Design and Comparative Analysis of a Shell and Tube Heat Exchanger using HTRI and Aspen EDR Software

Keval Sanket Bhatt

Mumbai University, Datta Meghe College of Engineering, Bachelors in Chemical Engineering Email: kevalbhatt08[at]gmail.com

Abstract: This paper presents the design and performance evaluation of a shell and tube heat exchanger using advance simulation tools – HTRI and Aspen Exchanger Design and Rating (EDR). Heat exchangers are essential to process industries for achieving efficient thermal energy transfer. The objective is to assess and compare the thermal performance, sizing, and optimization capabilities of both tools using a common problem statement involving benzene and water as the working fluids. Key design parameters such as overall heat transfer coefficient, heat transfer area, fluid velocities, and pressure drops were determined using both software platforms. The comparative analysis highlights the advantages and limitations of each, with HTRI offering high - fidelity design accuracy and Aspen EDR providing seamless integration with process simulation environments. This work demonstrates the importance of simulation - driven design in improving heat exchanger efficiency and provides insights into the selection of appropriate design tools in industrial applications.

Keywords: Shell and Tube Heat Exchanger, HTRI, Aspen EDR, Thermal Design, Simulation - Based Design, Heat Transfer Analysis, Heat Exchanger Optimization, Comparative Software Analysis

1. Introduction

Heat Exchangers are vital components in a wide range of industrial processes, including chemical manufacturing, power generation, and oil refining. Their primary function is to efficiently transfer heat between two or more fluids, thereby heat improving energy utilization and process performance. Among various heat exchanger types, the shell and tube heat exchanger remains the most widely used due to its versatility, mechanical strength, and ease of maintenance.

In modern engineering practice, the design and analysis of heat exchangers have increasingly shifted from manual, empirical methods to simulation - driven approaches. Advanced software tools enable engineers to optimize thermal performance, minimize pressure drops, and ensure operational reliability before physical implementation.

Two such prominent tools are HTRI (Heat Transfer Research Inc.) and Aspen EDR (Exchanger Design Rating). HTRI is known for its high - accuracy, research - based calculations and is widely accepted in industries for detailed performance evaluations. On the other hand, Aspen EDR integrates seamlessly with process simulation software such as Aspen Plus and Aspen HYSYS, offering a streamlined workflow for process engineers.

This study focuses on the design and comparative analysis of a shell and tube heat exchanger using both HTRI and Aspen EDR software. By using a common case study involving water and benzene as the working fluids, the research aims to evaluate and compare the key output parameters from each software, such as heat transfer area, overall heat transfer coefficient, pressure drop and fluid velocity. The objective is to understand the practical difference in how each platform approaches heat exchanger design and highlight their respective strengths and limitations in an industrial concept. Ultimately, this paper contributes to the ongoing evolution of engineering design practices by emphasizing the importance of simulation - based tools in the accurate, efficient, and sustainable design of thermal systems.

2. Literature Review

Shell and tube heat exchangers are widely used in chemical and process industries due to their design flexibility, mechanical durability, and thermal performance. Their efficiency depends on factors such as baffle spacing, tube arrangement, shell diameter, and adherence to standards like TEMA. These factors directly influence pressure drop, fouling, and overall heat transfer rate. [1]

In the study Design and Optimization of Shell and Tube Heat Exchanger Using Aspen EDR, the authors highlighted the role of simulation tools in heat exchanger design. Aspen EDR was used to evaluate key parameters like heat transfer area, pressure drop, and overall heat transfer coefficient, demonstrating its ability to provide reliable and standard compliant output. [2]

While Aspen EDR is widely used in academic and industrial environments, HTRI software remains less documented in published research due to its proprietary nature. However, it is known for its high accuracy and strong empirical foundation. This paper aims to contribute to the literature by comparing the outputs of both tools under similar conditions, highlighting differences in performance, assumptions, and usability.

3. Methodology

The design and simulation of a shell and tube heat exchanger were carried out using two professional tools: Aspen Exchanger Design and Rating (EDR) and Heat Transfer

Volume 13 Issue 5, May 2025 <u>www.ijser.in</u> Licensed Under Creative Commons Attribution CC BY

International Journal of Scientific Engineering and Research (IJSER) ISSN (Online): 2347-3878 SJIF (2024): 6.623

Research Inc. (HTRI). The purpose of this analysis was to evaluate and compare the design performance of both tools under the same operating conditions. The exchanger was designed to handle heat transfer between benzene (hot fluid) and water (cold fluid), a typical scenario in chemical processing systems. Key performance indicators such as heat transfer area, overall heat transfer coefficient, pressure drop, and fluid velocity were analyzed. The simulations were conducted under steady - state conditions assuming single phase flow with no phase change.

3.1 Design and Simulation with HTRI:

HTRI was used to perform the thermal and mechanical design of the shell and tube heat exchanger using the same process inputs defined the project. HTRI is widely known for its detailed empirical correlations, accuracy, and industrial acceptance. The input parameters included hot and cold fluid properties, flow rates, inlet and outlet temperatures, and allowable pressure drops. A counter - current flow configuration was used, and standard design rules were followed for baffle cut (25%) and spacing (around 15% of shell diameter). Additional design inputs such as tube layout, tube passes, tie rod arrangement, and segmental baffle design were configured. HTRI provided a comprehensive thermal rating output, including heat transfer area, overall heat transfer coefficient, pressure losses, and shell - side/tube - side velocities.

Simulation results generated by HTRI software for the shell and tube heat exchanger are shown in Figure 1.

HI	RI	Output Summary Released to the following	HTRI Member C	ompany:	Page		
Xist 9.2 (64 bit) Case 2 Rating - Horizor	3/12/2025 16:16	SN: 00061-2038987626 v TEMA AES Shell With S	ingle-Segmental	Baffles	MKH Units		
See Data Chec See Runtime M	k Messages Rep lessage Report f	ort for Warning Message or Warning Messages.	в.				
Process	Conditions	Hot Shells	de	Cold Tubeside			
Fluid name Total flow rate Inlet/Outlet Y Inlet/Outlet T Inlet P/Avg dP/Allow. Fouling	(1000-kg/hr) (Wt. frac vap.) (Deg C) (kgf/cm2A) (kgf/cm2) (m2-hr-C/kcal)	0.0000 92.00 4.549 0.037	Benzene 21.228 0.0000 45.00 4.530 0.703 0.000205	0.0000 26.00 5.603 0.695	C.W 41.038 0.0000 36.00 5.256 0.703 0.002		
		Exchanger Per	formance				
Shell h Tube h Hot regime Cold regime EMTD	(kcal/m2-hr-C) (kcal/m2-hr-C) () () ()	708.89 6029.4 Sens. Liquid Sens. Liquid 31.9	Actual U Required U Total duty Eff. area	(kcal/m2-hr-C) (kcal/m2-hr-C) (MM kcal/hr) (m2)	224.9 203.8 0.409 62.95		
emite	Shell Geom	etry	Greenweign	Baffle Geometry	19:00		
TEMA type Shell ID Series Parallel Orientation	() (mm) () (deg)	AES 435.00 1 1 0.00	Baffle type Baffle cut Baffle orientat Central spacin Crosspasses	(Pct Dia.) ion (-) ig (mm) (-)	Single-Seg 25 Perpend 350.00 17		
	Tube Geom	etry		Nozzles			
Tube type Tube OD Length Pitch ratio Layout Tubecount Tube Pass	() (mm) (mm) () (deg) () ()	Plain 19.050 6096 1.3333 30 174 4	Shell inlet Shell outlet Inlet height Outlet height Tube inlet Tube outlet	(mm) (mm) (mm) (mm) (mm)	77.921 77.921 38.120 38.120 77.921 77.921		
Thermal Re	esistance, %	Velocities,	m/s	Flow Fractions			
Shell Tube Fouting Metal	31.74 4.79 62.40 1.07	M Tubeside 1.5 Crossflow 0.1 Longitudinal 0.1	in Max 51 1.54 12 0.13 17 0.18	A B C E	0.091 0.486 0.212 0.078		

Figure 1: HTRI output summary

3.2 Design and Simulation with Aspen EDR:

Aspen Exchanger Design and Rating (EDR) software was used to perform a parallel simulation using the same process conditions and fluid properties as in the HTRI model. Aspen EDR is widely used in both academia and industry due to its integration with Aspen Plus and compliance with TEMA and ASME standards. The heat exchanger was configured with a counter - current flow arrangement, 25% baffle cut, and baffle spacing of approximately 15% of the shell diameter. Inputs such as tube dimensions, layout, pitch, and material were entered based on standard design guidelines. The software generated thermal performance data, including heat transfer area, pressure drops, and overall heat transfer coefficient.

Simulation results generated by Aspen EDR software for the shell and tube heat exchanger are shown in Figure 2.

TEMA Sheet

Heat Exchanger Specification Sheet

_ E_	Company:													
2	Location:													
3	Service of Unit:		Our Refer	ence:										
4	Item No.:	Y	our Refere	ence:										
5	Date: Re	v No.:	Job No.:											
6	Size: 432 - 4870	mm	Ту	pe: A	EM Horiz	zontal			Connec	cted in:	1 parallel	l.	1 s	eries
7	Surf/unit(eff.)	56	m²		Shells/unit	1				Surf/sh	ell(eff.)		56	m²
8					PERFORM	ANCE	OF ONE	UNIT	Т					
9	Fluid allocation						Shell	Side	е			Tube	Side	
10	Fluid name						Benz	zene	9		(Cooling	y Wate	r
11	Fluid quantity, Total		kg/s			0.0059				0.0115				
12	Vapor (In/Out)				kg/s	0			0		0			0
13	Liquid				kg/s	0.00	59		0.0059		0.0115			0.0115
14	Noncondensable				kg/s	0		1	0		0			0
15					0.2									
16	Temperature (In/Out)				°C	92			44.97	-	26			35.98
17	Bubble / Dew point				°C	1			1	-	1			1
18	Density Vapor	/Liauid			ka/m³	18	801.28	4	/ 851	.93	/ 993	3.09		/ 983.39
19	Viscosity				mPa-s	1	0.284		/ 0.4	702	/ 0.8	928		/ 0.7255
20	Molecular wt. Vap					•		1		-				
21	Molecular wt. NC							1						
22	Specific heat			k.	I/(ka-K)	1	1 829	3	/ 16	308	/ 45	23		(4 522
23	Thermal conductivity			V	V/(m-K)		0 1206		/ 01	358	/ 0.6	077		/ 0.621
24	Latent heat			•	k.l/ka	1000	0.1200		7 0.1		1 0.0			7 0.021
25	Pressure (abs)				har	4 461	105	S	4 46104		5 49467			5 49464
26	Velocity (Mean/Max)				m/e	1.101	0	/ 0	4.40104		0.10101	0	0	0.40404
27	Pressure drop allow /c	alc			har	0.680	0/1		0	-+	0 703		0	3E-05
20	Fouling registance (mit	aic.		5a		0.000	0.00	018	0	-+	0.00172	0.0	0217	An based
20	Heat exchanged	05		E1A	1		0.00	010	МТ	D (corr	octed) 3	22 12	0211	AU Daseu
29	Transfor rate Service	0.5		KY)	v				IVII	D (com	ecteu) a	2.12		
	JU Transfer rate, Service 0.3 Dirty 17.5 Clean 18.2 W/(m ² k													
30		0.3	ONSTRU			rty	17.5			Clea	n 18.2	Sko	tch	W/(m²-K)
30	Transier rate, Service	0.3 C	ONSTRU		F ONE SHEL	rty .L	17.5	Tuk	no Sido	Clea	n 18.2	Ske	tch	W/(m²-K)
30 31 32		0.3 C	ONSTRU		F ONE SHEL Shell Side	rty .L	17.5	Tub	be Side	Clea	n 18.2	Ske	tch	W/(m²-K)
30 31 32 33	Design/Vacuum/test pr	0.3 C essure:g	ONSTRU bar	5.51581	Di F ONE SHEL Shell Side	rty .L	17.5 6.20528	Tub 1	be Side	Clea	n 18.2	Ske	tch	W/(m²-K)
30 31 32 33 34 25	Design/Vacuum/test pr Design temperature / N	0.3 C essure:g MDMT	ONSTRU bar °C	5.51581 132.2	Di F ONE SHEL Shell Side / / / 22 /	rty .L	17.5 6.20528 71.1	Tub 37 1	be Side	Clea	n 18.2	Ske	tch	W/(m²-K) 음
30 31 32 33 34 35 26	Design/Vacuum/test pr Design temperature / Number passes per sh	0.3 C ressure:g MDMT ell	ONSTRU bar °C	5.51581 132.2	Di F ONE SHEL Shell Side / / 22 / 1 2.18	rty .L	17.5 6.20528 71.1	Tuk 3 / 1	be Side / / 4	Clea	n 18.2	Ske	+tch	₩/(m²-K)
30 31 32 33 34 35 36 37	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance	0.3 C ressure:g MDMT ell	ONSTRU bar °C mm	5.51581 132.2	Di F ONE SHEL Shell Side / / 22 / 1 3.18 154.05 /	rty .L	17.5 6.20528 71.1	Tub 3/ 1	be Side / / 4 3.18	Clea	n 18.2	Ske	tch	₩/(m²-K)
30 31 32 33 34 35 36 37 29	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections	0.3 C essure:g MDMT ell In	ONSTRU bar °C mm mm	5.51581 132.2	Di F ONE SHEL Shell Side / / / / 1 3.18 154.05 1	rty L	17.5 6.20528 71.1	Tub 3 / 1	be Side / 4 3.18 26 /		n 18.2	Ske	tch	₩/(m²-K)
30 31 32 33 34 35 36 37 38 30	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating	0.3 C essure:g MDMT ell In Out	ONSTRU bar °C mm mm	5.51581 132.2 1 1 1 1	Di F ONE SHEL Shell Side / / / / 1 3.18 154.05 /		17.5 6.20528 71.1 1 1	Tub 3 / 1 102.2	ve Side / 4 3.18 26 / 05 /	Clea	n 18.2	Ske	tch	
30 31 32 33 34 35 36 37 38 39 40	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating ID	0.3 C essure:g MDMT ell Intermediate Out	ONSTRU bar °C mm mm	5.51581 132.2 1 1 1 1	Di F ONE SHEL Shell Side / / / 22 / 1 3.18 154.05 / 154.05 / /		17.5 6.20528 71.1 1 1	Tub 3/ 1 102.2 154.0	be Side / 4 3.18 26 / 05 / /		n 18.2	Ske	-tch	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating ID Tube #: 196	0.3 C MDMT ell In Out Intermediate OD: 19.05	ONSTRU bar °C mm mm Tks. Aver	5.51581 132.2 1 1 1 1 1 1	Di F ONE SHEL Shell Side / / / 22 / 1 3.18 154.05 / 154.05 / / mm	rty L - - Len	17.5 6.20528 71.1 1 1 1 1	Tub 3 / 1 102.2 154.0	be Side / 4 3.18 26 / 05 / / m	Clea	n 18.2	Ske	Tube (W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40 41	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating ID Tube #: 196 Tube type: Plain	0.3 C essure:g MDMT ell In Out Intermediate OD: 19.05	ONSTRU bar °C mm mm Tks. Aver Insert	5.51581 132.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Di F ONE SHEL Shell Side / / / 22 / 1 3.18 154.05 / 154.05 / / mm	rty L - - Len	17.5 6.20528 71.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tuk 3/ 1 102.: 154.0	be Side / 4 3.18 26 / 05 / / m	Clea	n 18.2	Ske	tch	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40 41 42	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating ID Tube #: 196 Tube type: Plain Shell Carbon Steel	0.3 C essure:g MDMT ell In Out Intermediate OD: 19.05	ONSTRU bar °C mm mm Tks. Aver Insert: 0 423	CTION O 5.51581 132.2 1 1 1 1 3age 2 None C	Di F ONE SHEL Shell Side / / / 22 / 1 3.18 154.05 / 154.05 / / mm DD 704.85	rty L - - Len	17.5 6.20528 71.1 1 1 1 1 5 Fin# mi	Tub 3 / 1 102 : 102 : 102 : 1.87	be Side / 4 3.18 26 / 05 / / m Shell cover	Clea	n 18.2	Ske	tch	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating ID Tube #: 196 Tube type: Plain Shell Carbon Steel Channel or bonnet	0.3 C essure:g MDMT ell In Out Intermediate OD: 19.05 ID Carbon 3	ONSTRU bar °C mm mm Tks. Aver Insert: 0 423 Steel	CTION O 5.51581 132.2 1 1 1 1 1 1 3age 2 None C	Di F ONE SHEL Shell Side / / 22 / 1 3.18 154.05 / 154.05 / / mm DD 704.85	rty L - - Len	17.5 6.20528 71.1 1 1 1 1 Fin# mi	Tuk 3/ 1 102.: 1154.0 4.87 5 6 ()	be Side / 4 3.18 26 / 05 / / m Shell cover Channel cc	Clea	n 18.2	Ske	Tube (Steel	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 44	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating ID Tube #: 196 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary	0.3 C essure:g MDMT ell Intermediate OUt Intermediate OD: 19.05 ID Carbon 3 Carbon 3	ONSTRU bar °C mm mm Tks. Aver Insert: 0 423 Steel Steel	CTION O 5.51581 132.2 1 1 1 1 1 1 age 2 None C	Di F ONE SHEL Shell Side / / 22 / 1 3.18 154.05 / 154.05 / / mm DD 704.85 -	rty L - - Len	17.5 6.20528 71.1 1 1 1 1 1 Fin# mi	Tuk 3/ 1 102.: 102.: 102.: .87 : : : : : : : : : : : : : : : : : : :	be Side / 4 3.18 26 / 05 / / m Shell cover Channel co Tubesheet	Clea	n 18.2	Ske	Tube (Steel	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 5	Design/Vacuum/test pr Design temperature / M Number passes per sh Corrosion allowance Connections Size/Rating ID Tube #: 196 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover	0.3 C essure:g MDMT ell Intermediate OUt Intermediate OD: 19.05 ID Carbon 3 Carbon 3	ONSTRU bar °C mm mm Tks. Aver Insert:) 423 Steel Steel	CTION O 5.51581 132.2 1 1 1 1 1 1 3age 2 None C	Di F ONE SHEL Shell Side / / 22 / 1 3.18 154.05 / 154.05 / / mm DD 704.85 -	- - - Len	17.5 6.20528 71.1 1 1 1 1 1 Fin# mi	Tuk 3/ 1 102.: 102.: 154.(.87 :	be Side / 4 3.18 26 / 05 / / m Shell cover Channel co Tubesheet mpingeme	Clea	n 18.2	Ske	Tube (Steel	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating ID Tube #: 196 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S	0.3 C essure:g MDMT ell Intermediate OUt Intermediate OD: 19.05 ID Carbon 3 Carbon 3 - teel	ONSTRU bar °C mm mm Tks. Aver Insert) 423 Steel Steel Steel	CTION O 5.51581 132.2 1 1 1 1 age 2 None C	Di F ONE SHEL Shell Side / / 22 / 1 3.18 154.05 / 154.05 / / mm DD 704.85 - gle segmenta	- - - Len	17.5 6.20528 71.1 1 1 1 1 Fin# mi	Tut: 3/ 1 102.: 10	be Side / 4 3.18 26 / 05 / / m Shell cover Channel co Tubesheet impingeme 27.12	Clea	n 18.2	Ske	tch	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating ID Tube #: 196 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long	0.3 C essure:g MDMT ell In Out Intermediate OD: 19.05 ID Carbon 3 Carbon 3 - teel	ONSTRUC bar °C mm mm Tks. Aver Insert:) 423 Steel Steel Steel Type	CTION O 5.51581 132.2 1 1 1 1 1 1 age 2 None C Seal Type	Di FONE SHEL Shell Side / / 22 / 1 3.18 154.05 / 154.05 / / mm DD 704.85 - gle segmenta e	- - - Len	17.5 6.20528 71.1 1 1 1 1 1 Fin# Cut(%d)	Tut: 3/ 1 102.: 10	be Side / 4 3.18 26 / 05 / / m Shell cover Channel co Tubesheet mpingeme 27.12	Clea	n 18.2	Ske nm arbon oon Ste e 292.84	tch	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating ID Tube #: 196 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube	U.3 C essure:g MDMT ell In Out Intermediate OD: 19.05 Carbon 3 Carbon 3 - teel U-bend	ONSTRUC bar °C mm mm Tks. Aver Insert:) 423 Steel Steel Steel	CTION O 5.51581 132.2 1 1 1 1 1 1 age 2 None C Seal Type	Di F ONE SHEL Shell Side / / 22 / 1 3.18 154.05 / 154.05 / / mm DD 704.85 - - - gle segmenta e 0	- - - Len	17.5 6.20528 71.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tut: 3/ 1 : 102.:	be Side / 4 3.18 26 / 05 / / m Shell cover Channel co Tubesheet impingeme 27.12	Clea	n 18.2	Ske	tch	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 99	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating ID Tube #: 196 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal	U.3 C essure:g MDMT ell In Out Intermediate OD: 19.05 ID Carbon S - Carbon S - teel U-bend	ONSTRUC bar °C mm mm Tks. Aver Insert:) 423 Steel Steel Steel	CTION O 5.51581 132.2 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1	Di FONE SHEL Shell Side / / 22 / 1 3.18 154.05 / 154.05 / / mm DD 704.85 - - - - - - - - - - - - -	- - - Len I (17.5 6.20528 71.1 1 1 1 1 1 Fin# Cut(%d) eet joint	Tuk)/ 1 :102.: 1154.0 .87 : : : : : : : : : : : : : : : : : : :	be Side / 4 3.18 26 / 05 / / m Shell cover Channel co Tubesheet impingeme 27.12 Ty Expande	Clea	n 18.2	Ske	tch	W/(m ² -K)
30 31 32 33 4 5 36 37 8 39 40 41 42 43 44 45 6 47 48 49 50	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating ID Tube #: 196 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint	U.3 C essure:g MDMT ell In Out Intermediate OD: 19.05 ID Carbon S - Carbon S - teel U-bend	ONSTRUC bar °C mm mm Tks. Aver Insert:) 423 Steel Steel Steel	CTION O 5.51581 132.2 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 3 2 None C Seal Type	Di F ONE SHEL Shell Side / / 22 / 1 3.18 154.05 / 154.05 / / mm DD 704.85 - - - - - - - - - - - - -	- - - Len I (tubesh	17.5 6.20528 71.1 1 1 1 1 1 Fin# Cut(%d) eet joint ve Nor	Tuk) / 1 .102.: 10	be Side / 4 3.18 26 / 05 / / m Shell cover Channel co Tubesheet impingeme 27.12 Ty Expande	Clea	n 18.2	Ske	tch	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating ID Tube #: 196 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle	U.3 C essure:g MDMT ell In Out Intermediate OD: 19.05 Carbon S Carbon S - Carbon S - teel U-bend - 0	ONSTRUC bar °C mm mm Tks. Aver Insert:) 423 Steel Steel Steel	CTION O 5.51581 132.2 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 3 2 None C Seal Type Bun	Di FONE SHEL Shell Side / / 22 / 1 3.18 154.05 / 154.05 / / mm DD 704.85 - DD 704.85 - gle segmenta e 0 Tube- dle entrance	- - - Len I (tubesh	17.5 6.20528 71.1 1 1 1 1 1 Fin# Cut(%d) eet joint ve Nor	Tuk 3)/ 1 (102.3 1154.0 	be Side / 4 3.18 26 / 05 / / m Shell cover Channel co Tubesheet impingeme 27.12 Ty Expande Bund	Clea	n 18.2	Ske	tch	W/(m ² -K)
30 31 32 33 4 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating ID Tube #: 196 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side	U.3 C essure:g MDMT ell In Out Intermediate OD: 19.05 Carbon S Carbon S Carbon S Carbon S Carbon S Carbon S Carbon S Carbon S Carbon S Carbon S	ONSTRUC bar °C mm mm Tks. Aver Insert:) 423 Steel Steel Steel	CTION O 5.51581 132.2 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 2 2 None C Seal Type Bun	Di FONE SHEL Shell Side / / 22 / 1 3.18 154.05 / 154.05 / / mm DD 704.85 - DD 704.85 - DD 704.85 - Cle segmenta e 0 Tube- Cle entrance Tu	- - - Len I (tubeshi Typ 0 be side	17.5 6.20528 71.1 1 1 1 1 1 Fin# Cut(%d) eet joint ve Nor	Tuk 3)/ 1 (102.: 1154.0 87 	be Side / 4 3.18 26 / 05 / / m Shell cover Channel co Tubesheet impingeme 27.12 Ty Expande Bund	Clea	n 18.2	Ske	tch	W/(m ² -K)
30 31 32 33 34 55 36 37 38 39 40 41 42 43 44 45 46 47 48 49 55 52 53	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating ID Tube #: 196 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head	U.3 C essure:g MDMT ell In Out Intermediate OD: 19.05 Carbon S Carbon S	ONSTRUC bar °C mm mm Tks. Aver Insert:) 423 Steel Steel Steel	CTION O 5.51581 132.2 1 1 1 1 1 1 1 1 1 1 1 1 2 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 2 2 None C Seal Type Bun	Di FONE SHEL Shell Side / / 22 / 1 3.18 154.05 / / 154.05 / / mm DD 704.85 - DD 704.85 - ple segmenta e 0 Tube- dle entrance Tu	- - - Len I (tubeshi Typ 0 be side	17.5 6.20528 71.1 1 1 1 1 1 1 Fin# Cut(%d) eet joint ve Nor	Tub 3/ 1 :102.: 1154.0 : : : : : : : : : : : : : : : : : : :	be Side / 4 3.18 26 / 05 / / m Shell cover Channel co Tubesheet impingeme 27.12 Ty Expande	Clea	n 18.2	Ske	tch	W/(m ² -K)
30 31 32 33 34 55 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating ID Tube #: 196 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements	U.3 C essure:g MDMT ell In Out Intermediate OD: 19.05 Carbon S Carbon S	ONSTRUC bar °C mm mm Tks. Aver Insert:) 423 Steel Steel Steel	CTION O 5.51581 132.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Di FONE SHEL Shell Side / / 22 / 1 3.18 154.05 / 154.05 / / mm DD 704.85 - DD 704.85 - Jle segmenta e 0 Tube- dle entrance Tu	- - - Len I (tubeshi Typ 0 be side	17.5 6.20528 71.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tub 3/ 1 :.02.: 102.: 1154.0 : 	be Side / 4 3.18 26 / 05 / / m Shell cover Channel co Tubesheet mpingeme 27.12 Ty Expande Bund F Bund	Clea	n 18.2	Ske	tch	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating ID Tube #: 196 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-cross Carbon S Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell	U.3 C essure:g MDMT ell In Out Intermediate OD: 19.05 Carbon S Carbon S Car	ONSTRUC bar °C mm mm Tks. Aver Insert: 0 423 Steel Steel Steel Steel	CTION O 5.51581 132.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Di F ONE SHEL Shell Side / / 1 3.18 154.05 / 154.05 / / mm DD 704.85 - - - gle segmenta e 0 Tube- dle entrance Tu - - - - - - - - - - - - -	- - - Len I (tubeshr Typ 0 be side	17.5 6.20528 71.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tub)/ 1 .102.: .102.: .102.: 	27.12 Expande Free Side / 4 3.18 26 / 05 / / m Shell cover Channel co Tubesheet mpingeme 27.12 Ty Expande Bund Free Side R - refin 1269.3	Clea	n 18.2	Ske	tch	W/(m ² -K)
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating ID Tube #: 196 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell Remarks	U.3 C essure:g MDMT ell In Out Intermediate OD: 19.05 Carbon S Carbon S Car	ONSTRUC bar °C mm mm Tks. Aver Insert: 0 423 Steel Steel Steel Steel Steel	CTION O 5.51581 132.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Di F ONE SHEL Shell Side / / 1 3.18 154.05 / 154.05 / / mm DD 704.85 - - - gle segmenta e 0 Tube- dle entrance Tu - 14340.8	- - - Len I (tubeshi Typ 0 be side	17.5 6.20528 71.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tub)/ 1 102.: 1154.0 	be Side / 4 3.18 26 / 05 / / m Shell cover Channel co Tubesheet mpingeme 27.12 Ty Expande Bund F S R - refin 1269.3	Clea	n 18.2	Ske	tch	W/(m ² -K)
30 31 32 33 34 35 36 37 38 9 0 4 1 4 2 3 4 4 4 4 5 46 47 48 9 0 5 15 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Design/Vacuum/test pr Design temperature / N Number passes per sh Corrosion allowance Connections Size/Rating ID Tube #: 196 Tube type: Plain Shell Carbon Steel Channel or bonnet Tubesheet-stationary Floating head cover Baffle-long - Supports-tube Bypass seal Expansion joint RhoV2-Inlet nozzle Gaskets - Shell side Floating head Code requirements Weight/Shell Remarks	U.3 C essure:g MDMT ell In Out Intermediate OD: 19.05 Carbon S Carbon S Car	ONSTRUC bar °C mm mm Tks. Aver Insert: 0 423 Steel Steel Steel Steel	CTION O 5.51581 132.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Di F ONE SHEL Shell Side / / 1 3.18 154.05 / 154.05 / / mm DD 704.85 - - - gle segmenta e 0 Tube- dle entrance Tu - 14340.8	- - - Len I (tubeshi Typ 0 be side	17.5 6.20528 71.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Tub)/ 1 .102.: .102.: .102.: 	be Side / 4 3.18 26 / 05 / / m Shell cover Channel co Tubesheet mpingeme 27.12 Ty Expande Bund F R - refin 1269.3	Clea	n 18.2	Ske	tch	W/(m ² -K)

Figure 2: Aspen EDR output summary

3.3 Comparison of HTRI and Aspen EDR outputs:

compared to evaluate the design performance of shell and tube heat exchanger under identical operating conditions. Key design parameters such as heat transfer area, overall heat

The output from HTRI and Aspen EDR software were

Volume 13 Issue 5, May 2025 www.ijser.in

Licensed Under Creative Commons Attribution CC BY

transfer coefficient, pressure drop, and flow velocity were extracted from both simulations. The purpose of this comparison is to analyze how each software approaches thermal design and to identify practical differences in their results.

Table 1: Comparative Analysis							
Parameters	HTRI output	Aspen EDR output					
Fluid Pair	Benzene and	Benzene and					
	cooling water	cooling water					
Heat Duty	0.4093	0.5					
	(mmkcal/hr)						
Overall Heat Transfer	224.98	18.2					
Coefficient	kcal/m²hr. c						
Heat Transfer Area (m ²)	62.95	56					
Shell side pressure drop (bar)	0.3703	0.6894					
Tube - side pressure drop (bar)	0.695	0.703					
Shell Diameter (mm)	435	423					
Tube Count	174	174					
Baffle Spacing (mm)	350	292.84					
Baffle Cut (%)	25	27.12					

The outputs from HTRI and Aspen EDR showed generally comparable trends, though notable differences were observed in parameters like heat duty and overall heat transfer area. HTRI estimated a heat duty of approximately 477KW, while Aspen EDR reported a higher value of around 581.5 KW. This difference may result from variations in default assumptions, thermal resistance modeling or input handling. Additionally HTRI a U - value of 941.9 W/m²k, while Aspen output did not clearly display the correspondence value for validation. These observations reflect the importance of understanding each tool's calculation basis and ensuring all the inputs are fully aligned when performing comparative analysis. Both tools remain industry - reliable and demonstrates valid, though not identical, design outcomes.

3.4 Observations on Pressure Drop and Heat Transfer Area:

Both HTRI and Aspen EDR produced design that met the required thermal duty, with differences in output values observed primarily in pressure drop and heat transfer area. HTRI reported a shell side pressure drop of 0.3703 bar and tube - side pressure drop of 0.695 bar, while Aspen EDR reported 0.6894 bar and 0.703 bar respectively. These values are reasonable and within expected design limits.

The heat transfer area calculated by HTRI was 62.95 m^2 , slightly higher than the 56m2 reported by Aspen EDR. These variations are most likely due to differences in user input, default configurations, and interpretation of process conditions during simulation. Both software platforms are industry - standard tools, and any discrepancies in output here are a result of how the input data was handled during the project.

1) Cost Estimation:

The cost estimation was carried out using Aspen EDR's built - in equipment costing module, based on the finalized design parameters. The estimated cost includes the heat exchanger's material, fabrication, and installation. The output provided a total equipment cost of approximately Rs.3, 02, 100 for the designed shell and tube unit. This figure is based on a default

costing assumptions within the software and is intended for preliminary evaluation only.

	Cost Component	Estimated Cost (INR)					
	Material and Fabrication	Rs.2, 65, 000	1				
	Installing and Handling	Rs.37, 100	1				
	Total Estimated Cost	Rs.3, 02, 100	1				
Figure 2: Approximate cost estimation based on Aspen							

Figure 2: Approximate cost estimation based on Aspen EDR output

2) Advantages and Limitations:

Both Aspen EDR and HTRI offer reliable thermal design capabilities, but differ in terms of accessibility and depth of control. Aspen EDR is widely used in academic and industrial settings for its user - friendly interface and integration with process simulation tools like Aspen Plus. However it may be limited in advance customization and detailed empirical modeling.

HTRI, on the other hand, is more detailed and widely trusted in industry for its precise calculations and robust empirical database, but it is less accessible due to licensing constraints and may have a steeper learning curve.

For student - level projects, Aspen offers convenience and speed, while HTRI is preferred when advanced accuracy is needed.

4. Conclusion

This paper presented the design and comparative analysis of a shell and tube heat exchanger using HTRI and Aspen EDR software. Both tools successfully produced feasible designs for the given process conditions involving benzene and cooling water. While differences were observed in heat duty, pressure drops, overall heat transfer coefficient, and surface area, these variations were attributed to user inputs and software - specific design approaches.

The study reinforces the practical application of design software in undergraduate projects and highlights the importance of consistent input validation. A preliminary cost estimation was also performed using Aspen EDR to provide an industrial perspective on equipment sizing. Overall both software platforms proved to be reliable for thermal designs and are valuable tools for chemical engineering applications.

References

- TEMA Standards, Standards of the Tubular Exchanger Manufacturers Association, 10th Edition, TEMA, 2013.
 [1]
- [2] Pravind Thakur, "Design and Optimization of Shell & Tube Heat Exchanger Using Aspen Exchanger Design and Rating (EDR), "*International Journal of Engineering Research & Technology (IJERT)*, Vol.9, Issue 4, April 2020. [2]
- [3] Faulkner, L. L., *Heat Exchanger Design Handbook*, Hemisphere Publishing Corporation, 1983.
- [4] AspenTech, Aspen Exchanger Design and Rating (EDR) Documentation, Aspen Technology Inc., 2020.
- [5] HTRI, Xchanger Suite 9.2 Software Technical Manual, Heat Transfer Research, Inc., 2021