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Abstract: Image semantic segmentation, although not a new concept, has found significant application in various domains. For 

instance, it is widely used in autonomous driving for scene understanding and obstacle detection, in medical imaging for organ 

segmentation and anomaly detection, and in satellite imagery for land cover classification and urban planning. Despite numerous 

research efforts to improve image semantic segmentation, challenges such as fine-grained object delineation, handling complex scenes 

with multiple overlapping objects, and achieving robustness to diverse environmental conditions persist. To address these challenges, we 

propose leveraging the CLIP (Contrastive Language-Image Pretraining) framework for image semantic segmentation. CLIP, a recent 

breakthrough in computer vision and natural language processing, learns visual representations by jointly training on large-scale 

image-text pairs. By fine-tuning CLIP on image semantic segmentation tasks, we aim to leverage its ability to understand the semantic 

context of images and improve the accuracy and generalization of segmentation models. Through this approach, we anticipate 

overcoming some of the limitations of traditional segmentation methods and achieving more robust and effective semantic segmentation 

results across various applications. 
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1. Introduction 
 

When you submit your paper print it in two-column format, 

including figures and tables. In addition, designate one author 

as the “corresponding author”. This is the author to whom 

proofs of the paper will be sent. Proofs are sent to the 

corresponding author only. Semantic segmentation, a crucial 

task in image processing, entails assigning each pixel in an 

image to predefined semantic categories, thereby enabling a 

detailed understanding and analysis of the image content. 

This technology finds widespread applications across various 

fields, including scene understanding in autonomous driving, 

lesion localization in medical imaging, and crop monitoring 

in agriculture. 

 

Traditionally, image segmentation relied on handcrafted 

features and algorithms like edge detection and region 

growing. However, these methods0[2]often struggled to 

accurately capture complex image semantics and were 

limited in handling diverse visual data. With the advent of 

deep learning and other advanced technologies, semantic 

segmentation has witnessed significant improvements in 

performance and accuracy. Deep learning approaches, 

particularly convolutional neural networks (CNNs), have 

revolutionized semantic segmentation by automatically 

learning hierarchical features from data. This has led to more 

robust and accurate segmentation results compared to 

traditional methods. Consequently, semantic segmentation 

has become increasingly vital in practical applications across 

a wide range of domains. Among them, 0introducing a 

graph-based approach revolutionized traditional 

segmentation by leveraging graph theory to partition images 

based on structural and feature similarities. Additionally, [2] 

innovatively combining superpixel concepts with k-means 

clustering reduced computational complexity while 

maintaining accuracy. Furthermore, segmentation accuracy 

and efficiency were improved through multi-scale feature 

extraction using atrous convolution. Moreover, extending 

CNN architectures to pixel-level tasks achieved 

state-of-the-art performance. 

 

However, despite these advancements, current CNNs in 

semantic segmentation have a drawback. They often struggle 

to understand the global context of the scene. While CNNs 

excel at extracting rich feature information from local 

regions, they frequently lack effective modeling of the overall 

context. This limitation can result in instances of 

missegmentation or undersegmentation, particularly in 

complex scenes where objects may overlap or occlude each 

other. With the continuous development of Transformer 

models in the field of computer vision, an increasing number 

of researchers aspire to apply the advantages of pre-trained 

large-scale Transformer models to semantic segmentation 

tasks. This trend is gradually augmenting the conventional 

methods of semantic segmentation, previously heavily reliant 

on CNNs.   

 

 Additionally, within the current pre-trained paradigm, 

leveraging high-quality semantic information from images is 

also a challenge that this paper aims to address. To address 

the aforementioned challenges, this paper proposes a 

hierarchical semantic segmentation network based on CLIP 

(Contrastive Language-Image Pre-training). 

 

The proposed hierarchical semantic segmentation network 

leverages CLIP for enhanced semantic understanding. By 

integrating language and image information, CLIP provides a 

powerful framework for semantic segmentation. The network 

architecture consists of multiple layers, each responsible for 

different levels of semantic abstraction. At the lowest level, 

the network captures basic visual features, while higher levels 

focus on capturing more abstract semantic concepts. This 

hierarchical approach allows the network to effectively model 
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the complex relationships between different semantic 

elements in an image, leading to improved segmentation 

accuracy. 

 

Furthermore, the network utilizes pre-trained CLIP 

embeddings to incorporate high-quality semantic information 

into the segmentation process. By leveraging the rich 

semantic representations learned by CLIP during 

pre-training, the network can better understand the 

underlying semantics of the input image, leading to more 

accurate and reliable segmentation results. Additionally, the 

network is trained using a contrastive loss function, which 

encourages the model to learn discriminative representations 

for different semantic classes. This helps improve the model's 

ability to differentiate between different objects and 

background regions in the image, further enhancing 

segmentation performance. 

 

In conclusion, the proposed hierarchical semantic 

segmentation network based on CLIP offers a promising 

solution for addressing the challenges faced by current 

CNN-based segmentation methods. By leveraging the power 

of pre-trained language-image representations, the network 

achieves state-of-the-art performance in semantic 

segmentation tasks, providing more reliable and efficient 

solutions for various application scenarios. 

 

The contributions of this paper are as follows: 

Enhanced Segmentation Accuracy with CLIP Integration: 

The integration of CLIP into our semantic segmentation 

framework has significantly improved segmentation accuracy 

and correctness. CLIP's cross-modal understanding provides 

additional semantic cues and contextual information, leading 

to more precise delineation of objects and scenes in images. 

 

Improved Feature Representation through Triple Feature 

Fusion: The introduction of triple feature extraction and 

fusion has led to superior feature representation. By 

integrating multiple scales of features extracted from the 

input image using ImageNet pre-trained backbones, along 

with textual features encoded by CLIP, our approach 

achieves a more comprehensive representation of the visual 

and semantic content. This triple feature fusion results in a 

richer and more discriminative feature representation, 

facilitating more accurate and robust semantic segmentation. 

 

2. Related work 
 

2.1 Semantic segmentation 

 

Semantic segmentation was historically approached as a pixel 

classification task using CNNs[6][7][8][9]. Recent 

advancements[10][11] have demonstrated the efficacy of 

transformer-based techniques in semantic segmentation, 

inspired by their success in language and vision domains [2, 

37]. MaskFormer [11], among these approaches, reframed 

semantic segmentation as a mask classification challenge, 

building upon earlier methodologies [3,14,16], by employing 

a transformer decoder with object queries. Similarly, we also 

reinterpret semantic segmentation as a mask classification 

problem. 

 

2.2 CLIP Transformer 

 

CLIP (Contrastive Language-Image Pre-training) was first 

introduced by Radford et al. in 2021. It is a cross-modal deep 

learning model developed by OpenAI. CLIP stands out for its 

ability to understand both images and text simultaneously and 

is effectively pre-trained on a large-scale dataset of 

image-text pairs. It learns rich semantic representations by 

understanding the contrastive relationships between images 

and text. 

 

In the field of semantic segmentation, the application of CLIP 

brings several benefits. Firstly, CLIP provides additional 

semantic cues and contextual information for semantic 

segmentation models, thereby improving the accuracy and 

robustness of segmentation results. Secondly, by combining 

the semantic information from both images and text, CLIP 

can supplement information in images that may be difficult to 

obtain from images alone, such as object names, attributes, 

and relationships, enriching the visual understanding 

capability of semantic segmentation models. Additionally, 

CLIP's pre-trained representations demonstrate strong 

generalization abilities, aiding semantic segmentation models 

in achieving better performance across various scenarios and 

datasets. 

 

In this study, we apply CLIP to semantic segmentation tasks 

with the aim of leveraging its cross-modal understanding 

capabilities to enhance semantic segmentation models. 

Specifically, we propose a method that integrates region 

information from CLIP to learn semantic understanding of 

images. This approach not only harnesses the pre-training of 

CLIP on a large-scale dataset of image-text pairs but also 

provides richer and more accurate semantic representations 

for semantic segmentation models. By combining CLIP's 

pre-trained representations with semantic segmentation tasks, 

we aim to achieve more accurate and efficient semantic 

segmentation, offering new avenues and methodologies for 

further research and applications in the field of image 

understanding. 

 

3. Methods 
 

In this section, we present our model. The overall model 

diagram is as follows: Initially, we introduce the feature 

extraction module, followed by an explanation of the 

semantic fusion module. Finally, the loss function is applied. 

 

3.1 Features encoder 

 

The input to the feature extractor is an image along with its 

corresponding textual annotation. We utilize popular 

ImageNet pre-trained backbones [17, 30, 31] to extract 

multi-scale feature representations from the input image. 

Denoted as 𝒓, the feature extractor is instrumental in this 

process. Commonly acknowledged is the ability of encoder's 

shallow features to extract surface-level details like texture 

and edges in images. Conversely, deeper layers delve into 

more profound semantic representations. This paper adopts a 

hierarchical structure, aiming to harness diverse expressions 

from multiple dimensions and enrich visual understanding. 

By leveraging this approach, we seek to capture a 

comprehensive view of visual content, bridging the gap 
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between low-level features and high-level semantics for 

enhanced image comprehension and analysis.
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Figure 1: Model architecture diagram       

Images represented in different dimensions： 1r , 2r , 3r . 

Similarly, we utilize the pre-trained CLIP (Contrastive 

Language-Image Pre-training) model, trained on a dataset of 

300 million image-text pairs, to encode textual information. 

The utilization of the pre-trained CLIP model underscores its 

pivotal role in contemporary artificial intelligence, as it stands 

at the forefront of bridging the crucial gap between images 

and text. At the core of CLIP's significance lies its remarkable 

ability to understand the nuanced associations between 

images and text. This is facilitated by its extensive pretraining 

on a vast corpus of image and text data. Unlike conventional 

models, which merely map images and text into a shared 

embedding space, CLIP employs contrastive learning to 

capture the underlying semantic similarities and differences 

between them. Trained on such an extensive dataset, CLIP 

transcends traditional limitations, enabling it to capture the 

subtleties of language and visual content with remarkable 

accuracy. Its comprehensive understanding of the interplay 

between images and text empowers CLIP to excel across a 

wide range of tasks, including image classification, 

image-text retrieval, and zero-shot learning. The text 

represented output from CLIP can be represented as T. 

 

3.2 Semantic fusion 

 

Integrating semantics with images enhances semantic 

segmentation capabilities. Semantic information provides 

additional context and understanding for image segmentation, 

allowing segmentation models to better comprehend image 

content. By incorporating semantic knowledge, we can 

precisely locate and segment different objects and regions in 

the image, reducing instances of missegmentation and 

omission. This holistic approach improves the quality and 

accuracy of segmentation results, providing more support and 

guidance for image understanding tasks, especially in 

scenarios with complex scenes and dense objects. 

Due to the inconsistency in dimensionality between the output 

of the text encoder and that of the image, we first expand the 

features from the text encoder to match the dimensions of the 

image. The formula representation is as follows: 

1_ exp 1 1( ( , ))=r and rT unsqueeze FC T           (1) 

Here, 1rFC  and 1 are learnable parameters. 

1_ expr andT refers to features expanded to match the 

dimensionality of r1 features, Similarly, through the formulas 

provided below, we can obtain the expressions for the 

expanded features of the other two dimensions. 

2_ exp 2 2( ( , ))=r and rT unsqueeze FC T          (2) 

3_ exp 3 3( ( , ))=r and rT unsqueeze FC T          (3) 

 

Here, 2rFC , 2rFC , 2 , 3 carries a similar meaning, both 

referring to learnable parameters. 

 

Then, we concatenate the features obtained with the same 

dimensionality. The formula representation is as follows: 

1_ exp 1_ exp 1 1 1[ , ( , )]=r and r andT concat T FC r        (4) 

_1 1_ exp 1( , )=new r andr MultiHead T r               (5) 

 

Here, 1FC and 1 are learnable parameters, 

 concat refers to concatenation operation, MultiHead  

represents a multi-head self-attention function, aimed at 

injecting semantics into the feature representation of the 

image, to obtain a semantically enriched feature 

representation. _1newr refers to the result after the fusion 

operation. Similarly, we can obtain the results for the other 

two dimensions, as follows: 

2_ exp 2_ exp 2 2[ , ( , )]=r and r andT concat T FC r             (6) 

_ 2 2_ exp 2( , )=new r andr MultiHead T r              (7) 

3_ exp 3_ exp 3 3[ , ( , )]=r and r andT concat T FC r               (8) 

_ 3 3_ exp 3( , )=new r andr MultiHead T r               (9) 
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Thus, we have obtained the image representation with 

injected semantics across three dimensions. 

 

Finally, we merge the obtained image features from the three 

dimensions with the original text. This fusion process aims to 

establish semantic correlations between images and text, 

facilitating deeper semantic understanding and expression. By 

combining image features with textual information, we 

leverage the complementarity between images and text, 

enabling a more comprehensive depiction and explanation of 

the involved scenes or objects. Such integrated representation 

not only enhances the understanding of image content but also 

provides richer information for advanced visual reasoning and 

applications. The formula representation is as follows: 

3 1 3 1 _3 _1 3 1( [ , ], )− − −= new newr FC concat r r            (10) 

3 2 3 2 _ 3 _ 2 3 2( [ , ], )− − −= new newr FC concat r r          (11) 

1 2 1 2 _1 _ 2 1 2( [ , ], )− − −= new newr FC concat r r            (12) 

_1 _ 2 _ 3( [ , , ], )=fusion fusion new new new fusionr FC concat r r r (13) 

Here, 3 1 3 2 1 2, , ,− − − fusionFC FC FC FC are learnable 

parameters. Similarly, 3 1 3 2 1 2, , ,   − − − fusion  also are. 

Through the same three concatenation methods, different 

representations of the image were obtained, and then these 

representations were aggregated to obtain a comprehensive 

representation of the image in three dimensions. The 

significance of this process lies in the ability to capture 

various aspects of the image's feature information by using 

different concatenation methods, thus obtaining a more 

comprehensive and diversified representation of the image. 

Aggregating these representations across different dimensions 

allows for a comprehensive consideration of the relationships 

between various features, providing a more accurate and rich 

representation of the image. This integrated representation 

better reflects the semantics and essence of the image. 

 

3.3 Loss 

 

Following [10], we use a binary cross-entropy as our loss 

function to learn the model parameters. This loss function is 

commonly employed in binary classification tasks and 

measures the discrepancy between the predicted and actual 

binary labels. It is particularly suitable for scenarios where 

each data instance belongs to one of two classes. By 

minimizing the binary cross-entropy loss, our model learns to 

accurately classify instances into their respective classes, 

thereby improving its overall performance. The formula 

representation is as follows: 

1

[ ( ) (
1

1 1) ( )]
=

= − + − −
N

i i i

i

Loss yilog p y log p
N

    (14) 

 

4. Experience 
 

In this section, our goal is to assess the effectiveness of the 

"Semantic Segmentation of Images Using CLIP" method 

proposed in this paper from two primary perspectives: the 

semantic fusion attained by integrating CLIP and the 

performance comparison between using and not using CLIP, 

as well as the influence of employing a hierarchical strategy 

on the results. All experiments were conducted using the 

computing resources of an NVIDIA GeForce GTX 8090 

GPU. 

 

4.1 Datasets 
 

The CamVid dataset consists of 367 training images, 101 

validation images, and 233 testing images, all with a 

resolution of 480×360 pixels. 

 

The Cityscapes [12] consists of a total 19 (11“stuff” and 8 

“thing”) classes with 2,975 training, 500 validation and 1,525 

test images. 

 

4.2 Evaluation Metrics 

 

In this paper, we employ the mean Intersection over Union 

(mIoU) as the metric for evaluating the network accuracy. 

mIoU is a commonly used image segmentation metric that 

considers the accuracy of the model's segmentation results for 

each class and then computes the average across all classes to 

provide a comprehensive accuracy assessment. 

 

 4.3    Experimental Results 

 

Comparing our model with other segmentation networks on 

the Cityscapes validation set, this paper showcases the 

superior segmentation accuracy. The comparative results, 

illustrated in Table 1, reveal that our model achieves the 

highest average segmentation accuracy on the CamVid 

dataset.  

 

The comparative results, illustrated in Table 2, reveal that our 

model achieves the highest average segmentation accuracy on 

the Cityscapes dataset. Notably, it achieves the highest 

segmentation accuracy for classes such as building, road, and 

sidewalk. 

Table 1: Comparison of IoU and mIoU (%) for each network 

in CamVid dataset. 

网络名称 sky fence Pole tree Side-walk 

ENet 91.0 21.7 25.6 67.9 75.0 

ERFNet 91.7 36.4 35.9 72.9 79.8 

ESNet 91.3 39.2 36,6 71.8 81.8 

DSANet 91.5 45.8 34.5 76.4 80.9 

Our 91.6 45.6 35.7 75.4 81.9 

 

Table 2: Comparison of IoU and mIoU (%) for each network 

in Cityscapes dataset. 

网络名称 road wall fence Traffic light Traffic sign 

ERNet 97.9 45.3 50.4 62.9 68.4 

CGNet 95.5 40.0 43.0 59.8 63.9 

ESNet 98.1 48.3 36,6 62.5 72.3 

DSANet 96.8 45.8 50.8 64.0 71.7 

Our 97.6 48.5 50.7 65.4 70.9 

 

Illustrative semantic segmentation results of our modal and 

other networks on the Cityscapes dataset are presented in 

Figure 1. In Figure 1, it can be seen that our modal exhibits 

lower misclassification rates and higher segmentation 

completeness compared to other networks.  
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Figure 1: Comparison of semantic segmentation results with 

other networks on the CamVid dataset 

 

5. Conclusion 
 

Semantic segmentation of images has become indispensable 

across various domains, including autonomous driving, 

medical imaging, and satellite imagery analysis. Despite its 

widespread use, challenges persist in accurately delineating 

fine-grained objects, handling complex scenes with 

overlapping objects, and ensuring robustness in diverse 

environmental conditions. 

 

To tackle these challenges, we propose leveraging the CLIP 

(Contrastive Language-Image Pretraining) framework for 

image semantic segmentation. CLIP, a recent breakthrough in 

computer vision and natural language processing, learns 

visual representations by training on large-scale image-text 

pairs. By fine-tuning CLIP for semantic segmentation tasks, 

we aim to harness its capability to understand the semantic 

context of images, thereby enhancing the accuracy and 

generalization of segmentation models. 

 

This innovative approach holds promise for overcoming the 

limitations of traditional segmentation methods. By 

integrating CLIP's multimodal understanding of images and 

text, we anticipate achieving more robust and effective 

semantic segmentation results. Ultimately, this advancement 

has the potential to revolutionize various applications, from 

enhancing safety in autonomous vehicles to improving 

medical diagnosis and urban planning 

 

Through the proposed integration of CLIP into semantic 

segmentation tasks, we envision a future where segmentation 

models can better understand the intricate relationships 

between visual and textual information, leading to more 

accurate and reliable segmentation results across diverse 

real-world scenarios. 
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