Seismic Analysis of Tall Structures using Shear Walls and Friction Dampers

Gaurav Shreevash¹, Dr. S. S. Kushwah²

¹Research Scholar, University Institute of Technology (UIT), Rajiv Gandhi Proudyogiki Vishwavidyalaya (RGPV), Bhopal

²Professor, University Institute of Technology (UIT), Rajiv Gandhi Proudyogiki Vishwavidyalaya (RGPV), Bhopal

Abstract: This study investigates the seismic performance enhancement of Reinforced Cement Concrete (RCC) buildings using passive energy dissipation systems, specifically friction dampers and shear walls. In earthquake-prone regions, RCC structures are vulnerable to seismic damage, necessitating the incorporation of advanced structural design features. The research involves modelling two types of G+14 high-rise RCC buildings a regular-shaped and a Plus-shaped configuration using ETABS software, and analysing them under Seismic Zone V conditions per IS 1893:2016 Part 1. Various support systems, including bare frames, friction dampers, and shear walls, were assessed based on key parameters such as storey displacement, storey drift, storey shear, overturning moment, and base shear. The results reveal that the Plus-shaped building with shear walls (Structure VI) exhibits the most effective seismic resistance, showing the lowest storey displacement (14.47 mm) and minimum story drift. Additionally, the highest base shear (2606.01kN) was observed in this structure, indicating enhanced energy dissipation. Comparatively, the Plus-shaped structure with friction dampers (Structure V) demonstrated the highest storey shear, highlighting the dampers' role in lateral force management. While overturning moments increased marginally, they remained within safe limits. This comprehensive analysis emphasizes the critical role of friction dampers and shear walls in improving seismic resilience. The findings support the strategic integration of these systems, particularly in irregular structures, to enhance overall stability and safety during seismic events.

Keywords: Friction Dampers, Seismic Performance, RCC Structures, Shear Walls, ETABS Analysis

1. Introduction

Earthquakes pose a significant threat to structures, particularly in seismically active regions. While reinforced concrete (RCC) buildings are widely used for their strength and versatility, they remain susceptible to damage during seismic events. To enhance their seismic resistance, modern design practices have adopted passive energy dissipation devices, such as friction dampers, which play a vital role in minimizing structural damage by reducing vibrations during earthquakes.

Friction dampers function by converting seismic energy into heat through controlled sliding between two surfaces under pressure. This energy dissipation mechanism reduces the amplitude of seismic-induced vibrations, thereby protecting the building from excessive stress and potential collapse. This study investigates the performance of friction dampers in improving the seismic behaviour of RCC structures, alongside shear walls, which are another common seismic resistance element.

The research involves the modelling and seismic analysis of two RCC structures -one with a regular G+14 layout and the -other with a Plus-shaped layout using ETABS software. Both structures are assessed with different support systems: friction dampers and shear walls, under Zone V seismic conditions as per IS 1893:2016 Part 1. The analysis focuses on critical structural parameters such as story displacement, story drift, story shear, overturning moment, and base shear.

Seismic design requires a deep understanding of dynamic loads, material behaviour, and structural configuration. Common mitigation techniques include base isolation, energy dissipation devices (viscous dampers, yielding steel braces, and friction dampers), and seismic retrofitting. Among these, dampers are especially effective in reducing structural vibrations during seismic motion. IS 1893:2016 provides the guidelines for calculating seismic loads and ductility design to ensure structural safety.

ETABS, a widely used software for seismic analysis, enables accurate modelling of RCC structures by incorporating material properties, dimensions, and reinforcement data. It ensures code compliance and helps simulate realistic behaviour under various loading conditions.

2. Objectives of the Study

- To evaluate the effectiveness of friction dampers in improving the seismic performance of RCC buildings in Seismic Zone V.
- To assess the role of shear walls in enhancing seismic resistance.
- To compare the seismic response of a regular-shaped structure and a Plus-shaped structure.
- To analyse key parameters including story displacement, story drift, story shear, overturning moment, and base shear.
- To investigate the optimal placement and sizing of friction dampers for maximizing structural stability during earthquakes.

3. Methodology

3.1 General

The design process for all the structural instances is presented in this section. This thesis conducts a thorough analysis and comparison of the seismic performance of reinforced cement concrete (RCC) structures with and

Volume 13 Issue 6, June 2025 www.ijser.in

Licensed Under Creative Commons Attribution CC BY DOI: https://dx.doi.org/10.70729/SE25519112125

without friction dampers and shear walls. The study focuses on buildings located in Seismic Zone V, which has a zone factor of 0.36, and on soil type III (soft soil), which is particularly susceptible to seismic pressures. Friction dampers, a kind of passive energy dissipation device, enhance structural performance by reducing lateral vibrations by distributing seismic energy through regulated frictional resistance.

3.1 Steps involved in methodology and design process

Step 1: Initialization of the structure which is focused towards analyzing multi-story high-rise structures considering seismic loads with same seismic zones and soil condition.

Step 2: In order to initiate the modelling of the case study, firstly there is a need to initialize the structural model on the basis of defining display units on metric SI in region India as ETABS supports the building codes of different nations. The steel code was considered as per IS 800:2007 and concrete design code as per IS 456:2000.

Model initialization			×	
Indiabation Optione				
C One faired that Define		0		
O Use Settings from a Wodel File		0		
O Use Built in Settings With				
Digiliy Units	literic S	- 0		
Fiegion for Deliault Materials	Inda	~ 0		
Steel Section Database	Indan			
Steel Design Code	15 800 2007	- 0		
Canonte Design Code	15 456 2000	~ 0		
OK	Canol			
04	Cancel			
D	_			

Figure 3.1 Model Initialization

Step 3: ETABS provides the option of modelling the structure with an easy option of Quick Template where the grids can be defined in X, Y and Z direction. Here in this case, we are considering 45m long Regular and Plus Shaped Building. G+14 story structure is considered with typical story height of 3 m and Bottom story height of 3 m.

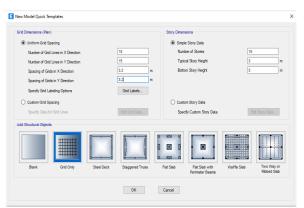


Figure 3.2 New Model Quick Template

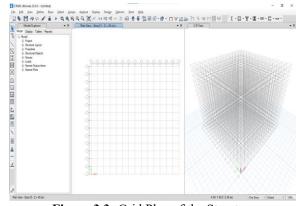


Figure 3.3: Grid Plan of the Structure

Step 4: Next step is to define the material properties of concrete and steel. Here in this case study, M30 concrete is considered and its predefined properties are available in the ETABS application.

General Data			
Material Name	Fe345		
Material Type	Steel		\sim
Directional Symmetry Type	Isotropic		
Material Display Color		Change	
Material Notes	Mod	ify/Show Notes	
Material Weight and Mass			
Specify Weight Density	🔿 Sp	ecify Mass Density	
Weight per Unit Volume		76.9729	kN/m³
Mass per Unit Volume		7849.047	kg/m³
lechanical Property Data			
Modulus of Elasticity, E		210000	MPa
Poisson's Ratio, U		0.3	
Coefficient of Thermal Expansion	. A	0.0000117	1/C
Shear Modulus, G		80769.23	MPa
Design Property Data			
Modify/Shot	w Material Proper	ty Design Data	
dvanced Material Property Data			
Nonlinear Material Data		Material Damping P	roperties
Tim	e Dependent Pro	perties	

Figure 3.5: Defining Properties of Steel as Fe345

ieneral Data			
Material Name	M30		
Material Type	Concrete		\sim
Directional Symmetry Type	Isotropio		\sim
Material Display Color		Change	
Material Notes	Modif	y/Show Notes	
laterial Weight and Mass			
 Specify Weight Density 	O Spe	cify Mass Density	
Weight per Unit Volume		24.9926	kN/m³
Mass per Unit Volume		2548.538	kg/m³
lechanical Property Data			
Modulus of Elasticity, E		27386.13	MPa
Poisson's Ratio, U		0.2	
Coefficient of Thermal Expansion, A		0.000013	1/C
Shear Modulus, G		11410.89	MPa
lesign Property Data Modify/Show Mat dvanced Material Property Data	terial Property	r Design Data	
Nonlinear Material Data		Material Damping F	roperties
Time Dep	endent Prop	erties	
lodulus of Rupture for Cracked Deflectio	ns		
Program Default (Based on Concre	ete Slab Desi	gn Code)	
O User Specified			

Figure 3.6: Defining Properties of Concrete M30

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878
SJIF (2024): 6.623

General Data			
Material Name	HYSD415		
Material Type	Rebar		~
Directional Symmetry Type	Uniaxial		
Material Display Color		Change	
Material Notes	Mod	ify/Show Notes	
Material Weight and Mass			
Specify Weight Density	🔾 Sp	ecify Mass Density	
Weight per Unit Volume		76.9729	kN/m³
Mass per Unit Volume		7849.047	kg/m³
Mechanical Property Data			
Modulus of Elasticity, E		200000	MPa
Coefficient of Thermal Expansion	n. A	0.0000117	1/C
Design Property Data			
Modify/Sho	w Material Propert	ty Design Data	
Advanced Material Property Data			
Nonlinear Material Data		Material Damping P	roperties
Tin	e Dependent Pro	perties	

Figure 3.7: Defining Properties of Rebar as HYSD415

Step 5: Defining section properties for Beam, Column. Beam size of 400x200mm, Column size of 500x400mm and Slab size of 150 mm are considered in the study.

General Data						
Property Name	Column					
Material	M30		~		2	•
Notional Size Data	Modify/Sho	w Notional Size		3		•
Display Color						•
Notes	Modify/S	Show Notes			•	•
Shape					•	•
Section Shape	Concrete Rectar	igular	\sim			
Section Property Source						
Source: User Defined				Property N	lodifiers	
ection Dimensions				Mo	dify/Show Mo	
Depth		500	mm		Currently Def	ault
Width		400	mm	Reinforcer	nent	
wiath		400	mm	M	odify/Show R	lebar
					OK	
	Show Section Properties				Cancel	

Property Name	beam			
Material	M30		~	2 🛧
Notional Size Data	Modify/			3
Display Color				↓ ↓ ↓
Notes	Mod	lfy/Show Notes		
hape				
Section Shape	Concrete Re	iotangular	\sim	
ection Property Source				
Source: User Defined				Property Modifiers
				Modify/Show Modifiers
ection Dimensions				Currently Default
Depth		400	mm	Reinforcement
Width		200	mm	Modify/Show Rebar
				OK
	Show Section Properti	es		Cancel

Figure 3.9: Defining Properties of Beam

General Data		
Property Name	Slab2	
Slab Material	M30	~ .
Notional Size Data	Modify/Show No	tional Size
Modeling Type	Shell-Thin	~
Modifiers (Currently Default)	Modify/Sh	iow
Display Color		Change
Property Notes	Modify/Sh	iow
Туре	Slab	~
Туре	Slab	\sim
Thickness	150) mm

Figure 3.10: Defining Properties of Slab

Step 6: Assigning Fixed Support at bottom of the structure in X, Y and Z direction for all the considered cases.

todal Dapisy Tables Reports	• X 3-D Van	
USE USE 0 Entern data 0 Entern data	material X material X material X material X	

Figure 3.11: Assigning Fixed Support

Step 7: Defining Load cases for dead load, live load and seismic analysis for X and Y Direction.

ade				Click To:
Load	Туре	Self Weight Multiplier	Auto Lateral Load	Add New Load
ead ead	Dead	~ 1	×	Modify Load
ve Ox	Live Seismic	0	IS 1893:2016	Modify Lateral Load
Qy	Seismic	0	IS 1893:2016	Delete Load

Figure 3.12: Defining load cases

Step 8 Defining Seismic Loading as per IS 1893: 2016 Part

Direction and Eccentricity		Seismic Coefficients	
🗹 X Dir	Y Dir	Seismic Zone Factor, Z	
X Dir + Eccentricity X Dir - Eccentricity	- ,	Per Code User Defined	0.36 ~
Ecc. Ratio (All Diaph.)	0.05	Site Type	II V
Overwrite Eccentricities	Overwrite	Importance Factor, I	1
Story Range		Time Period	
Top Story	Story15 V	O Approximate Ct (r	n) =
Bottom Story	Base ~	Program Calculated	
		O User Defined	T =

Figure 3.13: Seismic Loading

Step 9: Application of damper and shear walls.

Volume 13 Issue 6, June 2025 www.ijser.in

Licensed Under Creative Commons Attribution CC BY

		e FRI	CTION DAMPER	P-Delt	a Parameters		Modify/Show	
Link Type	,	Dar	mper - Exponential 🛛 🗸	Accep	tance Criteria		Modify/Show	
Link Prop	erty Note	0	Modify/Show Notes			None	specified	
Total Mass a	ind Weigl	nt						
Mass		2200) kg	R	otational Iner	tia 1	0	ton-m
Weight		0.22	5 kN	kN Rotational Inertia 2		tia 2	0 t	
				R	otational Iner	tia 3	0	ton-m ²
Factors for L	ine and A	rea Springs						
Link/Sup	port Prop	erty is Defined	for This Length When Used i	n a Line Spring P	roperty		1	m
Link/Sup	port Prop	erty is Defined	for This Area When Used in a	an Area Spring P	roperty		1	m²
Directional P	roperties							
Direction	Fixed	NonLinear	Properties	Direction	Fixed	NonLinear	Prop	erties
🗹 U1			Modify/Show for U1	🗌 R1			Modfy/Sh	ow for R1
🗌 U2			Modify/Show for U2	🗆 R2			Modfy/Sh	
🗌 U3			Modfy/Show for U3	B3			Modify/Sh	ow for R3
			Fix All	Clear	Al			
Stiffness Opt	ions							
Sumess Opt	Used for	Linear and Mo	dal Load Cases		Effective Stif	fness from Ze	ro, Else Nonlin	ear 🗸
	Used for :	Stiffness-propi	ortional Viscous Damping		Initial Stiffner	ss (KO)		\sim
Stiffness				n Factor			1	

Figure 3.14: Application of Damper

Step 10: Conducting the model check for both the cases in ETABS.

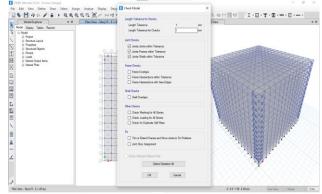


Figure 3.15: Model Check (with damper)

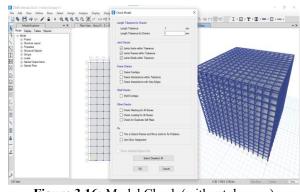


Figure 3.16: Model Check (without damper)

Step 11: Analyzing the structure for dead load, stress analysis and displacement.

4. Results & Discussion

4.1 General

The observed results are shown in this section. This thesis conducts a thorough analysis and comparison of the seismic performance of reinforced cement concrete (RCC) structures with and without friction dampers and shear walls. The study focuses on buildings located in Seismic Zone V, which has a zone factor of 0.36, and on soil type III (soft soil), which is particularly susceptible to seismic pressures. Friction dampers, a kind of passive energy dissipation device, enhance structural performance by reducing lateral vibrations by distributing seismic energy through regulated frictional resistance.

4.2 Maximum story displacement X-direction

	Maximum story displacement in X-Direction					
Story Structure I Structure II			Structure III	Structure IV	Structure V	Structure VI
Story 15	35.98	18.14	17.22	24.46	21.34	14.47
Story 14	34.16	17.88	16.45	24.33	21.17	13.81
Story 13	31.02	16.74	15.51	24.23	20.98	13.22
Story 12	28.6	15.98	14.72	24.09	20.68	12.61
Story 11	26.13	14.64	13.65	23.21	20.02	11.82
Story 10	24.76	13.47	12.76	22.17	18.98	10.81
Story 9	22.41	12.67	11.83	20.78	17.59	9.69
Story 8	20.4	11.5	10.78	19.09	15.93	8.49
Story 7	18.36	10.83	9.99	17.17	14.05	7.25
Story 6	16.33	9.56	8.89	15.69	12.02	5.98
Story 5	13.6	7.51	6.99	12.83	9.87	4.73
Story 4	10.56	5.47	4.82	10.51	7.66	3.53
Story 3	7.37	3.62	2.64	8.13	5.42	2.43
Story 2	4.49	2.04	1.97	5.7	3.22	1.47
Story 1	2.01	1.07	0.01	3.13	1.28	0.67

 Table 4.1 Maximum story displacement in mm

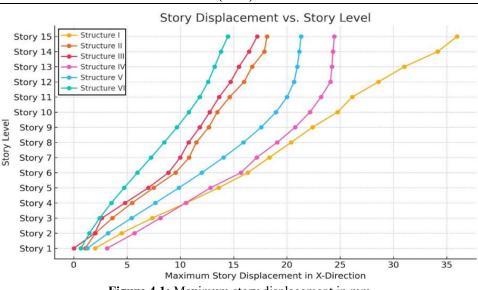


Figure 4.1: Maximum story displacement in mm

Inference- The different structure shapes were compared with bare frame supported with friction dampers and shear wall and similar results were compared for the plus shape structure with friction dampers and shear walls at the corners. The story displacement was found to be stable in all the compared cases but the least maximum displacement was visible for Structure VI as 14.47 mm which was 49.21 % less than Structure IV and 61.19% less when compared to bare frame Structure I.

4.3 Story drift X-direction

Table 5.2: Story drift							
	Maximum story Drift in X-Direction						
Story Structure I		Structure II	Structure III	Structure IV	Structure V	Structure VI	
Story15	4.60E-05	4.30E-05	0.000233	3.50E-05	0.00007	0.000066	
Story14	7.00E-06	7.00E-06	0.000227	4.50E-05	5.8E-05	0.000053	
Story13	1.00E-06	1.00E-06	0.000232	8.90E-05	0.00011	0.000064	
Story12	1.00E-06	1.90E-07	0.000248	0.00021	0.00022	0.000107	
Story11	1.00E-06	1.94E-07	0.000286	0.00035	0.00035	0.000225	
Story10	1.00E-06	1.94E-07	0.000331	0.00046	0.00046	0.000355	
Story 9	1.00E-06	2.03E-07	0.000372	0.00056	0.00055	0.000469	
Story 8	1.00E-06	2.11E-07	0.000399	0.00064	0.00063	0.000563	
Story 7	1.00E-06	2.21E-07	0.000423	0.00070	0.00068	0.000637	
Story 6	1.00E-06	2.33E-07	0.000417	0.00074	0.00072	0.000693	
Story 5	1.00E-06	2.44E-07	0.000400	0.00077	0.00074	0.000732	
Story 4	1.00E-06	2.69E-07	0.000369	0.00079	0.00075	0.000756	
Story 3	2.00E-06	2.94E-07	0.000324	0.00081	0.00074	0.000766	
Story 2	4.00E-06	1.00E-06	0.000272	0.00086	0.00068	0.000695	
Story 1	1.00E-05	4.00E-06	0.000226	0.00104	0.0004	0.000405	

DOI: https://dx.doi.org/10.70729/SE25519112125

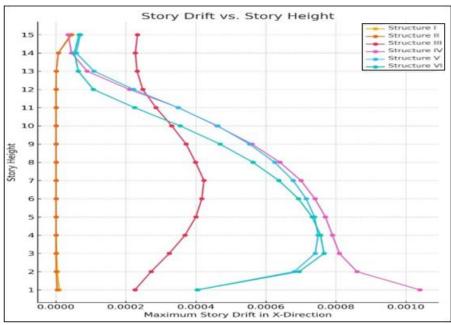


Figure 4.2: Story Drift

Inference- According to the investigation, it was found that the story drift of Plus shaped Structure IV was minimum and the frame is much stiffer than the others. Story drift depends upon the relative displacement to its height. Structure IV shows the highest story drift in most cases, meaning it experiences the most significant relative displacement. This suggests that its design is less effective in controlling lateral movements compared to the other structures. There are a number of possible explanations for this discrepancy, including differences in the other Structures loading circumstances, material composition, or structural design.

4.4 Story shear in X-direction

Table 4.3: Story shear in kN

	Story Shear in kN					
Story Structure I Structure		Structure II	Structure III	Structure IV	Structure V	Structure VI
Story 15	3.48E+02	4.03E+02	397.03	4.98E+02	5.53E+02	547.08
Story 14	6.82E+02	8.30E+02	814.12	8.32E+02	9.80E+02	964.17
Story 13	9.67E+02	1.19E+03	1169.05	1.12E+03	1.34E+03	1319.1
Story 12	1.21E+03	1.50E+03	1468.12	1.36E+03	1.65E+03	1618.17
Story 11	1.40E+03	1.75E+03	1714.91	1.55E+03	1.90E+03	1864.96
Story 10	1.56E+03	1.96E+03	1914.82	1.71E+03	2.11E+03	2064.87
Story 9	1.69E+03	2.12E+03	2072.76	1.84E+03	2.27E+03	2222.81
Story 8	1.79E+03	2.24E+03	2193.69	1.94E+03	2.39E+03	2343.74
Story 7	1.86E+03	2.33E+03	2282.54	2.01E+03	2.48E+03	2432.59
Story 6	1.91E+03	2.40E+03	2344.24	2.06E+03	2.55E+03	2494.29
Story 5	1.94E+03	2.44E+03	2383.72	2.09E+03	2.59E+03	2533.77
Story 4	1.96E+03	2.46E+03	2405.94	2.11E+03	2.61E+03	2555.99
Story 3	1.97E+03	2.47E+03	2415.81	2.12E+03	2.62E+03	2565.86
Story 2	1967.51	2.47E+03	2418.28	2117.56	2.62E+03	2568.33
Story 1	1.97E+03	2.47E+03	2421.07	2.12E+03	2.62E+03	2571.12

DOI: https://dx.doi.org/10.70729/SE25519112125

9 of 12

Figure 4.3: Story Shear in kN

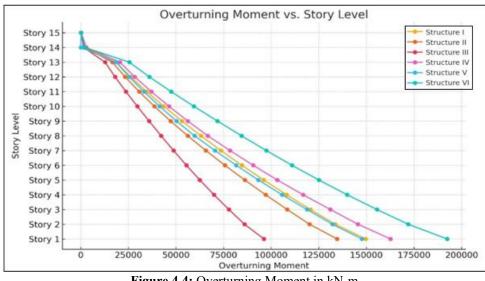
Inference:- Story shear is the lateral force that acts on a buildings story due to wind or seismic forces. It's the shear load that the structure below the story must resist. The maximum shear force was visible for the Structure V for the

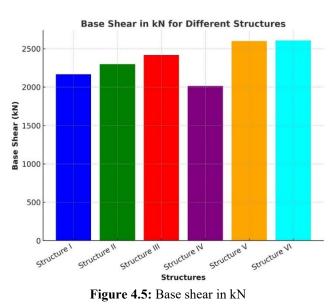
structure in plus shaped with dampers which was 127.71% on higher side when compared to the bare frame structure I.

4.5 Overturning moment X-direction

Table 4.4:	Overturning moment

	Overturning moment						
Story	Structure I	Structure II	Structure III	Structure IV	Structure V	Structure VI	
Story 15	111.2829996	101.8434163	70.0672497	1.90E+02	1.52E+02	110.3287401	
Story 14	2212.265324	1973.995575	1462.47583	2.99E+03	2.5000	2001.32749	
Story 13	18600.04743	16565.4336	12742.5221	20558.06743	18523.4536	25485.0442	
Story 12	26207.33048	23287.26816	18017.412	28348.33048	25428.26816	36034.824	
Story 11	34574.88945	30670.19463	23723.1926	37059.88945	33155.19463	47446.3852	
Story 10	43580.46474	38648.7276	29715.4145	46334.46474	41402.7276	59430.829	
Story 9	53111.82654	47164.22839	35891.6389	56213.82654	50266.22839	71783.2778	
Story 8	63115.05641	56183.35594	42214.4867	66713.05641	59781.35594	84428.9734	
Story 7	73597.04646	65695.33982	48715.3748	78362.04646	70460.33982	97430.7496	
Story 6	84579.74916	75688.35378	55459.0749	90533.74916	81642.35378	110918.1498	
Story 5	96073.14537	86143.62632	62514.4069	103218.1454	93288.62632	125028.8138	
Story 4	108076.3237	97044.64386	69936.2225	116726.3237	105694.6439	139872.445	
Story 3	120582.1808	108378.7321	77754.2875	131034.1808	118830.7321	155508.575	
Story 2	133554.7644	120111.5782	85956.3265	145541.7644	132098.5782	171912.653	
Story 1	149613.3517	134606.1379	96215.8919	162637.3517	147630.1379	192431.7838	




Figure 4.4: Overturning Moment in kN-m

Inference: The Overturning moment is the sum of all forces that can cause a structure to tip over around a pivot point, typically at or near its foundation. It's a measure of the potential for a structure to become unstable and turn over. The maximum story overturning moment of Structure VI was 9.8% more than that of Structure I. This suggests that the Structure VI experiences slightly higher rotational force due to slightly higher lateral forces than the other compared Structure. However, the overall overturning moment of the two Structure does not differ significantly.

4.6 Base shear in X-direction

Fable	4.5:	Base	shear

		Base Sh	ear in KN		
Structure I	Structure II	Structure III	Structure IV	Structure V	Structure VI
2167.513	2298.308	2418.281	2012.908	2598.655	2606.011

Inference: Base shear is used in the design of buildings to ensure they can withstand seismic activity. It is the maximum lateral force that acts on the base of a structure during an earthquake. It's a key property of a structure that's calculated during structural analysis. The base shear of Structure VI was 37.1% greater than that of Structure I. This might be explained by differences in the two structure loading circumstances, material composition, or structural design.

5. Conclusion

This study compared the seismic performance of RCC buildings with two structural configurations Regular and Plus-shaped under various support systems, including shear walls and friction dampers. Key seismic parameters such as story displacement, story drift, story shear, overturning moment, and base shear were analysed. The results indicate that Structure VI (Plus-shaped with shear walls) demonstrated the best overall performance, showing the lowest storey displacement (14.47 mm), which was significantly lower than both the bare frame and other configurations. It also exhibited the minimum storey drift, reflecting better control over lateral movements. In terms of storey shear, Structure V (Plus-shaped with dampers) experienced the highest lateral force, suggesting increased energy dissipation. For the overturning moment, Structure VI showed only a moderate increase (9.8%) compared to the bare frame, indicating slightly higher rotational forces but within safe limits. Finally, base shear was highest in Structure VI about 37.1% more than the bare frame implying greater resistance to seismic forces due to improved structural configuration and support. Overall, the integration of shear walls and friction dampers, particularly in a Plus-shaped structure, significantly enhances the seismic performance of RCC buildings.

DOI: https://dx.doi.org/10.70729/SE25519112125

References

- [1] Yong Yang, Jianyang Xue , Zheng Luo , Rui Liu, [Manufacturing, testing and simulation of novel dualstage energy-dissipation and self-centering friction damper], Elsevier, 2024
- [2] Xu Ouyang, Shuqian Cao, Yuanhang Hou, Guanwu Li , Xin Huang, [Nonlinear dynamics of a dual-rotor system with active elastic support/dry friction dampers based on complex nonlinear modes], ELSEVIER, 2024
- [3] Jingwei Gao, ShouTan Song, Chun-Lin Wang, Bin Zeng, [Development and optimization of a novel response-amplified friction damper with different friction pairs], 2023, Wiley
- [4] Linyi Yang, Mao Ye, Zhongkun Wu, Jingkun Dong, [Seismic performance of steel frame structures equipped with novel displacement-amplified friction dampers], ELSEVIER, 2024
- [5] L. M. Moreschi, and M. P. Singh, [Design of yielding metallic and friction dampers for optimal seismic performance], EARTHQUAKE ENGINEERING AND STRUCTURAL DYNAMICS Earthquake Engng Struct. Dyn. 2003
- [6] P DUPONT, P KASTURI AND A STOKES, [SEMI-ACTIVE CONTROL OF FRICTION DAMPERS], Journal of Sound and Vibration, 1997
- [7] Letícia Fleck Fadel Miguel, Leandro Fleck Fadel Miguel and Rafael Holdorf Lopez, [Robust design optimization of friction dampers for structural response control], STRUCTURAL CONTROL AND HEALTH MONITORING Struct. Control Health Monit. 2014
- [8] Masoud Mirtaheri, Amir Peyman Zandi, Sahand Sharifi Samadi, Hamid Rahmani Samani, [Numerical and experimental study of hysteretic behavior of cylindrical friction dampers], Elsevier, 2011
- [9] Linjie Huang, Hongwei Wen, Kaixi Jiang, Yang Wei, Zhen Zhou, Qin Xie, Zhendong Qian, [Seismic performance of partial self-centering prestressed concrete frames with friction dampers], Elsevier, 2014
- [10] Yael Daniel and Oren Lavan, [Optimality criteria based seismic design of multiple tuned-massdampers for the control of 3D irregular buildings], Earthquakes and Structures, Vol. 8, No. 1 (2015)
- [11] Jer-Fu Wang, Chi-Chang Lin, [Seismic performance of multiple tuned mass dampers for soil-irregular building interaction systems], International Journal of Solids and Structures 42 (2005)
- [12] Osamu Yoshida and Shirley J. Dyke, [Response Control in Full Scale Irregular Buildings Using MR Dampers], ASCE Journal of Structural Engineering, June 2003
- [13] Chi-Chang Lin, Jin-Min Ueng, Teng-Ching Huang, [seismic response reduction of irregular buildings using passive tuned mass dampers], Elsevier, 1999
- [14] Mariantonieta GUTIERREZ SOTO, Hojjat ADELI, [OPTIMUM TUNING PARAMETERS OF TUNED MASS DAMPERS FOR VIBRATION CONTROL OF IRREGULAR HIGHRISE BUILDING STRUCTURES], JOURNAL OF CIVIL

ENGINEERING AND MANAGEMENT, 2014 Volume 20(5)

- [15] Marco Miani, Caterina Di Marco, Giada Frappa and Margherita Pauletta, [Effects of Dissipative Systems on the Seismic Behavior of Irregular Buildings—Two Case Studies], MDPI, 2020
- [16] S. M. R. Hosseini and Gh. R. Nouri, [Seismic performance of asymmetric isolated steel structures with different bracing systems], Amirkabir Journal of Civil Engineering, 53(12) (2022) 1187-1190.
- [17] F.T. Zahura, S. A. Javed and R. Naznin, [Effect of Base Isolation and different Bracing System to improve Building Performance under Earthquake Excitation], Proceedings of 3rd International Conference on Advances in Civil Engineering, 21-23 December 2016.
- [18] M. Y. Laissy, [Effect of Different Types of Bracing System and Shear Wall on the Seismic Response of RC Buildings Resting on Sloped Terrain], Civil Engineering Journal, Vol. 8, No. 09, September, 2022, ISSN: 2676-6957.
- [19] Mohammad Abdul Mannan, Syed Omer Ahmmed and Syed Farrukh Anwar, [Comparative Analysis and Design of Seismic Behaviour of Symmetric and Unsymmetric Structure Fixed with Rubber Base Isolated System], International Journal of Management, Technology And Engineering, Volume 8, Issue XII, DECEMBER/2018, ISSN NO : 2249-7455.
- [20] Hemanta Kalita, Upasana Kashyap and Nayanmoni Chetia, [A Comparative Study on Different Types of Passive Energy Dissipating Devices], ASPS Conference Proceedings 1: 1065-1068 (2022).
- [21] Pilli Deepika and D.Surendra, [Base Isolation System and Energy Dissipating System in Earthquake Resistant Building Design], Journal of Engineering Sciences, Vol 14 Issue 02,2023, ISSN:0377-9254.
- [22] Ankush S Avhad, Vishwajeet Kadlag and Dr.Ashok Kasnale, [A Study of Effectiveness of Damping System considering SSI in Commercial Building], Vol-4 Issue-4 2018 IJARIIE-ISSN(O)-2395-4396.
- [23] Krishnkant Deshmukh and Ajay Hamane, [Effect of Earthquake Resistant System on Vertically Geometric Irregular RC Tall Building], International Journal of Research in Engineering and Science (IJRES), ISSN : 2320-9356, Volume 10 Issue 8 || August 2022 || PP. 38-46.
- [24] E.Dileep Kumar and Dr.N.Victor Babu, [Comparative Analysis of Earth Quake Resistant Building Design by Consider Bracings and Shear Wall System in Etabs Software], Journal of Engineering Research and Application, ISSN : 2248-9622 Vol. 9, Issue 8 (Series -V) Aug 2019, pp 40-47.
- [25] Rincy M. A and Shwetha Saju, [Comparative Study of RC Framed Building with Isolator and Dampers], International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181, 2016

Volume 13 Issue 6, June 2025 <u>www.ijser.in</u> Licensed Under Creative Commons Attribution CC BY