
International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 4, April 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Fuzzy Join Algorithms in Big Data
Cong Hao Nguyen

Hue University, 3 Le Loi, Hue city, Vietnam

Email: nchao[at]hueuni.edu.vn

Abstract: Fuzzy join is a more sophisticatedly approach to data matching and has many applications in many filelds. Instead of

marking records as matches or mismatches based on exact matching algorithms, fuzzy joins are used to combine two data sets that do

not have exact matching keys, but are similar up to a certain threshold. The biggest challenge is finding pairs of data with similarity

greater than or equal to a given threshold within a given period of time. The paper presents several algorithms with Hamming,

Levenshtein, Cosine distance measures applied to the MapReduce model and propose a new algorithm based on the hedge algebra for

fuzzy join on semantically ordered fuzzy datasets in big data.

Keywords: Fuzzy join , similarity algorithms, hedge algebra, big data, MapReduce

1. Introduction

Nowadays, with the rapid increase in the quantity and

diversity of data based on the platform of global digital

information convergence such as e-commerce websites,

social networks such as Facebook, Tiktok, Instagram ...,

businesses increasingly desire more valuable values from

those types of data. That means authors and researchers must

find ways to cope with the storage and processing of huge

volumes of data and diverse types of data. Therefore, many

scientists are researching technologies and algorithms to

solve the problem of storing, processing and analyzing big

data in the fastest way to meet the requirements of solving

practical problems such as business, market analysis

In data querying, joins is very important role and are used to

link data sets of relations together. However, join operations

on large data are very complex and potentially costly. The

join problem will be more difficult if the join attribute

requirements have values that are not equal or differ by a

certain threshold. In this case, we call it fuzzy join. Many

results have studied fuzzy joins based on MapReduce

[2][6][7][12][15], fuzzy matching using deep neural

networks [17], but the above fuzzy join problem is based on

values that seem completely different but are semantically

equal. For example, using join a 25 years old employee and

a young employee is still a problem that needs to be solved.

For example, in investigating, evaluating or selecting good

students in Mathematics, there are 2 groups of experts based

on a number of different criteria such as GPA over

semesters, academic ranking, logical reasoning ability,

achievements in mathematics exams, research ability,

application of mathematics in programming and some

common criteria such as Age, gender. Experts want to

combine these two data sets. together to form the basis for

evaluating the optimal selection of excellent Math students

by connecting common attributes Age, Gender. But

performing the usual connection to combine exactly is not

suitable for the case This is because the criteria collected in

both datasets do not apply to the same student and exact age

matching does not make much sense. Therefore, fuzzy join

will be used in this case to match same age as a certain

measurement will be more reasonable.

In this paper, we propose a fuzzy join algorithm using hedge

algebra. This approach, each fuzzy set (linguistic value) is

considered as an element of the hedge algebra and the

manipulation and calculation are performed directly on the

language. The rest of the paper is organized as follows: in

addition to the introduction, section 2 present background

such as hedge algebra, MapReduce, fuzzy join. Section 3

present fuzzy join algorithms, section 4 is devoted for
presenting fuzzy join algorithm using hedge algebra. Some

conclusions and future research directions will be given in

section 5.

2. Background

2.1 MapReduce

MapReduce is a programming framework for processing and

computing large amounts of data in a distributed

environment. It operates on two main phases: Map and

Reduce. In the first phase, the Map phase will divide the data

into key pairs (key, value), then the Reduce phase will group

the key pairs (key, value) together to calculate the final

result.

Figure 1: The Functions in the MapReduce programming

model

MapReduce consists of two main functions: Map and

Reduce. These are two functions defined by the user and are

also two consecutive stages in the data processing process of

MapReduce. These functions have the following specific

main tasks:

Map function: This function is responsible for processing a

key pair (key, value) to create a new key pair (keyl, valuel),

at this time the key pair (keyl, valuel) will act as an

intermediary. After that, the user only needs to write the data

Paper ID: SE25425154743 DOI: https://dx.doi.org/10.21275/SE25425154743 35 of 39

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/
mailto:nchao@hueuni.edu.vn
mailto:nchao@hueuni.edu.vn
mailto:nchao@hueuni.edu.vn

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 4, April 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

to the hard disk and quickly notify the Reduce function so

that the data goes into the Reduce input.

Reduce function: This function is responsible for receiving

intermediate key pairs and values corresponding to that

number of keys (keyl, valuel) to create a different set of keys

by combining them. These key/value pairs will be fed into

the Reduce function through a position pointer. This process

will help programmers easily manage a large number of lists

as well as allocate values suitable for system memory.

In addition, between Map and Reduce there is another

intermediate step called Shuffle. After Map completes its

task, Shuffle will continue to collect and synthesize the

intermediate key/value pairs created by the previous Map

and transfer it to Reduce for further processing.

Figure 2: Overall MapReduce workflow

2.2. Fuzzy join

Fuzzy joins are a technique in data processing and data

science that links tables together based on approximate

similarities between values, rather than requiring exact

matches as in a regular join. In a regular join (inner join, left

join...), two tables are joined if the values in the key column

are exactly the same. Fuzzy joins allow records to be joined

based on the approximate similarity of strings, numbers, or

other characteristics [4].

Given two input data sets R and L, the fuzzy join operation

will return all the combined output records x ∈ R and y ∈ L

such that Sim (x, y) > = θ, where Sim is the similarity

function and θ is a user-specified threshold. The similarity

functions are used such as include Hamming, Levenshtein,

Longest common sequence (LCS), Jaccard, Jaro, Jaro –

Winkler…. Given two input data sets R and L (as shown in

Table 1), the fuzzy join operation with a similarity threshold

of 1 provides the result set shown in Table 2.

Table 1: Dataset R and S
R S

Join key R Value R Join key S Value S

CS1_H1 1 CS1_H1 S1

CS2_H1 2 CS2_H1 S2

CS1_H2 3 CS1_H2 S3

CS2_H3 4

In Table 2, the result set consists of 5 records, of which the

records in row 1, row 4, and row 5 are the results of the

exact match operation. The remaining two records are the

results of the fuzzy join with a threshold of 1. When

performing the fuzzy join of two datasets based on the

MapReduce model, the mapping phase will divide the input

datasets of R and S for the mappers to process (Figure 3).

Table 2: Join results of R and S with a fuzzy

threshold of 1
Join key R Value R Join key S Value S

CS1_H1 1 CS1_H1 S1

CS2_H1 2 CS1_H1 S1

CS1_H1 1 CS2_H1 S2

CS2_H1 2 CS2_H1 S2

CS1_H2 3 CS1_H2 S3

For example, the datasets are divided into four Mappers,

where Map1 is supposed to process the first two records of

dataset R, Map2 processes the remaining two records of

dataset R, Map3 processes two records of dataset S, and

Map4 processes the remaining one record of dataset S. Then,

the tuples with the same join key will be sorted and shuffled

into the same reducer before performing the join operation,

and the result is returned after performing the join at the

Reducer.

Figure 3: Fu zzy jo in based on MapReduce model

2.3. Hedge algebra

Hedge algebra is one approach to detecting algebraic

structure of the value domain of the linguistic variable. In

view of algebra, each value domain of the linguistic variable

X can be interpreted as an algebra AX = (X, G, H,), in

which Dom (X) = X is the terms domain of linguistic variable

X is generated from a set of primary generators G = {c-, c+}

by the impact of the hedges H=H- H+; W is a neutral

element; is an semantically ordering relation on X, it is

induced from the natural qualitative meaning of terms. Order

structure induced directly so is the difference compared to

other approaches. When we add some special elements, then

hedge algebra become an abstract algebra X=(X, G, H,

,,), which , are two operators taking the limit of the

set terms is generated when affected by the hedges in H.

Alternatively, if the symbol H(x)={h1…hpx/h1, …hpH},

then x=infimumH(x) and x=supremumH(x). Thus, hedge

algebra X is built on foundation of Hedge algebra AX= (X,

G, H,), where X=H(G), and are two additional

operators. Then X= XLim(G) with Lim (G) is the set of

elements limited: xLim(G), uX: x=u or x=u. The

limitation elements are added to hedge algebra X to make the

Paper ID: SE25425154743 DOI: https://dx.doi.org/10.21275/SE25425154743 36 of 39

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 4, April 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

new calculation meant and so X = (X, G, H, , ,) called

complete hedge algebra [11].

Definition 2.1. A function f : X →[0; 1] is called a

quantitative semantic function: if h , k H + or h , k H -

and x , yX , we have :

)()(

)()(

)()(

)()(

yfkyf

yfhyf

xfkxf

xfhxf

−

−
=

−

−

Definition 2.2. Given a quantitative semantic function f of

X. For any x X , the fuzziness of x, denoted I (x) and

measured by the diameter of the set f(H(x)).

Definition 2.3. A function fm: X →[0; 1] is called a

fuzziness measure of X if it satisfies the following axioms:

i) fm is the complete fuzzy measure on X, i.e.

−=

=
p

iqi

i ufmuhfm
0,

)()(for every u X.

ii) If x is a crisp value, H(x)= {x} then fm(x) = 0. Hence, fm

(0) = fm(W) = fm(1) = 0.

iii) For all x , y X and h H, we have

)(

)(

)(

)(

yfm

hyfm

xfm

hxfm
= , this ratio does not depend on x and y ,

denoted by (h) is called the fuzziness measure of the hedge

h.

Proposition 2.1. Given a fuzziness measure fm on X and

fuzziness measure (h) of hedges, the following statements

hold:

i) fm(hx) = (h)fm(x), x X

ii) fm(c−) + fm(c+) = 1

iii)
−

=
0,

)()(
ipiq

i cfmchfm , where c {c− , c+}

iv))()(
0,

xfmxhfm
ipiq

i =
−

, x X.

v)
−−

=
1

)(
iq

ih and

=
pi

ih
1

)(, where , > 0

and + = 1.

Example 2.1: Consider the domain of the attribute Age as a

hedge algebra, then we choose the structure of the hedge

algebra as follows: X = (X , G, H,), with X is Age, G =

{0, “young”, W, “old”, 1}, H - ={less, possibly}, H+ ={more,

very}, We given W = 0.6, = 0.6 and = 0.4. We have :

fm(young) = 0.6, fm(old) = 0.4 , (possibly) = 0.4 , (less) =

0.2, (more) = 0.25 and (very) = 0.15. Suppose that DAge

=[0..100]. Then, we partition the interval [0,100] into 5

intervals similar of level 1: S(0), S(young), S(W), S(old) and

S(1). We have: fm(very old) 100 = 0.15 0.4 100 = 6. So

S (1) 100 = (94 , 100]; (fm(possibility old) + fm (more old

)) 100 = (0.4 0.4 + 0.25 0.4) 100 = 26 and S(old)

100 = (68, 94]; (fm(less young) + fm(less old)) 100 = (0.2

0.6 + 0.2 0.4) 100 = 20 and S (W) 100 = (48, 68];

(fm(possibly young) + fm(more young)) 100 = (0.4 0.6 +

0.25 0.6) 100 = 39 and S(young) 100 = (9, 48], S(0)

100 = [0, 9].

3. Fuzzy Join Algorithms

3.1 Hamming distance

The Hamming distance is the number of places where two

strings of the same length differ. It measures how different

the strings are, and is used in many fields such as

information theory and computer science. This difference is

determined by comparing each corresponding character in

the two strings and counting how many characters differ.

The larger the Hamming distance, the more different the two

strings are.

Algorithm 1: Hamming_Distance

Input: Two strings s and t have the same length n

Output: Hamming distance between s and t

Function Hamming_ Distance(s, t)

1. distance ← 0

2. for i ← 0 to length(s) - 1 do

3. if s[i] ≠ t[i] then

4 . distance ← distance + 1

5. return distance

The complexity of the algorithm is O(max(|s|,|t|)).

3.2. Levenshtein distance

The Levenshtein distance is a metric in computer science

that measures the differences between two strings. It

calculates the minimum number of edits (insertions,

deletions, or substitutions) required to transform one string

into the other. The smaller this distance, the more similar the

two strings are. This algorithm is commonly used in

applications such as spell checking, speech recognition, and

biology to compare DNA sequences.

Algorithm 2. Levenshtein_Distance

Input: Two strings s and t

Output: Levenshtein distance between s and t

Function Levenshtein_ Distance (s, t)

1. m ← length(s)

2. n ← length(t)

3. Create matrix D[0..m][0.. n]

4. for i ← 0 to m do D [i][0] ← i

5. for j ← 0 to n do D[0][j] ← j

6. for i ← 1 to m do

7. for j ← 1 to n do

8. if s[i-1] = t[j-1] cost ← 0 else cost ←1

9. D[i][j] ← min(D[i- 1][j] + 1, D[i][j-1] + 1, D[i- 1][j-1] +

cost)

10. return D[m][n]

The complexity of the algorithm is O(|s|*|t|).

3.3. Longest common subsequence

The longest common substring (LCS) of two strings is the

longest substring that appears in both strings in the correct

order but not necessarily consecutively. This is an important

problem in dynamic programming and has applications in

text comparison, DNA sequence analysis, etc.

Paper ID: SE25425154743 DOI: https://dx.doi.org/10.21275/SE25425154743 37 of 39

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 4, April 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Algorithm 3. Longest common subsequence

Input: Two strings s and t

Output: Length of longest common subsequence of s and t

Function LCS(s, t)

1) m ← length(s)

2) n ← length(t)

3) Create table L[0..m][0.. n]

4) for i ← 0 to m do L[i][0] ← 0

5) for j ← 0 to n do L[0][j] ← 0

6) for i ← 1 to m do

7) for j ← 1 to n do

8) if s[i-1] = t[j-1] then

9) L[i][j] ← L[i- 1][j-1] + 1

10) else

11) L[i][j] ← max(L[i- 1][j], L[i][j-1])

12) return L[m][n]

The complexity of the algorithm is O(|s|*|t|).

4. Fuzzy join algorithm using hedge algebra

For the algorithms in section 3 used to join data from two

sets when the linking keys do not match exactly (fuzzy

matching). It works by calculating the distance or similarity

between strings, allowing for searching and join records that

are approximately similar. For example, fuzzy matching can

find the combination of 'John Smith' and 'Jon Smythe' even

if they are not an exact match. This technique is useful when

working with data that is imperfect, erroneous, or has a lot of

variation.

However, in practice, there are many cases where we want to

join two fuzzy data sets, for example, two Age data sets. The

Age attribute is also called a fuzzy attribute because its

domain allows for fuzzy values. In that case, a 25 years old

employee is considered “young” or 45 years old employee is

considered “middle-aged”, which cannot be handled by the

algorithms in section 3. Therefore, in this section, we

propose a new fuzzy join algorithm based on hedge algebra

to processing these types of fuzzy data in big data.

Algorithm 4. Fuzzy_join_Hedge Algebra

Input : Two values x, y; where x Dom(X), y Dom(Y);

X, Y are fuzzy attribute

Output : True or False

Function Fuzzy_ join(x, y)

1) Building two hedge algebras X and Y based on Dom(X)

and Dom(Y)

2) Let Dom(X)= DX
 LDX and Dom(Y)= DY

 LDY

3) Partition DX and DY
 into similar intervals of level 1,

level 2, level 3,… level k. Let k (y) = Sk(y) is the

neighborhood of level k of y.

4) if x DX and y DY
 then

5) if x = y then check_function = True else check_function

= False

6) if x DX and y LDY
 then

if x k(y)*|DY| check_function = True else

check_function = False

7) if x LDX and y DY
 then

if yk(x)*|DX| check_function = True else

check_function = Talse

8) if x LDX and y LDY
 then

if k(x)=k(y) then check_function = True else

check_function= False

9) return check_function

The complexity of the algorithm is O(n+m), where n and m

are the number of elements in Dom(X) and Dom(Y)

respectively.

5. Conclusion

In this paper, we present four fuzzy join algorithms, in which

the fourth algorithm is a new proposal to solve the semantics

of fuzzy data that the algorithms 1 to the algorithms 3 have

not solved. The Algorithms 1 to algorithms 3 have been

experimentally implemented by the authors [4] based on the

standard data set created in reference [1]. Fuzzy join

algorithms in big data processing bring many important

meanings, especially in fields such as data mining, image

processing, clustering, and machine learning. In the big data

environment, determining the relationship between data

elements is no longer a simple problem due to the

uncertainty, noise, and heterogeneity of the data. Fuzzy join

algorithms are developed to flexibly model imprecise or

undefined relationships, helping to improve the performance

of analysis and decision making in artificial intelligence and

machine learning systems. Some experimental

implementations of th algorithm 4 will be implemented in

the future works.

References

[1] F. Ahmad, S. Lee, M. Thottethodi, and T. Vijaykumar,

“Puma: Purdue mapreduce benchmarks suite,”

Electrical and Computer Engineering, Purdue

University, Tech. Rep., 2012.

[2] FN Afrati, AD Sarma, D. Menestrina, A.

Parameswaran, and JD Ullman, “Fuzzy Joins Using

MapReduce”, presented at the 2012 IEEE 28th

International Conference on Data Engineering, 2012,

498-509.

[3] DB Bisandu, R. Prasad, and MM Liman, “Data

clustering using efficient similarity measures,”

Journal of Statistics and Management Systems, Vol. 22,

No. 5, 2019, 901–922.

[4] A.C. Phan, TC Phan, “Similarity algorithms for fuzzy

join computation in big data processing environment”,

Journal of Computer science and Cybernatic, Vol. 39,

No. 2, 2023, 101-124.

[5] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a

similarity metric discriminatively, with application to

face verification”, in 2005 IEEE Computer Society

Conference on Computer Vision and Pattern

Recognition (CVPR'05) , Vol. 1, 2005, 539- 546.

[6] D. Deng, G. Li, S. Hao, J. Wang, and J. Feng,

“Massjoin: A mapreduce-based method for scal- able

string similarity joins,” print 2014 IEEE 30th International

Conference on Data Engineering. IEEE, 2014, 340–351.

[7] A. Das Sarma, Y. He, and S. Chaudhuri, “Clusterjoin:

Paper ID: SE25425154743 DOI: https://dx.doi.org/10.21275/SE25425154743 38 of 39

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 4, April 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

A similarity joins framework using map- reduce,”

Proceedings of the VLDB Endowment, vol. 7, no. 12, pp.

1059–1070, 2014.

[8] M. Henzinger, “Finding Near-Duplicate Web Pages: A

Large-Scale Evaluation of Algorithms”, in

Proceedings of the 29th Annual International ACM

SIGIR Conference on Research and Development in

Information Retrieval, New York, NY, USA, 2006,

284-291.

[9] J. Wang, G. Li, and J. Fe, “Fast-join: An efficient

method for fuzzy token matching based on string

similarity join”, in 2011 IEEE 27th International

Conference on Data Engineering, 2011, 458-469.

[10] J. Wang, G. Li, and J. Feng, “Extending String

Similarity Join to Tolerant Fuzzy Token Matching”,

ACM Trans. Database Syst., Vol. 39, No. 1, 2014.

[11] Nguyen Cat Ho, Le Xuan Vinh, Nguyen Cong Hao,

“Unify data and establish similarity relation in

linguistic databases upon hedge algebra based”,

Journal of computer science and Cybernetic, Vol.25,

No.4, 2009, 314-332.

[12] B. Kimmett, A. Thomo, and V. Srinivasan, “Fuzzy

joins in MapReduce: Edit and Jaccard distance”, in

2016 7th International Conference on Information,

Intelligence, Systems & Applications (IISA) , 2016,1-6.

[13] IE Agbehadji, H. Yang, S. Fong, and R. Millham, “The

comparative analysis of smith- waterman algorithm

with jaro-winkler algorithm for the detection of

duplicate health related records,” in 2018 International

Conference on Advances print Big Data, Computing and

Data Communication Systems (icABCD) . IEEE,

2018, 1 –10.

[14] J. M. Keil, “Efficient bound jaro winkler similarity-

based search,” BTW 2019, 2019

[15] B. Kimmett, A. Thomo, and V. Srinivasan, “Fuzzy

joins in mapreduce: Edit and jaccard dis- tance,” print

2016 7th International Conference on Information,

Intelligence, Systems & Applications (IISA). IEEE,

2016, 1–6.

[16] D. Shapiro, N. Japkowicz, M. Lemay, and M. Bolic,

“Fuzzy String Matching with a Deep Neural Network”,

Applied Artificial Intelligence, Vol. 32, No. 1, 2018, 1-

12.

Author Profile

Cong Hao Nguyen received his Ph.D degree in

Computer Science from Institute of Technology

Information, VAST in 2008. At present, he is a

lecturer of Hue University. His main research interests

are fuzzy databases, fuzzy logic and approximate

reasoning methods.

Paper ID: SE25425154743 DOI: https://dx.doi.org/10.21275/SE25425154743 39 of 39

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

