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Abstract: How to achieve accurate semantic segmentation of high-resolution remote sensing images is a current focal point in image 

semantic segmentation tasks. However, the information contained in high-resolution images is typically complex, and due to the large size 

of the images, they are constrained by the receptive field size of convolutional networks, making accurate semantic segmentation 

challenging. Significant errors exist in both local edge and overall image segmentation results. This paper presents HSTNet, a semantic 

segmentation network for high-resolution remote sensing images with an iterative structure. HSTNet adopts an encoder-decoder 

architecture similar to Unet. In HSTNet, we employ Swin-Transformer modules to learn and correlate feature tensors at different scales, 

aiming to capture the overall structure of high-resolution images and associate long-range geographic information across the images as 

much as possible. Furthermore, we devised an iterative optimization framework that progressively enhances the semantic segmentation 

results of the network. We observed that preliminary semantic segmentation outputs can serve as cues to facilitate the network in 

achieving more accurate segmentation. These initial semantic segmentation results encapsulate relationships among various semantic 

objects within different regions of the image, thereby reducing the cost of the network learning image features during subsequent 

iterations and assisting the network in achieving improved outcomes. We compared our approach with several state-of-the-art methods on 

the Potsdam dataset from ISPRS. The final results indicate that our method achieves outstanding performance. 
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1. Introduction 
 

Semantic segmentation of remote sensing images aims to 

predict the semantic class for each pixel in the image. It has 

been a fundamental issue in remote sensing image processing 

and is an essential component of remote sensing image 

interpretation. With the rapid development of aerospace, 

remote sensing, and imaging technologies, it has become 

increasingly easier to acquire large quantities of high-quality, 

high-resolution remote sensing images. However, this also 

brings about a practical challenge: how to efficiently and 

accurately perform semantic segmentation on high-resolution 

remote sensing images.  

 

Existing semantic segmentation methods primarily utilize 

deep learning networks to extract land cover information from 

images and segment pixels with different semantic meanings0. 

Deep learning algorithms, which hierarchically learn 

representative and distinctive features from data, have been 

introduced into the field of remote sensing and have rapidly 

developed. Spectral and textural information of remote 

sensing images are used as low-level features inputted into 

convolutional neural network models for pixel-based 

semantic segmentation, resulting in feature classification 

information. Compared to traditional optical remote sensing 

image segmentation, deep feature-based segmentation 

methods can leverage neural networks to implicitly establish 

pixel-to-semantic mapping relationships[2]. The network 

autonomously learns to extract target features from remote 

sensing images, completing the entire segmentation process 

without the intervention of manual feature engineering. This 

simultaneously enhances the accuracy of results and the 

generalization capability of the model[3]-[5].  

 

Presently, the most successful and state-of-the-art semantic 

segmentation networks trace their origins back to a common 

ancestor: the Fully Convolutional Network (FCN)[6]. This 

seminal work replaced fully connected layers with 

convolutional networks to output spatial maps, which are then 

upsampled to generate predicted maps, thereby classifying 

and segmenting pixels with similar semantics in the image. 

Consequently, a plethora of advanced semantic segmentation 

networks have emerged in rapid succession. 

 

However, when dealing with high-resolution remote sensing 

images, existing convolutional network methods have 

demonstrated their inherent limitations. The limited receptive 

fields of filters in convolutional networks make it difficult to 

effectively associate long-range relationships among pixels 

with similar semantics, which may lead to either 

over-segmentation or under-segmentation issues in images. 

While some methods leverage multi-scale contextual 

information to enhance the segmentation performance of 

convolutional networks, such as the stacked hourglass module 

proposed by Li et al. [7], which learns contextual information 

from different scales and extracts rich multi-scale features 

through intermediate supervision, and the initial module 

composed by Liu et al. [8], replacing common convolutional 

layers to provide the network with multi-scale receptive fields 

for acquiring multi-scale information, the collection of 

multi-scale information from images may lead to the loss of 

some local fine-grained details, thereby reducing the accuracy 

of image segmentation results, The inherent limitations of 

convolutional networks constrain the performance of 

semantic segmentation networks. Additionally, most existing 

image semantic networks often attempt to establish a direct 

mapping between input images and semantic segmentation 

results. This approach may lead the network to overlook some 

important underlying semantic features in the images. 

 

This paper proposes a semantic segmentation network for 
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high-resolution remote sensing images with an iterative 

structure, leveraging Swin-Transformer modules to establish 

global semantic correlations of input images at different 

scales. This effectively enhances the accuracy of image 

partitioning. Further elaboration will be provided in the 

following paragraph. 

 

The Transformer[9] has achieved tremendous success in both 

image processing and natural language processing domains, 

revolutionizing many tasks in these fields. It introduces 

attention mechanism, which enables the model to better 

capture relationships between different positions by allowing 

interactions between all positions in the input sequence. This 

attention mechanism enables Transformers to more 

effectively handle long-range dependencies, thus enhancing 

the model's performance and generalization capability in both 

natural language processing and computer vision tasks. 

Through self-attention mechanism, the Transformer can 

model and process sequential data without introducing 

recurrent structures, greatly accelerating both model training 

and inference processes. On the other hand, the existing 

classical image segmentation network, Unet[10], is capable of 

integrating low-resolution and high-resolution information. It 

learns and correlates image features at different scales, 

consequently obtaining fine-grained image segmentation 

results, making it particularly suitable for medical image 

segmentation tasks. Integrating Transformer modules at 

various scales within Unet can further enhance Unet's 

capability to incorporate long-range structural information 

across different scale feature maps. 

 

In the task of image shadow detection, Patel et al.[11] utilized 

an image shadow removal network as a pre-processing stage 

to provide shadow distribution features in the image for the 

shadow detection network. This significantly enhanced the 

accuracy of shadow detection. The image shadow removal 

task often serves as a subsequent stage to the image shadow 

detection task. These two tasks are inherently correlated and 

similar, as both require learning from shadow-free and 

shadowed regions. Their work demonstrates that two 

networks handling related tasks can mutually provide useful 

information to each other, thereby promoting each other's 

performance. 

 

Inspired by the aforementioned work, we propose an iterative 

semantic segmentation network for high-resolution remote 

sensing images. We introduce Swin-Transformer modules at 

different scales within Unet to learn and correlate long-range 

semantic features, aiming to enhance the network's ability to 

learn pixel correlations in high-resolution images. 

Furthermore, we employ the predicted results as input 

information for the second round of iteration, along with the 

original image, into our network for progressive optimization. 

This approach aims to utilize preliminary semantic 

segmentation results to guide the network in learning the 

relationships between pixels with similar semantic 

information at different locations. Throughout the iterative 

process, it reinforces the degree of association between pixels 

with identical semantic information and potentially corrects 

errors that may arise during the upsampling process, thereby 

progressively enhancing the quality of semantic segmentation 

results. 

 

Our main contributions include: 

• We design a novel semantic segmentation network, named 

HSTNet. This network is capable of learning and 

establishing long-range semantic pixel correlations within 

input images at different scales, addressing the limitation 

of existing convolutional networks in capturing global 

image features due to restricted receptive fields. 

• We propose an iterative framework where the result of 

each segmentation iteration is fed back into the network to 

guide more accurate segmentation of the image. This 

structure enhances the network's ability to learn 

relationships between pixels with the same semantic 

information, progressively improving semantic 

segmentation results and potentially correcting errors in 

the previous predictions. 

• Experimental results on the ISPRS Potsdam dataset 

indicate that further extracting multi-scale features from 

the encoder output and aggregating them in the decoder 

can enhance the segmentation performance of the network 

model. 

 

2. Related Work 
 

With the advancement of artificial intelligence and deep 

learning, segmentation methods based on deep features are 

gradually transitioning to optical remote sensing images. 

These methods are being enhanced based on features such as 

multispectral data and intra-class dissimilarity. Among these 

enhancements, segmentation methods based on segmentation 

models stand out as the most prominent. These models 

achieve image segmentation by training neural network 

classifiers for classification.  

 

In 2015, the Fully Convolutional Network semantic 

segmentation model[6] was proposed, achieving pixel-level 

image semantic segmentation. It replaces the fully connected 

layers used for classification mapping in CNN structures with 

convolutional layers, and combines the information from 

intermediate pooling layers to generate image prediction 

segmentation maps. Additionally, the UNet [10] architecture 

exhibits more accurate segmentation performance with 

limited training data and has been widely applied in remote 

sensing image segmentation tasks. DeconvNet[12] also 

adopts a similar encoder-decoder architecture to upsample the 

image to its original size, utilizing deconvolution layers to 

densify sparse feature maps during upsampling instead of 

pooling operations. Dilated convolutions are also commonly 

used to alleviate the conflict between feature map size and 

receptive field size. 

 

3. Methods 
 

3.1 Net structure 

 

We constructed HSTNet as depicted in Figure 1. While 

ResNet has achieved outstanding performance in image 

classification tasks due to its extremely deep network 

architecture and powerful feature representation [12], 

introducing numerous ResNet blocks into the network yielded 

limited performance improvements, and significant 

deficiencies persist when handling complex HRRSI 

segmentation tasks. 
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Figure 1: Our  network architecture (HSTNet) 

 

Therefore, we replaced the original fully connected layers of 

ResNet34 with SE-Res Blocks, placing them within the 

upsampling process of Unet to adaptively adjust the feature 

weights of input tensors. We made adjustments to the existing 

SE module, which consists of two convolutional layers, one 

pooling layer, two fully connected layers, one ReLU function, 

and one Sigmoid function, to further enhance the network's 

capability to extract image features. The primary function of 

the SE residual block is to enhance and optimize salient local 

regions in different scenes by explicitly modeling the 

interrelationships between convolutional feature channels. It 

utilizes an adaptive mechanism to learn and adjust the weights 

of different feature channels, thereby better guiding the 

convolutional network in learning local regions and 

enhancing features, thus aiding in removing structural 

information from non-target scenes. The SE residual block 

dynamically adjusts the weights of feature channels, enabling 

the network to focus more on the features that are more 

important for the current task, thus improving the 

performance and effectiveness of the model. 

 

Similar to Unet, we establish skip connections between the 

downsampling and upsampling parts at the same scale, but the 

skip connections are processed using a network primarily 

based on Swin-Transformer. The purpose of this approach is 

to enhance the network's ability to learn long-range semantic 

features. The STB module employs window-based multi-head 

attention and window sliding connection mechanisms to learn 

and enhance structural features of the entire scene. Compared 

to learning and enhancing structural features of the same 

scene through computing multi-head global attention for the 

entire image, this approach significantly reduces 

computational complexity. Due to the faster growth rate of 

computational complexity for global attention in images 

compared to natural language, the long-range feature mapping 

and complexity of images increase quadratically with image 

size. Traditional image Transformer techniques, limited by 

the growth rate of computational complexity, can only handle 

low-resolution images. Therefore, when dealing with 

excessively large images, traditional image Transformer 

backbone networks become unsuitable. 

 

We stack the semantic segmentation results of the image with 

the input image and reapply them as input for iterative 

optimization. Introducing the semantic segmentation results 

from the previous iteration aids the network in more rapidly 

learning the correlations between pixels with the same 

semantic meaning, thereby enhancing the network's 

convergence speed and learning accuracy. 

 

3.2 Swin-Transformer block and Skip Connection 

 

The structure of the Swin-Transformer module we employ is 

illustrated in Figure 2. Firstly, the feature tensor is cropped 

and segmented into 8x8 small windows, with each window 

undergoing feature mapping. Subsequently, the feature maps 

of each window are normalized and fed into the WMSA 

module. The WMSA module, which stands for 

Window-based Multi-headed Self-Attention Module, 

computes multi-headed attention for the feature maps within 

each small window, thereby emphasizing the same scene 

structural features within each window. Next, the feature 

maps of adjacent windows are connected across windows to 

compute the feature correlations between windows. In this 

chapter, a total of three layers of STB modules 

(Swin-Transformer Blocks[13]) are stacked, downsampling 

the input feature maps by 4x, 8x, and 16x, respectively. This 

module gradually establishes the correlation weights between 

global features by moving windows, enhancing the network's 

ability to learn same-semantic features across large regions in 

high-resolution images. 

 

4. Experiment 
 

To validate the competitive performance and model 

generalization capability of our proposed iterative 

high-resolution remote sensing image semantic segmentation 

network, HSTNet, in high-resolution image semantic 

segmentation tasks, we compared it with other methods using 

the ISPRS Potsdam dataset ("2D semantic Labeling - 

Potsdam," n.d.) and selected multiple images from this dataset 

as test data. 
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Table 1: Quantitative Comparison Results 

Model 
MIoU(%) mPA(%) 

Vaihingen Potsdam Vaihingen Potsdam 

UNet 74.88 72.06 85.65 82.72 

Deeplabv3+ 77.51 71.05 88.24 81.30 

PSPNet 72.24 68.76 84.73 79.24 

HRNetV2 78.24 73.33 89.21 83.29 

HSTNet 85.36 78.52 94.15 98.67 

 

 
Figure 2: STB block of Skip Connection 

 

4.1   Implementation details 

 

We designed HSTNet based on the PyTorch 1.8.0 framework 

and conducted network model training on a GPU server: 

comprising 1 CPU (Intel Xeon E5-2640 v4) with 128GB 

RAM and 1 GPU (NVIDIA Tesla 3090 24GB) with 24GB 

VRAM. The main parameter settings include: adjusting the 

batch size according to different network configurations to 

ensure maximum memory utilization, using 40 threads, 

setting the initial learning rate to 1e-4, employing the 

ReduceLROnPlateau dynamic learning rate adjustment 

strategy, utilizing the AdamW optimizer (Loshchilov and 

Hutter, 2018), selecting the cross-entropy loss function for 

multi-class labeled datasets, and conducting training for 100 

epochs. In our experiments, normalization parameters—mean 

and standard deviation for each channel—were not set to 

default values used in digital image semantic segmentation 

but were pre-calculated based on the corresponding 

multispectral remote sensing image dataset. 

 

We primarily evaluate the performance of our work in terms 

of segmentation accuracy. To conduct an objective and fair 

cross-sectional comparison with other proposed network 

models, we employ two common evaluation metrics: MIoU 

(Mean Intersection over Union) and mPA (Mean Pixel 

Accuracy). Their respective calculation formulas are as 

follows: 
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Pij represents the prediction of i as j, denoted as False 

Negative prediction (FN); Pji represents the prediction of j as i, 

denoted as False Positive prediction (FP); Pii represents the 

prediction of i as i, denoted as True Positive prediction (TP). 

 

When computing the mPA of the predicted results, we first 

calculate the pixel accuracy (PA) for each class. PA represents 

the proportion of pixels correctly classified to the total 

number of pixels in that class. Specifically, for class i, the 

formula for pixel accuracy (PAi) is as follows: 

 

/ ( )i i i iPA TP TP FP= +                             (2) 

 

Here, TPi represents the number of pixels correctly classified 

as class i, and FPi represents the number of pixels incorrectly 

classified as class i. Next, the average pixel accuracy of all 

classes, mPA, is calculated. The formula for mPA is as 

follows: 

 

( 1 2 )mPA PA PA PAn n= + + +                  (3) 

 

n represents the total number of classes. By computing the 

average pixel accuracy for all classes, mPA provides a 

comprehensive assessment to gauge the overall performance 

of the model in image semantic segmentation tasks. 

 

4.2 Quantitative comparison 

 

Our experimental results, as shown in Table 1, indicate that 

HSTNet achieved the best MIoU results on both datasets. 

HSTNet outperformed HRNetV2 by 6.27% in MIoU and by 

2.98% in mPA on the Vaihingen dataset. Similarly, on the 

Potsdam dataset, HSTNet surpassed HRNetV2 by 4.72% in 

MIoU and by 5.14% in mPA. Overall, HSTNet exhibits a 

significant advantage in accuracy performance. 

 

4.3 Qualitative experiments 

 

Furthermore, the semantic segmentation results of the 

HSTNet model on the Vaihingen and Potsdam datasets were 

visualized. As shown in Figure 3, during the Vaihingen 

dataset testing, conventional models such as HSTNet often 

struggle to accurately differentiate between fallow land and 

railway embankments, tending to overlook subtle depressions 

in railway embankments. This oversight can result in gaps 

when identifying vegetative and housing areas, revealing 

limitations in precise edge detection and complex landscape 

recognition. Similar situations arise in the Potsdam dataset, 

particularly in the identification of low-lying vegetation and 

impervious surfaces, where these models frequently omit 

significant details, especially when dealing with areas of 

complex texture or similar colors. In contrast, the HSTNet 

model demonstrates its unique advantages. Leveraging the 

potent spatial relationship encoding capability of 

Transformers, it effectively enhances the prediction accuracy 

for these challenging-to-distinguish regions, particularly in 

identifying areas with minute and intricate textures. HSTNet 

exhibits outstanding performance on both the Vaihingen and 

Potsdam datasets, particularly in accurately delineating edges 

and recognizing complex terrains, surpassing conventional 

models significantly, thus strongly validating the 

effectiveness and advancement of our approach. 
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Figure 3: Qualitative Comparative Experimental Results 

 

5. Equations 
 

In this paper, we analyze the shortcomings of existing 

convolutional neural networks in handling semantic 

segmentation tasks on high-resolution images. Addressing 

these limitations, we propose a novel model called HSTNet 

based on Unet. We introduce the STB module into the 

skip-connection part of the network to enhance its capability 

to learn global semantic features. Additionally, we 

incorporate an iterative framework where the semantic 

segmentation results from the network are fed back as clues 

into our proposed model. This architecture allows the network 

to progressively improve the semantic segmentation results 

and potentially correct errors, thereby enhancing the accuracy 

of local information. Our HSTNet achieves excellent 

performance on the ISPRS Vaihingen and Potsdam datasets. 
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