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Abstract: With the development of new power systems, the impact of harmonics on power systems has received increasing attention. 

Accurate prediction of harmonic sources is crucial to the stable operation of power systems. This paper uses an improved Temporal 

Convolutional Network and combines the characteristics of the power system to predict the composite harmonic sources under the new 

power system. First, the generation mechanism of harmonics in the power system and its impact on the system are introduced. Then, the 

principles and applications of the TCN model are introduced in detail. Then, a harmonic source prediction method based on the improved 

TCN model was proposed, and the effectiveness of the method was verified through simulation experiments. 
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1. Introduction 
 

In new power systems, harmonics are a common problem, 

which may be caused by nonlinear loads, and power 

electronic equipment [1]. Harmonics can cause voltage 

distortion, equipment damage, and other problems, seriously 

affecting the stability and reliability of the power system [2]. 

Therefore, accurate prediction of harmonic sources is crucial 

to the operation and management of power systems. 

Traditional harmonic source prediction methods usually rely 

on empirical or statistical models, but these methods are often 

difficult to adapt to complex power system changes. 

Therefore, it is of great significance to use deep learning 

methods to predict harmonic sources [3]. 

 

In the field of harmonic source prediction, traditional 

methods mainly include methods based on statistics and 

empirical models. Among them, the autoregressive integrated 

moving average model (ARIMA) is one of the most common 

statistical methods, which is suitable for time series data with 

linear trends and seasonality. However, ARIMA models 

require manual selection of model parameters and perform 

poorly when dealing with nonlinear and complex time series 

data. On the other hand, methods based on empirical models 

usually build models based on historical data and domain 

knowledge, such as neural networks, support vector 

machines, etc. Although these methods can achieve good 

prediction results in some cases, they usually require a large 

amount of feature engineering and parameter tuning and are 

difficult to adapt to complex power system environments. 

 

Power harmonic prediction is an important research direction 

in the field of power systems. With the proliferation of 

nonlinear devices in power systems, harmonic issues are 

becoming increasingly severe. Accurate harmonic prediction 

is of great significance for ensuring the high-quality operation 

of the power grid. Traditional harmonic prediction methods 

often fall short of meeting actual requirements due to their 

limited nonlinear mapping capabilities and generalization 

capabilities for unknown time series data. Therefore, 

researchers have proposed various new harmonic prediction 

methods based on deep learning, big data analysis, and 

Internet of Things technology. 

 

In 2019, Liu Qibin and colleagues proposed a power 

harmonic monitoring data prediction method based on a Long 

Short-Term Memory network (LSTM) [4]. This method 

mainly comprises four steps: preprocessing of harmonic 

monitoring data, training of the prediction model through 

fitting, application of the prediction model, and evaluation of 

the model's prediction effectiveness. Experimental results 

demonstrate that this approach yields favorable outcomes in 

the prediction analysis of harmonic monitoring data across 

various time scales. 

 

In 2020, Liu Haitao and others designed a nonlinear harmonic 

load prediction method based on big data analysis technology 

[5]. First, the current research progress of nonlinear harmonic 

load forecasting is analyzed, and then the historical data of 

nonlinear harmonic load are collected, big data analysis 

technology is introduced for modeling and learning, and the 

parameters of the nonlinear harmonic load forecasting model 

are optimized. Experimental results show that the nonlinear 

harmonic load prediction accuracy of this method exceeds 

95%, and the deviation is significantly smaller than other 

current nonlinear harmonic load prediction methods. 

 

In 2021, Yongle et al. proposed a nonlinear load harmonic 

prediction method based on the Power Distribution Internet 

of Things architecture [6]. This method first integrates the 

characteristics of edge computing technology and Power 

Distribution Internet of Things technology and then 

establishes a nonlinear load harmonic prediction model based 

on dynamic time warping and long short-term memory 

network (DTW-LSTM) in the cloud computing center. The 

simulation results show that the MAE evaluation index of this 

method in the experimental group is less than 5%, and it has 

good generalization ability. 

 

In 2023, Liu et al. proposed a nuclear extreme learning 

machine (KELM) model power harmonic prediction method 

based on gray relational analysis (GRA), variational mode 

decomposition (VMD), and Harris Hawk optimization (HHO) 

[7]. This method first uses the GRA method to construct 

similar day sets, then uses the VMD method to decompose 

the harmonic data of similar day sets, and finally 
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superimposes the prediction results of each subsequence and 

conducts a numerical evaluation. Experimental results show 

that compared with traditional prediction methods, the 

prediction error of this method is reduced by at least 39%. 

 

Indeed, a common issue across the above literature is the lack 

of consideration for the prediction of harmonic sources in 

emerging power systems and the absence of analysis 

regarding the coupling of multiple harmonic sources. The 

existing research appears to focus on traditional power 

systems or specific types of harmonic sources without 

addressing the complexities introduced by modern power 

systems. 

 

The emergence of new power system architectures, such as 

smart grids or renewable energy integration, brings unique 

challenges related to harmonic generation and propagation. 

These systems often involve distributed generation, power 

electronic converters, and varying load profiles, leading to 

nonlinear behaviors and complex interactions among 

different harmonic sources. 

 

Additionally, the coupling effects between multiple harmonic 

sources can significantly impact the overall harmonic 

distortion in the power system. Neglecting this aspect can 

result in inaccurate predictions and ineffective mitigation 

strategies. Therefore, future research should address the 

prediction of harmonic sources in the context of modern 

power systems and consider the coupling effects between 

multiple sources to provide more comprehensive and 

effective solutions for harmonic mitigation and management. 

 

With the development of deep learning technology, more and 

more studies have begun to explore the use of deep learning 

models to solve harmonic source prediction problems. 

Among them, recurrent neural networks (RNN) and their 

variant long short-term memory network (LSTM) are widely 

used in time series prediction tasks. These models can capture 

complex patterns and regularities in the data by learning 

long-term dependencies in time series data. However, 

traditional RNN and LSTM models are prone to gradient 

disappearance or gradient explosion problems during training, 

and the computational cost is high when processing long 

sequence data. 

 

To overcome the limitations of traditional RNN and LSTM 

models, a new time series prediction model-TCN model has 

emerged in recent years. The TCN model is based on a 

convolutional neural network (CNN), which learns the 

characteristics of time series data through a series of 

convolutional layers and residual connections and uses 

multi-scale convolution kernels to capture information at 

different time scales. Compared with traditional RNN and 

LSTM models, the TCN model has advantages in training 

speed and prediction performance and is especially suitable 

for processing long sequence data and capturing long-term 

dependencies. 

 

Although the TCN model has achieved remarkable results in 

speech recognition, natural language processing, and other 

fields, it has been relatively rarely used in the field of power 

systems. At present, the research on the TCN model in the 

field of harmonic source prediction is still in its preliminary 

stage, and its effectiveness and applicability in power systems 

need to be further explored and verified. Therefore, this 

article will try to use the TCN model to solve the problem of 

harmonic source prediction under new power systems and 

explore its application prospects in the field of power 

systems. 

 

The main contribution of this paper is to propose a harmonic 

source prediction method based on the TCN model and verify 

its effectiveness through experiments. First, applying the 

TCN model to the harmonic source prediction problem is a 

new attempt, which can make full use of the deep learning 

model to learn the characteristics of time series data. 

Secondly, through experimental verification, we will evaluate 

and analyze the performance of the TCN model on harmonic 

source prediction problems, thereby providing new ideas and 

methods for harmonic source prediction in power systems. 

 

In the subsequent chapters, we will begin by elucidating the 

generation mechanism and ramifications of harmonic issues 

in power systems. Subsequently, we will delve into the 

principles and applications of the Temporal Convolutional 

Network (TCN) model in detail. Following this, we propose a 

harmonic source prediction method based on the TCN model, 

substantiating its efficacy through verification and analysis 

via experimental results. Lastly, the article will conclude with 

a summary and a glance towards future research directions. 

 

2. Harmonic data feature analysis 
 

Harmonic source data feature analysis is one of the key steps 

in the harmonic source prediction problem. Through the 

analysis and feature extraction of historical data, we can 

better understand the generation rules of harmonic sources 

and provide a basis for establishing accurate prediction 

models. For different types of harmonic sources, their 

harmonic data characteristics will be different. The following 

are possible characteristics for different types of harmonic 

sources such as wind farms, rolling mills, and rail transit: 

 

The wind farm is a renewable energy generation system with 

unstable wind speed and power output characteristics, which 

may lead to harmonic fluctuations in the power grid. The 

power electronics of wind turbines (such as converters) often 

introduce harmonics, and the frequency may be different 

from the grid frequency, such as 50Hz or 60Hz. Both the 

harmonic content and the harmonic waveform may change 

with the wind speed and the operating status of the wind farm, 

especially under low wind speed or high load conditions, the 

harmonic content is large. Rolling mills are common 

equipment in the metal processing industry and usually 

involve bulk electric motors and power electronic equipment, 

which may introduce high-frequency harmonics and voltage 

waveform distortion. The periodic working process of the 

rolling mill may cause periodic changes in harmonics, and the 

harmonic spectrum may contain multiple frequency 

components. The operating status and load conditions of the 

rolling mill equipment may affect the generation of harmonic 

sources. For example, changes in the rotation speed and load 

force of the roll may cause changes in harmonics. Rail transit 

systems include subways, trams, etc., involving an array 

electric of motors and traction equipment, which may 

introduce harmonics and voltage waveform distortion. The 
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starting and braking process of the train and changes in the 

train running speed may cause changes in the harmonic 

source, and the harmonic waveform and amplitude may 

change accordingly. The working periodicity and frequent 

start and stop processes of rail transit systems may affect 

power system harmonics, especially during high load periods. 

 

For different types of harmonic sources, harmonic data 

characteristics need to be analyzed based on their specific 

working principles and operating characteristics to better 

understand their harmonic generation mechanisms and 

impact levels. 

 

3. Harmonic source prediction method based 

on TCN model 
 

3.1 Harmonic source prediction problem 

 

The harmonic source prediction problem refers to predicting 

the generation and level of harmonics in the future power 

system based on historical data and system status. Harmonic 

sources refer to sources that cause periodic changes in voltage 

or current in power systems, usually caused by nonlinear 

loads, power electronic equipment, etc. The purpose of 

harmonic source prediction is to promptly identify possible 

harmonic problems and take appropriate control measures to 

ensure the safe and stable operation of the power system. The 

key to the harmonic source prediction problem is to establish 

an accurate prediction model that can learn the generation 

rules of harmonic sources from historical data and predict 

future harmonic levels accordingly. Generally, the harmonic 

source prediction problem can be divided into the following 

aspects: 

1) Data collection and processing: First, historical data 

related to harmonics need to be collected, including 

voltage, current waveforms, load conditions, power 

electronic equipment status, and other information. The 

data is then preprocessed, including noise removal, data 

normalization, etc., to improve the accuracy and stability 

of the prediction model. 

2) Feature extraction and selection: Extract harmonic-related 

features from historical data and perform feature selection 

to reduce data dimensions and improve the generalization 

ability of the model. These features can include spectrum 

analysis, time domain features, frequency domain 

features, etc., which can reflect the generation mechanism 

and changing rules of harmonic sources. 

3) Model establishment and training: Select an appropriate 

prediction model and use historical data to train the 

model. Commonly used prediction models include 

statistical models (such as ARIMA), machine learning 

models (such as neural networks, and support vector 

machines), and deep learning models (such as recurrent 

neural networks, and convolutional neural networks), etc. 

During the training process, it is necessary to consider the 

generalization ability of the model, over-fitting problems, 

and the selection of hyperparameters. 

4) Model evaluation and optimization: evaluate the model 

through cross-validation, loss function, and other 

methods, and optimize the model based on the evaluation 

results. Evaluation indicators usually include prediction 

accuracy, mean square error, mean absolute error, etc., 

which can objectively reflect the prediction ability of the 

model. 

 

5) Prediction and application: Use the trained model to 

predict future harmonic sources and take corresponding 

control measures based on the prediction results. These 

measures can include adjusting load distribution, 

optimizing power system operation strategies, improving 

power electronic equipment design, etc., to reduce the 

impact of harmonics on the power system and ensure the 

safe and stable operation of the system. 

 

In the power system, the lack of clear label data makes it 

difficult for existing personnel to accurately identify and 

classify the collected power system data. The application of 

deep learning models provides new possibilities to address 

this challenge. However, due to the lack of real label data, the 

training and application of existing deep learning models for 

harmonic source identification in the power system are 

limited. Although simulation software can simulate harmonic 

distortion and coupling relationships in the power system, the 

simulation process still requires a significant amount of time 

and effort, hindering research progress. 

 

3.2 TCN modeling 

 

The TCN model typically comprises multiple convolutional 

layers, with each layer potentially containing multiple 

convolutional kernels. These layers are interconnected via 

residual connections, forming a deep neural network 

structure. Within each convolutional layer, different dilation 

rates can be employed to capture information at various 

temporal scales. Finally, the outputs of the convolutional 

layers are transformed into the final prediction through global 

pooling layers or fully connected layers. 

 

The TCN model learns features from time-series data through 

convolutional operations, where each convolutional kernel 

performs a sliding convolution operation on the input data to 

capture information at different time scales. Residual 

connections effectively alleviate the vanishing or exploding 

gradient problem, thereby enhancing the training efficiency 

and stability of the model. Dilation convolution layers 

increase the receptive field by increasing the dilation rate, 

enabling the model to capture dependencies over longer time 

spans, thereby improving prediction performance. 

 

The main components of the TCN model include 

one-dimensional convolutional layers, residual connections, 

dilation convolutions, pooling layers, and output layers. 

One-dimensional convolutional layers are used to extract 

features from time-series data. These convolutional layers 

extract local features over time by using sliding windows, 

capturing information at different temporal scales. Residual 

connections add the output of the convolutional layers to their 

input, constructing residual blocks. These connections 

effectively alleviate the vanishing or exploding gradient 

problem and improve the training efficiency and stability of 

the model. Dilation convolution layers introduce dilation 

rates in the convolutional layers, allowing convolution 

kernels to have a larger receptive field over the time 

dimension. These layers can capture dependencies over 

longer time spans, thereby enhancing the prediction 
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performance of the model. Pooling layers reduce feature 

dimensionality and extract the most important features. These 

layers reduce computational complexity and parameter count 

by down-sampling feature maps using operations such as max 

pooling or average pooling. Finally, the output layer 

transforms the output of the convolutional layers into the final 

prediction. Typically, fully connected layers or global 

pooling layers are used to map features to the final predicted 

values. 

 

This paper proposes a harmonic source prediction method 

based on an improved TCN model. The architecture of the 

improved TCN model is illustrated in Figure 1. The input 

layer consists of time-frequency current data from two 

harmonic sources, where the temporal features represent a 

sequence with a single time step, and the frequency features 

represent the Fourier-transformed harmonic features. The 

output layer predicts the composite harmonic data from these 

two sources, which also include both temporal and frequency 

domain features. Notably, the residual layer incorporates 

three residual modules with different dilation factors, 

enabling a gradual expansion of the receptive field and an 

increase in the sequence length for feature extraction.  

causal 

convolution

Batch 

Normalization
Relu

Dropout
Residual 

Layer
Pooling Layer

Input

Output

  
Figure 1: The architecture of the improved TCN model 

 

3.3 Experimental Results and Analysis 

 

This paper validates the effectiveness of the harmonic source 

prediction method based on the TCN model through 

simulation experiments using real power system data. The 

experimental results demonstrate that the proposed method 

accurately predicts the future levels of harmonic sources and 

exhibits high prediction accuracy and stability. Compared to 

traditional methods, the prediction method based on the TCN 

model shows improvements in both accuracy and efficiency. 

 

The experimental data is divided into two parts: real single 

harmonic source data and simulated composite harmonic 

source data. Initially, the model is trained using partial real 

single harmonic source data and simulated composite 

harmonic source data, with the single data serving as input 

and the simulated composite harmonic source data serving as 

the output labels. Through iterative training, the model learns 

the coupling relationships between the two single harmonic 

source data, and finally, the trained model is used to predict 

the remaining real data to generate a large amount of 

composite harmonic source data. Compared to simulation 

software, using neural network models significantly improves 

data generation efficiency, saving time and labor costs and 

providing a data foundation for TTM model training. 

 

Common evaluation metrics for regression problems include 

Root Mean Square Error (RMSE), Mean Absolute Error 

(MAE), and Mean Squared Logarithmic Error (MSLE). 

RMSE measures the square root of the average squared 

differences between predicted and true values, being sensitive 

to large errors and providing a comprehensive assessment of 

overall model performance, but it shares the same unit as the 

original data and is less interpretable. MAE measures the 

average absolute differences between predicted and true 

values, being less sensitive to outliers and more interpretable, 

although it may not capture large errors well. MSLE 

measures the average logarithmic differences between 

predicted and true values, being more sensitive to larger 

errors and suitable for data with exponential growth trends. 

However, MSLE is not suitable for complex data 

distributions or data values that are zero. Given the broad 

applicability and complementary advantages of RMSE and 

MAE, this paper selects RMSE and MAE as the evaluation 

metrics for the model. 

 

By designing ablation experiments on the improved TCN 

model containing Attention and the original TCN model, the 

role of the Attention mechanism in TCN is explored. Evaluate 

the performance difference between the TCN model 

containing Attention and the TCN model without Attention in 

sequence modeling tasks. Figure 2 is a comparison of the 

improved TCN model and the TCN model without the 

Attention mechanism in the time domain. From the figure, it 

can be found that around noon, the gap between the TCN 

model without the Attention mechanism and the label value is 

the largest, which is about twice that of the improved TCN 

model. 

 
Figure 2: Results comparison chart 

 

The above results show that in the harmonic source sequence 

modeling task, the TCN model introducing the Attention 

mechanism is more accurate and stable in the prediction of 

specific frequencies and periods than the original TCN 

model. It further verified the effectiveness and significant 

advantages of the Attention mechanism in sequence modeling 

when dealing with specific harmonic frequencies. Therefore, 

the improved TCN model integrated with the Attention 

mechanism can better adapt to the complex characteristics of 

the harmonic source sequence of the power system and 

improve the prediction performance of the model. 

 

This paper conducts comparative experiments on CNN, TCN, 

and an improved TCN model incorporating the Attention 

mechanism, evaluating their performance in modeling 

harmonic source sequences in power systems. Table 1 

presents the evaluation metrics for each model. From the 

table, it can be observed that among these three models, the 
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improved TCN model has the smallest corresponding 

evaluation metrics, while the CNN model has the largest. 

Specifically, a smaller RMSE value indicates a better fitting 

of the model to the real data, and a smaller MAE value 

indicates a lower average prediction error concerning the real 

data. Therefore, based on the comparative experiments, it can 

be concluded that in the task of modeling harmonic source 

sequences in power systems, the improved TCN model 

exhibits the best predictive performance. Furthermore, the 

integration of the Attention mechanism enhances the overall 

performance of the TCN model, resulting in a reduction of 

0.06 in RMSE and 0.026 in MAE. 

Table 1: Evaluation index results 
Model RMSE MAE 

CNN 0.123 0.084 

TCN 0.103 0.055 

Methods of this article 0.043 0.029 

 

4. Summary 
 

This paper uses the TCN model and combines the 

characteristics of the power system to predict the harmonic 

sources under the new power system. Experimental results 

show that the prediction method based on the TCN model has 

high accuracy and stability. In the future, more complex 

model structures and algorithms can be further explored to 

improve the accuracy and efficiency of harmonic source 

prediction and provide more reliable support for the operation 

and management of power systems. 
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