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Abstract: Fuzzy join is a more sophisticatedly approach to data matching and has many applications in many filelds. Instead of 

marking records as matches or mismatches based on exact matching algorithms, fuzzy joins are used to combine two data sets that do 

not have exact matching keys, but are similar up to a certain threshold. The biggest challenge is finding pairs of data with similarity 

greater than or equal to a given threshold within a given period of time. The paper presents several algorithms with Hamming, 

Levenshtein, Cosine distance measures applied to the MapReduce model and propose a new algorithm based on the hedge algebra for 

fuzzy join on semantically ordered fuzzy datasets in big data. 
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1. Introduction 
 

Nowadays, with the rapid increase in the quantity and 

diversity of data based on the platform of global digital 

information convergence such as e-commerce websites, 

social networks such as Facebook, Tiktok, Instagram ..., 

businesses increasingly desire more valuable values from 

those types of data. That means authors and researchers must 

find ways to cope with the storage and processing of huge 

volumes of data and diverse types of data. Therefore, many 

scientists are researching technologies and algorithms to 

solve the problem of storing, processing and analyzing big 

data in the fastest way to meet the requirements of solving 

practical problems such as business, market analysis .... 

 

In data querying, joins is very important role and are used to 

link data sets of relations together. However, join operations 

on large data are very complex and potentially costly. The 

join problem will be more difficult if the join attribute 

requirements have values that are not equal or differ by a 

certain threshold. In this case, we call it fuzzy join. Many 

results have studied fuzzy joins based on MapReduce 

[2][6][7][12][15], fuzzy matching using deep neural 

networks [17], but the above fuzzy join problem is based on 

values that seem completely different but are semantically 

equal. For example, using join a 25 years old employee and 

a young employee is still a problem that needs to be solved. 

For example, in investigating, evaluating or selecting good 

students in Mathematics, there are 2 groups of experts based 

on a number of different criteria such as GPA over 

semesters, academic ranking, logical reasoning ability, 

achievements in mathematics exams, research ability, 

application of mathematics in programming and some 

common criteria such as Age, gender. Experts want to 

combine these two data sets. together to form the basis for 

evaluating the optimal selection of excellent Math students 

by connecting common attributes Age, Gender. But 

performing the usual connection to combine exactly is not 

suitable for the case This is because the criteria collected in 

both datasets do not apply to the same student and exact age 

matching does not make much sense. Therefore, fuzzy join 

will be used in this case to match same age as a certain 

measurement will be more reasonable. 

 

In this paper, we propose a fuzzy join algorithm using hedge 

algebra. This approach, each fuzzy set (linguistic value) is 

considered as an element of the hedge algebra and the 

manipulation and calculation are performed directly on the 

language. The rest of the paper is organized as follows: in 

addition to the introduction, section 2 present background 

such as hedge algebra, MapReduce, fuzzy join. Section 3 

present fuzzy join algorithms, section 4 is devoted for 
presenting fuzzy join algorithm using hedge algebra. Some 

conclusions and future research directions will be given in 

section 5. 

 

2. Background 
 

2.1 MapReduce 

 

MapReduce is a programming framework for processing and 

computing large amounts of data in a distributed 

environment. It operates on two main phases: Map and 

Reduce. In the first phase, the Map phase will divide the data 

into key pairs (key, value), then the Reduce phase will group 

the key pairs (key, value) together to calculate the final 

result. 

 
Figure 1: The Functions in the MapReduce programming 

model 

 

MapReduce consists of two main functions: Map and 

Reduce. These are two functions defined by the user and are 

also two consecutive stages in the data processing process of 

MapReduce. These functions have the following specific 

main tasks: 

 

Map function: This function is responsible for processing a 

key pair (key, value) to create a new key pair (keyl, valuel), 

at this time the key pair (keyl, valuel) will act as an 

intermediary. After that, the user only needs to write the data 
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to the hard disk and quickly notify the Reduce function so 

that the data goes into the Reduce input. 

 

Reduce function: This function is responsible for receiving 

intermediate key pairs and values corresponding to that 

number of keys (keyl, valuel) to create a different set of keys 

by combining them. These key/value pairs will be fed into 

the Reduce function through a position pointer. This process 

will help programmers easily manage a large number of lists 

as well as allocate values suitable for system memory. 

 

In addition, between Map and Reduce there is another 

intermediate step called Shuffle. After Map completes its 

task, Shuffle will continue to collect and synthesize the 

intermediate key/value pairs created by the previous Map 

and transfer it to Reduce for further processing. 

 
Figure 2: Overall MapReduce workflow 

 

2.2. Fuzzy join 

 

Fuzzy joins are a technique in data processing and data 

science that links tables together based on approximate 

similarities between values, rather than requiring exact 

matches as in a regular join. In a regular join (inner join, left 

join...), two tables are joined if the values in the key column 

are exactly the same. Fuzzy joins allow records to be joined 

based on the approximate similarity of strings, numbers, or 

other characteristics [4]. 

 

Given two input data sets R and L, the fuzzy join operation 

will return all the combined output records x ∈ R and y ∈ L 

such that Sim (x, y) > = θ, where Sim is the similarity 

function and θ is a user-specified threshold. The similarity 

functions are used such as include Hamming, Levenshtein, 

Longest common sequence (LCS), Jaccard, Jaro, Jaro – 

Winkler…. Given two input data sets R and L (as shown in 

Table 1), the fuzzy join operation with a similarity threshold 

of 1 provides the result set shown in Table 2. 

 

Table 1: Dataset R and S 
R S 

Join key R Value R Join key S Value S 

CS1_H1 1 CS1_H1 S1 

CS2_H1 2 CS2_H1 S2 

CS1_H2 3 CS1_H2 S3 

CS2_H3 4   

In Table 2, the result set consists of 5 records, of which the 

records in row 1, row 4, and row 5 are the results of the 

exact match operation. The remaining two records are the 

results of the fuzzy join with a threshold of 1. When 

performing the fuzzy join of two datasets based on the 

MapReduce model, the mapping phase will divide the input 

datasets of R and S for the mappers to process (Figure 3). 

 

Table 2: Join results of R and S with a fuzzy 

threshold of 1 
Join key R Value R Join key S Value S 

CS1_H1 1 CS1_H1 S1 

CS2_H1 2 CS1_H1 S1 

CS1_H1 1 CS2_H1 S2 

CS2_H1 2 CS2_H1 S2 

CS1_H2 3 CS1_H2 S3 
 

 

For example, the datasets are divided into four Mappers, 

where Map1 is supposed to process the first two records of 

dataset R, Map2 processes the remaining two records of 

dataset R, Map3 processes two records of dataset S, and 

Map4 processes the remaining one record of dataset S. Then, 

the tuples with the same join key will be sorted and shuffled 

into the same reducer before performing the join operation, 

and the result is returned after performing the join at the 

Reducer. 

 

 
Figure 3: Fu zzy  jo in  based  on  MapReduce model 

 
 

2.3. Hedge algebra 

 

Hedge algebra is one approach to detecting algebraic 

structure of the value domain of the linguistic variable. In 

view of algebra, each value domain of the linguistic variable 

X can be interpreted as an algebra AX = (X, G, H, ), in 

which Dom (X) = X is the terms domain of linguistic variable 

X is generated from a set of primary generators G = {c-, c+} 

by the impact of the hedges H=H-  H+;  W  is a neutral 

element;  is an semantically ordering relation on X, it is 

induced from the natural qualitative meaning of terms. Order 

structure induced directly so is the difference compared to 

other approaches. When we add some special elements, then 

hedge algebra become an abstract algebra X=(X, G, H, 

,, ), which ,  are two operators taking the limit of the 

set terms is generated when affected by the hedges in H. 

Alternatively, if the symbol H(x)={h1…hpx/h1, …hpH}, 

then x=infimumH(x) and x=supremumH(x). Thus, hedge 

algebra X is built on foundation of Hedge algebra AX= (X, 

G, H,  ), where X=H(G),  and  are two additional 

operators. Then X= XLim(G) with Lim (G) is the set of 

elements limited:  xLim(G),  uX: x=u or x=u. The 

limitation elements are added to hedge algebra X to make the 
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new calculation meant and so X = (X, G, H, , ,  ) called 

complete hedge algebra [11]. 

 

Definition 2.1. A function f : X →[0; 1] is called a 

quantitative semantic function: if h , k H + or h , k H - 

and x , yX , we have :  
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Definition 2.2. Given a quantitative semantic function f of 

X. For any x X , the fuzziness of x, denoted I (x) and 

measured by the diameter of the set f(H(x)). 

 

Definition 2.3. A function fm: X →[0; 1] is called a 

fuzziness measure of X if it satisfies the following axioms: 

i) fm is the complete fuzzy measure on X, i.e. 
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ii) If x is a crisp value, H(x)= {x} then fm(x) = 0. Hence, fm 

(0) = fm(W) = fm(1) = 0. 

iii) For all x , y  X and h H, we have 
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denoted by (h) is called the fuzziness measure of the hedge 

h. 

 

Proposition 2.1. Given a fuzziness measure fm on X and 

fuzziness measure (h) of hedges, the following statements 

hold: 

i)   fm(hx) = (h)fm(x), x  X   

ii)   fm(c−) + fm(c+) = 1 

iii) 
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and  +  = 1. 

 

Example 2.1: Consider the domain of the attribute Age as a 

hedge algebra, then we choose the structure of the hedge 

algebra as follows: X = ( X , G, H, ), with X is Age, G = 

{0, “young”, W, “old”, 1}, H - ={less, possibly}, H+ ={more, 

very}, We given W = 0.6, = 0.6 and  = 0.4. We have : 

fm(young) = 0.6, fm(old) = 0.4 , (possibly) = 0.4 , (less) = 

0.2, (more) = 0.25 and (very) = 0.15. Suppose that DAge 

=[0..100]. Then, we partition the interval [0,100] into 5 

intervals similar of level 1: S(0), S(young), S(W), S(old) and 

S(1). We have: fm(very old ) 100 = 0.15  0.4  100 = 6. So 

S (1) 100 = (94 , 100]; (fm(possibility old) + fm (more old 

)) 100 = ( 0.4  0.4 + 0.25  0.4 ) 100 = 26 and S(old) 

100 = (68, 94]; (fm(less young) + fm(less old)) 100 = (0.2  

0.6 + 0.2  0.4 ) 100 = 20 and S (W)  100 = (48, 68]; 

(fm(possibly young) + fm(more young)) 100 = (0.4 0.6 + 

0.25 0.6) 100 = 39 and S(young) 100 = (9, 48], S(0) 

100 = [0, 9]. 

 

3. Fuzzy Join Algorithms 
 

3.1 Hamming distance 

 

The Hamming distance is the number of places where two 

strings of the same length differ. It measures how different 

the strings are, and is used in many fields such as 

information theory and computer science. This difference is 

determined by comparing each corresponding character in 

the two strings and counting how many characters differ. 

The larger the Hamming distance, the more different the two 

strings are. 

 

Algorithm 1: Hamming_Distance  

Input: Two strings s and t have the same length n  

Output: Hamming distance between s and t 

 

Function Hamming_ Distance( s, t) 

1. distance ← 0 

2. for i ← 0 to length(s) - 1 do 

3. if s[i] ≠ t[i] then 

4 . distance ← distance + 1 

5. return distance 

The complexity of the algorithm is O(max(|s|,|t|)). 

 

3.2. Levenshtein distance 

 

The Levenshtein distance is a metric in computer science 

that measures the differences between two strings. It 

calculates the minimum number of edits (insertions, 

deletions, or substitutions) required to transform one string 

into the other. The smaller this distance, the more similar the 

two strings are. This algorithm is commonly used in 

applications such as spell checking, speech recognition, and 

biology to compare DNA sequences. 

 

Algorithm 2. Levenshtein_Distance 

Input: Two strings s and t 

Output: Levenshtein distance between s and t 

 

Function Levenshtein_ Distance (s, t) 

1. m ← length(s) 

2. n ← length(t) 

3. Create matrix D[ 0..m][0.. n] 

4. for i ← 0 to m do D [i][0] ← i 

5. for j ← 0 to n do D[0][j] ← j 

6. for i ← 1 to m do 

7. for j ← 1 to n do 

8.   if s[i-1] = t[j-1 ] cost ← 0 else cost ←1 

9. D[i][j] ← min(D[i- 1][ j] + 1, D[i][j-1] + 1, D[i- 1][ j-1] + 

cost) 

10. return D[m][n] 

The complexity of the algorithm is O(|s|*|t|). 

 

3.3. Longest common subsequence 

 

The longest common substring (LCS) of two strings is the 

longest substring that appears in both strings in the correct 

order but not necessarily consecutively. This is an important 

problem in dynamic programming and has applications in 

text comparison, DNA sequence analysis, etc. 
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Algorithm 3. Longest common subsequence 

 

Input: Two strings s and t 

 

Output: Length of longest common subsequence of s and t 

 

Function LCS( s, t) 

1) m ← length(s) 

2) n ← length(t) 

3) Create table L[ 0..m][0.. n] 

4) for i ← 0 to m do L[i][0] ← 0 

5) for j ← 0 to n do L[0][j] ← 0 

6) for i ← 1 to m do 

7) for j ← 1 to n do 

8) if s[i-1] = t[j-1] then 

9) L[i][j] ← L[i- 1][ j-1] + 1 

10) else 

11) L[i][j] ← max(L[i- 1][ j], L[i][j-1]) 

12) return L[m][n] 

The complexity of the algorithm is O(|s|*|t|). 

 

4. Fuzzy join algorithm using hedge algebra 
 

For the algorithms in section 3 used to join data from two 

sets when the linking keys do not match exactly (fuzzy 

matching). It works by calculating the distance or similarity 

between strings, allowing for searching and join records that 

are approximately similar. For example, fuzzy matching can 

find the combination of 'John Smith' and 'Jon Smythe' even 

if they are not an exact match. This technique is useful when 

working with data that is imperfect, erroneous, or has a lot of 

variation. 

 

However, in practice, there are many cases where we want to 

join two fuzzy data sets, for example, two Age data sets. The 

Age attribute is also called a fuzzy attribute because its 

domain allows for fuzzy values. In that case, a 25 years old 

employee is considered “young” or 45 years old employee is 

considered “middle-aged”, which cannot be handled by the 

algorithms in section 3. Therefore, in this section, we 

propose a new fuzzy join algorithm based on hedge algebra 

to processing these types of fuzzy data in big data. 

 

Algorithm 4. Fuzzy_join_Hedge Algebra 

 

Input : Two values x, y; where x Dom(X), y Dom(Y ); 

X, Y are fuzzy attribute 

 

Output : True or False 

 

Function Fuzzy_ join( x, y) 

1) Building two hedge algebras X and Y based on Dom(X) 

and Dom(Y) 

2) Let Dom(X)= DX
  LDX and Dom(Y)= DY

  LDY 

3) Partition DX and DY
  into similar intervals of level 1, 

level 2, level 3,… level k. Let k (y) = Sk(y) is the 

neighborhood of level k of y. 

4) if x DX and y DY
  then 

5) if x = y then check_function = True else check_function 

= False 

6) if x DX and y LDY
  then 

if x k(y)*|DY| check_function = True else 

check_function = False 

7) if x LDX and y DY
  then 

if yk(x)*|DX| check_function = True else 

check_function = Talse 

8) if x LDX and y LDY
  then 

if k(x)=k(y) then check_function = True else 

check_function= False 

9) return check_function 

 

The complexity of the algorithm is O(n+m), where n and m 

are the number of elements in Dom(X) and Dom(Y) 

respectively. 

 

5. Conclusion 
 

In this paper, we present four fuzzy join algorithms, in which 

the fourth algorithm is a new proposal to solve the semantics 

of fuzzy data that the algorithms 1 to the algorithms 3 have 

not solved. The Algorithms 1 to algorithms 3 have been 

experimentally implemented by the authors [4] based on the 

standard data set created in reference [1]. Fuzzy join 

algorithms in big data processing bring many important 

meanings, especially in fields such as data mining, image 

processing, clustering, and machine learning. In the big data 

environment, determining the relationship between data 

elements is no longer a simple problem due to the 

uncertainty, noise, and heterogeneity of the data. Fuzzy join 

algorithms are developed to flexibly model imprecise or 

undefined relationships, helping to improve the performance 

of analysis and decision making in artificial intelligence and 

machine learning systems. Some experimental 

implementations of th algorithm 4 will be implemented in 

the future works. 
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