 

within the harmonic data. The parameter design for the GRU 

layer is as follows: feature dimension is 3; dimension of the 

hidden states is 32; number of GRU layers is 1; dimensions of 

the input data’s shape is (seq_len=24, batch=64, 

input_size=3). The parameter settings of the model are shown 

in Table 3. 

 

Table 3: The Parameter Settings of the Model 
Parameter Value 

Feature dimension 3 

Hidden layer state dimension 32 

Number of GRU layers 1 

Dimensions of the input data (24,64,3) 

 

The linear layer takes the harmonic features extracted by the 

GRU as input, with the aim of this layer being to output class

ification of the features. The model employs cross-entropy to

 measure model loss, calculates the loss function, and defines

 an optimizer, choosing SGD as the optimization algorithm, 

with the number of iterations set to 500. 

 

4. Experimental Results and Analysis 
 

4.1 Training Process 

 

The training model is implemented through programming on 

the Pytorch platform. The training environment is as follows.

 The processor model is Intel(R) Core(TM) i5-6200U CPU 

@ 2.30GHz, with a processor base frequency of 2.40 GHz, a

nd a memory capacity of 8 GB. The experimental parameter 

settings are shown in Table 4. 

 

Table 4: Experimental Parameter Settings 
Parameter Value 

epoch 500 

learning rate 0.005 

batch size 64 

 

4.2 Training results and analysis 

 

At the end of the experiment, the test set was fed into the 

trained model, resulting in an accuracy of 98.7%. By 

invoking the classification report function from sklearn, an 

analysis of metrics such as precision, recall, and f1-score for 

the GRU classification model can be obtained, and the metric 

results are shown in Table 5. 

Paper ID: SE24318133444 21 of 22 

www.ijser.in
http://creativecommons.org/licenses/by/4.0/


International Journal of Scientific Engineering and Research (IJSER) 
ISSN (Online): 2347-3878 

Impact Factor (2024): 7.741 

Volume 12 Issue 3, March 2024 

www.ijser.in 
Licensed Under Creative Commons Attribution CC BY 

Table 5: Evaluation index results of GRU model 
Label Precision Recall F1-Score 

0 0.9953 1 0.9976 

1 0.9958 0.9713 0.9834 

2 0.9817 0.9907 0.9862 

3 1 1 1 

4 0.9865 0.9399 0.9626 

5 0.9953 0.9953 0.9953 

6 1 1 1 

7 1 1 1 

8 0.9316 0.9909 0.9604 

 

The average precision and recall rates of the GRU 

classification model are both above 98%, with the 

identification accuracy for labels 3, 6, and 7, which 

correspond to wind farms, converter substation grid-side 

outputs, and converter station AC outputs harmonic sources, 

reaching 100%. The prediction results show that the model 

has a good ability to distinguish between positive and 

negative samples, with an average f1-score result exceeding 

98%, indicating good stability of the classification model. 

 

5. Summary 
 

This paper applies the GRU model, a deep learning algorithm 

suitable for processing time-series data, to the classification 

of harmonic sources. The GRU model not only overcomes 

the defect of gradient explosion that is prone to occur in 

RNNs but is also more streamlined compared to LSTM, 

which speeds up training, reduces convergence time, and 

yields training results that are not significantly different from 

those of LSTM. The GRU model extracts abstract features 

from harmonic data and classifies them through a linear layer, 

achieving satisfactory classification results. This model 

enables the classification and identification of nine types of 

harmonic sources, providing a necessary foundation for the 

effective implementation of harmonic analysis and 

management. 
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