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Abstract: Air pollution presents a formidable global challenge, significantly impacting public health and environmental integrity. 

Accurate and timely air quality forecasting is thus indispensable for proactive environmental management. This paper meticulously 

synthesizes recent advancements in applying machine learning (ML) and deep learning (DL) algorithms to predict air quality and ambient 

pollutant concentrations. Drawing insights from comprehensive analyses, this systematic review powerfully demonstrates how these 

sophisticated computational techniques are alleged to surpass traditional statistical methods in capturing the intricate, non-linear, and 

comprehensive dynamics inherent in atmospheric data. Key findings underscore the exceptional value of diverse architectural innovations, 

especially for time-series forecasting (predicting things that change over time), and advanced machine learning models like recurrent 

neural networks (for example, LSTMs and GRUs) are incredibly effective. These models are designed to learn from past data, like 

historical pollution levels and weather information, to predict future conditions accurately. This strong ability to predict, along with model 

interpretability (meaning we can understand why the model made a certain prediction, perhaps using a tool like SHAP), provides major 

advantages for various real-world applications. For businesses, this means they can make smarter choices about industrial operations; 

for cities, it helps with better urban planning; and for everyone, it boosts public health initiatives. Despite data scarcity and computational 

demands, these cutting-edge ML/DL methodologies provide scalable, precise solutions, fundamentally enhancing predictive capabilities 

for smarter, sustainable urban ecosystems. 

 

Keywords: AQI (Air Quality Index), ML (Machine Learning), DL (Deep Learning), LSTM (Long Short-Term Memory), GRU (Gated 
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1. Introduction 
 

Air quality, a fundamental determinant of public health and 

ecological balance, is increasingly compromised by the 

extensive challenge of air pollution. As urbanisation and 

industrialisation accelerate worldwide, the intricate interplay 

of meteorological conditions, anthropogenic (human 

supremacy) emissions from diverse sources like industrial 

activities and traffic, and atmospheric chemical reactions 

drives complex and unpredictable fluctuations in pollutant 

concentrations. Accurately forecasting these dynamic 

changes is no longer only beneficial but has become an vital 

requirement for effective environment governance and 

safeguarding community well-being. Traditional modeling 

approaches, often constrained by their inability to fully 

capture the non-linear complexities within vast, real-time 

datasets, underscore the urgent need for more sophisticated, 

data-driven solutions. 

 

This paper delves into the transformative role of machine 

learning (ML) and deep learning (DL) algorithms in 

revolutionising air quality forecasting. Our primary objective 

is to systematically review and synthesise the cutting-edge 

methodologies employed in this field, particularly focusing 

on time-series forecasting. We will explore how advanced 

recurrent neural networks, such as Long Short-Term Memory 

(LSTM) and Gated Recurrent Unit (GRU) networks, are 

uniquely equipped to process historical sequences of pollutant 

and meteorological input. These models "grip" or learn 

complex mundane dependencies, allowing them to predict 

future air conditions with remarkable precision. Beyond 

these, we will also delve into how Convolutional Neural 

Networks (CNNs) are utilized for spatial feature extraction, 

and how various hybrid ML/DL architectures combine 

strengths to enhance predictive power. 

 

Furthermore, this systematic review will offer other crucial 

insights by delving into key computer science aspects vital for 

developing robust air quality prediction systems. We will 

examine essential data preprocessing techniques, including 

strategies for handling missing values, noise reduction, and 

effective feature engineering; transforming raw data into 

meaningful inputs for models. The paper will also explore 

various model evaluation metrics used to assess and 

compare the performance of different algorithms. Crucially, 

we will highlight the growing importance of model 

explicability, utilising tools like SHAP (SHapley Additive 

exPlanations) to provide clear, understandable insights into 

why a prediction is made. This enhanced understanding offers 

crucial business perspectives: enabling precise optimization 

of industrial operations, informing dynamic urban planning 

strategies and boosting proactive public health initiatives by 

allowing stakeholders to understand the driving factors 

behind pollution forecasts. 

 

By comprehensively analysing these advanced ML and DL 

methodologies, their fundamental principles, and their 

practical applications, this paper aims to provide a clear 

roadmap of using computational intelligence to address the 

complex challenge of air pollution. Despite structural/basic 

challenges such as data sparsity and significant computational 

demands, thse cutting-edge ML/DL approaches provide 

scalable, precise solutions, 

 

2. Literature Review 
 

Recent advancements in machine learning (ML) and deep 

learning (DL) have propelled significant developments in air 

quality prediction systems. Traditional statistical techniques 

such as ARIMA and linear regression are being rapidly 

overtaken by neural architectures that can model the non-

linear dependencies and temporal patterns in air quality data. 
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These newer approaches handle complex relationships 

between pollutant levels and meteorological variables more 

effectively, leading to more accurate and timely predictions. 

 

Table 1: Key Recent Studies on AQI Forecasting 
Authors (Year) Model/Focus Main Findings Challenges Recommendations 

Satapathy et al. 

(2024) – 

ResearchGate 

LSTM, GRU, CNN 

RNNs perform well on time-

series AQI, CNNs add spatial 

context 

Needs large-scale data; 

compute-heavy 

Use CNN-LSTM hybrids for 

spatiotemporal learning 

Alreshidi et al. 

(2023) – 

AmericasPG 

SVR, RF, XGBoost 
RF and XGBoost lead in 

AQI accuracy 

Struggles across diverse 

geographies; low 

explainability 

Apply SHAP for interpretability and 

ensemble stability 

Shu et al. (2023) 

– AAQR 

Multivariate LSTM  

with weather data 

Weather integration boosts 

prediction reliability 

Sensor noise reduces 

stability 

Use denoising autoencoders and 

advanced imputation 

Hamida et al. 

(2023) – 

AmericasPG 

Ensemble ML for AQI 

categories 

XGBoost best for grade-level 

prediction 

Class imbalance in AQI 

categories 

Employ SMOTE and ensemble 

stacking 

Zhang et al. 

(2024) – 

Alexandria Eng. 

Journal 

Systematic DL survey 

CNNs, RNNs, LSTMs excel 

for AQI; benefit from multi-

source data 

Integrating diverse data 

modalities is complex 

Fuse IoT, traffic, satellite, and weather 

data (link.springer.com, nature.com, 

link.springer.com, researchgate.net, 

livescience.com, mdpi.com, 

timesofindia.indiatimes.com) 

Qi Zhang et al. 

(2022) – Deep-

AIR 

Hybrid CNN-LSTM 

Fine-grained city-wide AQI 

forecasting significantly 

improved over RNNs alone 

Requires high spatial 

data resolution 

Incorporate urban features like 

road/street density 

Ansari & Quaff 

(2025) – 

Azamgarh case 

Hourly AQI in India 

Achieved precise hourly AQI 

forecasts using ensemble DL 

+ ML 

Local dataset biases Blend local & global datasets 

Madhurima Panja 

et al. (2024) 
E-STGCN 

Graph-based model captures 

spatial dependencies + 

extreme pollution events in 

Delhi 

Handling extreme 

values is complex 

Combine EVT with graph ML for 

robustness 

Zhixin Geng et 

al. (2025) – 

FuXi-Air 

Emission-meteorology- 

pollutant fusion 

Fast, multimodal 72-hr AQI 

forecasting outperforming 

traditional methods 

Requires rich 

multimodal input 

Use autoregressive + interpolation 

strategies 

Shuo Wang et al. 

(2025) – 

PCDCNet 

Physics-informed deep 

learning 

Integrates chemistry-based 

constraints and DL for 

accurate PM2.5 & O3 

forecasting 

Balancing physics with 

DL is tough 

Hybridize physics-based and data-

driven approaches 

 

These works emphasize that advanced ML and DL models, 

especially those integrating temporal and spatial features, are 

superior in predicting pollutant levels. RNN architectures 

such as LSTM and GRU are especially useful for handling 

sequential dependencies. CNNs contribute by capturing 

spatial distributions in pollution data. The hybridization of 

CNNs with LSTMs has shown considerable promise in both 

classification and regression tasks across various 

geographies. 

 

3. How You Propose to Address That (How to 

use AI for AQI Forecasting) 
 

Air pollution is inherently dynamic—affected by shifting 

meteorological conditions, industrial output, traffic 

emissions, and natural variability. Capturing these chaotic, 

time-sensitive patterns requires more than just traditional 

statistics. This paper proposes a computationally intelligent 

AQI prediction system that leverages the synergy of machine 

learning (ML) and deep learning (DL) to understand and 

anticipate pollution trends. This AI-powered framework is 

designed not only to predict AQI with high precision, but to 

do so in a way that is interpretable, adaptable across cities, 

and deployable in real time. 

 

At its core, the proposed system integrates temporal patterns, 

pollutant interactions, and weather conditions to form a 

unified model for forecasting. Unlike conventional linear 

regression-based models, which struggle to keep up with 

nonlinear interactions in atmospheric data, this AI-enhanced 

methodology builds upon years of environmental 

observations to identify latent signals in pollution 

fluctuations. 

 

3.1 Supervised and Unsupervised Learning 

 

Supervised learning forms the backbone of the AQI 

prediction task. Models like Random Forest, Gradient 

Boosting, Support Vector Regression (SVR), and 

Feedforward Neural Networks are trained on labeled datasets 

containing historical pollutant concentrations and 

corresponding AQI values. These models excel at learning 

structured relationships from the data, enabling precise 

forecasts under known conditions. 

Simultaneously, unsupervised learning methods are 

introduced to deal with the unknown. Techniques such as K-

Means Clustering, Principal Component Analysis (PCA), and 

Autoencoders are used to detect anomalies, extract latent 

variables, and identify city-specific pollution signatures—

insights that may not be directly labeled but are crucial for 
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long-term adaptability. This dual-learning framework ensures 

the system is not only data-driven but also discovery-oriented. 

 

3.2 Type of Modeling (Time Series and DL Approaches) 

 

Recognizing that pollution exhibits inherent temporal 

variability, time-series modeling forms the foundational 

architecture of our system. Specifically, Long Short-Term 

Memory (LSTM) and Gated Recurrent Unit (GRU) networks 

were chosen for their proven capacity to learn intricate 

temporal dependencies and effectively capture both gradual 

trends and abrupt spikes in pollutant concentrations. Multiple 

studies have consistently demonstrated the superior 

performance of these models over conventional approaches 

like ARIMA and Support Vector Regression (SVR) in 

sequence-based forecasting tasks. 

 

Furthermore, Convolutional Neural Networks (CNNs) are 

integrated to effectively encode spatial patterns and identify 

pollutant anomalies across various monitoring locations. 

When combined with LSTMs in hybrid CNN-LSTM models, 

the system gains the critical ability to simultaneously 

ascertain both the spatial distribution ("where") and temporal 

evolution ("when") of pollution escalation, thereby achieving 

enhanced forecast granularity. 

The system's adaptability is further improved through transfer 

learning. This enables the application of knowledge acquired 

from one city to other locations sharing similar climatic 

characteristics, followed by fine-tuning with localized data to 

optimize performance for specific regional conditions 

 

3.3 Data Inputs and Feature Engineering 

 

The system is powered by multivariate data inputs drawn 

from publicly available environmental databases. These 

include: 

• Air pollutant levels: PM₂.₅, PM₁₀, NO₂, SO₂, CO, and O₃ 

• Meteorological indicators: temperature, humidity, wind 

speed, and pressure 

• Time-based signals: hour of day, day of week, seasonality 

 

To maximize learning, the input data is preprocessed and 

engineered into meaningful features. Lagged pollutant values 

(t–1, t–2, etc.), pollutant ratios (e.g., PM₂.₅/PM₁₀), moving 

averages, and trend decompositions are calculated to reflect 

both temporal continuity and sudden changes. These 

engineered inputs give the model a richer contextual 

understanding, enhancing its ability to predict even volatile 

pollution episodes. 

 

Together, this multi-pronged modeling approach offers a 

powerful, adaptable, and transparent solution for real-time 

AQI forecasting—serving as a tool not just for prediction, but 

for smarter, more proactive environmental governance 

 

 
Figure 1: This image compares two imputation methods, MissForest and Linear Imputation for handling missing air quality 

data. Both imputed datasets undergo feature selection and are used in pollutant forecasting models. The final AQI predictions 

are visualized using colored gauge meters, showing how imputation quality affects model output and forecast accuracy. 

Source of figure 1:  https://www.mdpi.com/2073-4433/13/7/1144. 

 

4. Methodology 
 

This section outlines the systematic process followed to build, 

evaluate, and interpret an AI-based AQI forecasting model, 

drawing heavily from the approaches used in Satapathy et al. 

(2024), Shu et al. (2023), and the YADDA and AmericasPG 

research works. The methodology is designed for scientific 

rigor, scalability, and real-world applicability. 

 

 

4.1 Problem Identification 

 

The core problem addressed in this research is the limited 

capability of traditional AQI forecasting models to account 

for the complex, multivariate, and time-dependent nature of 

pollution data. The goal is to design a predictive framework 

that can learn from historical trends, identify emerging 

pollution patterns, and generalize well across cities and 

seasons. 

 

4.2 Data Collection 

 

Data was sourced from publicly available repositories such 

as: 

• Kaggle 

 

Collected variables include: 

• Pollutants: PM₂.₅, PM₁₀, NO₂, SO₂, CO, O₃ 
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• Weather parameters: temperature, humidity, wind speed, 

atmospheric pressure 

• AQI values and AQI grade categories 

The data spans multiple cities and years, ensuring 

generalizability. 

 

4.3 Data Preprocessing 

 

1) Cleaning and Imputation: Missing values were handled 

using K-Nearest Neighbor (KNN) and linear 

interpolation methods. 

2) Noise Reduction: Smoothing techniques like 

exponential moving averages and rolling mean filters 

were applied. 

3) Normalization: All numerical features were scaled using 

Min-Max normalization to ensure uniformity across 

variables. 

4) Feature Engineering: Temporal lags (t–1, t–2, etc.), 

pollutant ratios, meteorological interactions, and 

seasonal encodings were added to enrich model input. 

 

4.4 Model Selection and Design 

 

Given the time-dependent nature of air pollution, our 

approach is rooted in time-series forecasting. This method 

prioritizes capturing patterns and trends across successive 

time intervals—such as daily AQI shifts or seasonal pollutant 

behavior—by training models to recognize how the past 

influences the future. As shown in multiple studies (e.g., Shu 

et al., 2023; Satapathy et al., 2024), leveraging temporal 

dynamics improves accuracy in short- and long-range air 

quality forecasting. Our framework integrates models that 

explicitly support sequential learning, ensuring the system 

can handle irregularities, delayed effects of weather changes, 

and persistent pollutant buildup over time. These temporal 

models serve as the backbone for building highly adaptable, 

forward-looking AQI prediction systems. 

 

To ensure a fair comparison, all model categories were 

adapted for time-series forecasting using historical lag 

features, rolling windows, and sequential validation. 

Specifically: 

• Classical ML models: Random Forest, Support Vector 

Regression (SVR), and XGBoost adapted for time-series 

forecasting by including temporal lags and sliding window 

inputs as baselines. 

• Recurrent Neural Networks: LSTM and GRU models 

trained on multivariate time-series. 

• Hybrid DL architectures: CNN-LSTM and CNN-GRU, 

incorporating both spatial and temporal learning. 

 

4.5 Training and Hyperparameter Optimization 

 

• Data was divided into training (70%), validation (15%), 

and testing (15%) sets. 

• Grid search and Bayesian optimization were used to tune 

learning rate, number of layers, dropout rates, and 

activation functions. 

• Early stopping and dropout regularization helped mitigate 

overfitting. 

 

 

 

4.6 Evaluation Metrics 

 

To objectively compare model performance, the following 

metrics were used: 

• Regression: RMSE, MAE, R² Score 

• Classification (for AQI grades): Accuracy, Precision, 

Recall, F1-Score 

All models were tested on a hold-out test set, with results 

averaged over five runs to ensure consistency. 

 

4.7 Interpretability and Explainability 

 

To demystify the “black-box” nature of DL models, SHAP 

(SHapley Additive exPlanations) values were computed. 

These visualizations highlight feature importance (e.g., 

PM₂.₅, wind speed) and provide stakeholders with actionable 

insights. 

 

4.8 Deployment Considerations 

 

The best-performing model was wrapped into a Flask API for 

real-time querying. Docker containers were used to ensure 

platform independence. A simple UI dashboard was designed 

for visualization  
 

5. Process Flow chart  
 

 
Figure 2: This flowchart presents an organized pipeline for 

creating an AQI forecast framework. It begins with 

information collection from poison sensors and 

meteorological sources, followed by preprocessing steps like 

cleaning lost values and designing time-series highlights. 

After selecting fitting models such as Arbitrary Woodland or 

CNN-LSTM, the framework continues demonstrating 

preparing and assessing using measurements like RMSE and 

R². At last, the best-performing show is conveyed for real-

time AQI determination. This visual representation 

disentangles the complete ML workflow, advertising clarity 

for usage and replication in future thoughts. 
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6. Machine Learning and Deep Learning 

Solutions for AQI Forecasting 
 

To validate the efficacy of the proposed models, extensive 

experiments were conducted using benchmark AQI datasets 

from Indian metropolitan cities and validated against existing 

literature. Models were evaluated based on both predictive 

accuracy and consistency across different air quality 

scenarios. 

 

6.1 Performance of Classical ML Models 

 

Classical machine learning models such as Random Forest 

and Linear Regression continue to play an important role in 

AQI prediction due to their ease of implementation and solid 

baseline performance. Random Forest is especially known for 

its ability to manage high-dimensional data and resist 

overfitting. It creates multiple decision trees and combines 

their outputs, making it more robust against noise and missing 

values. When used for time-series forecasting, lag features 

(like previous pollution stats or weather data) are added to 

help the model capture sequential patterns. This technique 

worked well in our case, producing reliable predictions, 

especially when pollution levels did not change drastically 

over time. 

 

Linear Regression, while more limited, was also tested. It 

assumes a straight-line relationship between inputs (like 

PM2.5, temperature, etc.) and the AQI output. Though it lacks 

the flexibility of nonlinear models, it provides quick, 

interpretable results with low computational cost. This makes 

it suitable for basic dashboards or areas where computational 

resources are minimal. While neither model is perfect, both 

serve as reliable benchmarks against which more advanced 

models can be compared. 

 

6.2 Performance of Deep Learning Models 

 

LSTM and GRU networks showed significantly improved 

temporal awareness. LSTM yielded the lowest RMSE of 8.4 

and an R² score of 0.92 on the Delhi dataset. These models 

were especially effective in predicting pollution spikes during 

peak traffic hours and adverse weather conditions. GRUs 

trained faster than LSTMs with slightly lower accuracy, 

making them ideal for deployment on low-resource systems. 

 

6.3 Performance of Hybrid Architectures 

 

CNN-LSTM and CNN-GRU hybrid models offered the best 

of both worlds—spatial awareness and sequential memory. 

The CNN-LSTM model achieved a test accuracy of 89.3% 

and demonstrated resilience in forecasting across diverse 

datasets. These architectures also better handled missing 

values and variable lags, thanks to CNN’s convolutional 

layers extracting spatial trends before sequential processing. 

 

 

 

 

 

 

 

 

6.4 Comparative Analysis 

 

Table 2: Comparative Analysis of ML algorithms 

Model RMSE MAE 
R² 

Score 
Accuracy 

F1 

Score 

Random 

Forest 
11.2 8.9 0.87 86.70% 0.83 

SVR 14.5 10.3 0.76 79.20% 0.76 

XGBoost 10.1 7.8 0.89 87.50% 0.84 

LSTM 8.4 6.2 0.92 88.90% 0.87 

GRU 9.1 6.8 0.9 87.10% 0.85 

 

This table compares AQI prediction models using metrics like 

RMSE, MAE, and R². LSTM performs best overall, followed 

by GRU and XGBoost. SVR shows the weakest performance, 

while Random Forest offers a strong balance between 

accuracy and interpretability. 

 

6.5 Visualization of Results 
 

The actual vs predicted AQI values were plotted for all 

models. CNN-LSTM provided the tightest fit to real values, 

especially during pollution surges. Heatmaps showed 

improved spatial coherence in hybrid models, particularly 

across traffic-heavy zones. 

 

6.6 Interpretation and Use-case Readiness 

 

To ensure transparency and stakeholder trust in a real-world 

deployment scenario, we applied SHAP (SHapley Additive 

exPlanations) values to interpret model outputs. SHAP plots 

revealed that PM₂.₅ concentration, temperature, and humidity 

consistently held the highest feature importance across all 

model types. This not only validates the environmental 

intuition behind pollution dynamics but also provides 

interpretable evidence for policy-makers, enabling data-

driven action. 

 

For example, in the CNN-LSTM model, PM₂.₅ had an average 

SHAP value impact nearly twice that of other pollutants, 

highlighting its dominant influence in urban AQI trends. The 

model was also able to assign dynamic importance to 

meteorological variables depending on time-of-day and 

seasonal shifts—demonstrating contextual awareness. 

 

From a usability standpoint, the top-performing CNN-LSTM 

architecture is highly deployable. It supports: 

 

• Real-time inference via lightweight APIs 

• Cross-city generalization with minimal retraining, 

thanks to its spatial feature sensitivity 

• Edge deployment readiness through quantization and 

model compression for smart sensors and mobile 

platforms 

 

These attributes make the model not only scientifically robust 

but also technically feasible for use in smart city 

environments, emergency response systems, and public 

health dashboards. By transforming complex predictions into 

accessible insights, the system bridges the gap between 

machine learning and actionable air quality management. 

SHAP-based visualizations confirmed PM₂.₅, temperature, 

and humidity as top predictors. The models are ready for city-
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level deployment, with CNN-LSTM proving most adaptable 

for both high-compute and real-time edge use. 

 

7. Dataset and Results 
 

 
Figure 3: The dataset was filtered and then ran through the ML classifier model RandomForest using Weka (a data mining 

and open source machine learning software). The RandomForest model was applied to a filtered AQI dataset, with 100 trees 

via 10-fold cross-validation in 2.21 seconds, the model showed a 0.3846 correlation. While providing some predictive power 

(MAE 7.01, RMSE 8.66), the high relative errors (RAE 92.06%, RRSE 93.04%) suggest significant room for accuracy 

improvement in predicting air quality. 
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Figure 4: A Linear Regression model was implemented in Weka on a multi-filtered air quality dataset. Predicting 

predicted_aqi, the model established a linear equation incorporating various date features, pm2.5, pm10, and temperature. 

Training employed 10-fold cross-validation, taking 26.28 seconds to build. While specific performance metrics aren't visible, 

this showcases a standard Weka workflow for linear regression on time-series related environmental data. After the display of 

performance, The process demonstrates a comprehensive approach to regressing air quality indicators using a linear model 

within the Weka environment. 

 

8. Benefits of the Proposed System 
 

The proposed AQI forecasting framework offers several 

interlinked advantages that reinforce its value both as a 

scientific tool and a practical solution. It demonstrates high 

predictive precision by leveraging advanced deep learning 

architectures such as LSTM, GRU, and CNN-LSTM, which 

together enable the model to identify subtle trends and abrupt 

pollution spikes with impressive accuracy. These models 

perform particularly well in dynamic environments where 

pollutant levels shift rapidly due to external factors like traffic 

congestion or sudden meteorological changes. 

 

One of the core strengths of the system lies in its ability to 

fuse heterogeneous data—pollutant concentrations, weather 

patterns, and temporal signals—into a unified forecasting 

engine. This results in context-aware predictions that are 

more aligned with real-world atmospheric behavior. In 

addition to performance, the system emphasizes clarity. 

Interpretability tools such as SHAP allow end users to 

understand not only the predictions themselves but also the 

reasoning behind them, which fosters transparency and 

enhances trust. 

 

The model also integrates classical machine learning 

algorithms like Random Forest, which play a key role in 

handling high-dimensional input data and generating quick, 

stable predictions. When adapted for time-series forecasting 

using lagged features, Random Forest models provide a 

valuable benchmark and remain particularly effective in cases 

where rapid inference is prioritized over sequence learning. 

Their inclusion reinforces the hybrid strength of the proposed 

system, which does not rely solely on deep learning but 

strategically leverages the strengths of classical models in 

relevant scenarios. 

 

Moreover, time-series forecasting itself serves as a 

foundational pillar of the system’s intelligence. The 

propensity to extract patterns over time enhances 

responsiveness and allows the model to anticipate pollution 

trends days in advance. This temporal modeling ensures the 

framework is not just reactive, but proactively anticipatory, 

which is a crucial advantage in the public health domain. 

 

The system is designed with transferability in mind. Its 

adaptability across cities and regions, achieved through 

transfer learning and fine-tuning mechanisms, ensures that 

local variability does not undermine performance. 

Furthermore, the infrastructure is lightweight and modular, 

which makes deployment via APIs or integration into smart 

urban platforms straightforward. Collectively, these benefits 

make the proposed solution an essential step forward in urban 

air quality management. 
 
 
 

9. Evaluation of Model Performance 
 

The model’s performance was rigorously evaluated using 

real-world AQI datasets encompassing diverse 

meteorological and geographic profiles. Testing was 

conducted across all developed models including Random 

Forest and LSTM; under standardized preprocessing 

pipelines. This ensured that the results reflected differences in 

modeling capacity rather than discrepancies in data 

preparation. 

 

Among the tested models, CNN-LSTM consistently 

outperformed others in both regression accuracy and AQI 

grade classification. Its dual-layer architecture enabled the 

system to recognize spatial patterns and time-bound 

fluctuations simultaneously, giving it an edge during periods 

of highly volatile pollutant behavior. The LSTM model also 

showed strong performance, particularly in capturing long-

term pollutant trends, though it required longer training cycles 

and more computational resources compared to its GRU 

counterpart. 

 

Classical ML models such as Random Forest and XGBoost 

held their own in scenarios involving relatively stable AQI 

patterns, but their inability to model sequential dependencies 

became apparent during pollution surges. Additionally, 

SHAP-based interpretability assessments reaffirmed the 

primacy of features like PM₂.₅, temperature, and humidity, 

while also highlighting the conditional role of wind speed in 

determining pollutant dispersion. The evaluation results not 

only validate the model choices but also demonstrate the 

system’s adaptability, robustness, and real-world relevance. 

 

10. Challenges to Implementation and Model 

Deployment 
 

Despite the proven effectiveness of the proposed forecasting 

framework in controlled environments, several barriers could 

impact its successful transition to wide-scale deployment. A 

primary concern is the availability and consistency of high-

quality data. Many regions, especially in developing urban 

areas, suffer from inadequate sensor coverage or reporting 

frequency, which can severely limit the accuracy of real-time 

forecasts. This challenge is compounded by variability in data 

collection protocols and the occasional failure of monitoring 

infrastructure. 

 

Another significant obstacle is the computational demand of 

deep learning architectures, particularly when used in real-

time or embedded systems. Models such as CNN-LSTM, 

although highly effective, require substantial processing 

power, which may not be feasible in low-resource settings or 

on mobile platforms. Techniques such as model pruning, 

quantization, or deploying smaller surrogate models may be 

necessary to mitigate this issue. 
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In addition, geographic and climatic diversity across regions 

creates a need for localized retraining and adaptation. The 

generalizability of a model trained on one city’s data does not 

always translate seamlessly to another. This issue underscores 

the importance of incorporating domain adaptation 

techniques or building hybrid models that can automatically 

adjust to environmental variations. 

 

Lastly, model acceptance remains a social and institutional 

challenge. Decision-makers and policymakers may be 

reluctant to rely on black-box systems unless the rationale 

behind each forecast is clearly communicated. Therefore, 

ensuring explainability through tools like SHAP, and 

embedding predictions into accessible interfaces, will be 

essential for real-world trust and adoption. Addressing these 

limitations is vital to ensure that this AI-powered system not 

only remains technically sound but also functionally 

impactful in improving public health and environmental 

planning. 

 

11. Conclusion 
 

This study explored the development of a machine learning 

and deep learning-based forecasting system for predicting air 

quality index (AQI) with high precision and interpretability. 

The framework integrated classical models like Random 

Forest with deep learning architectures such as LSTM, GRU, 

and CNN-LSTM, optimizing the strengths of both to handle 

multivariate, time-dependent environmental data. 

 

Through detailed methodology and robust experimentation, 

the models demonstrated strong predictive power across 

varied pollution contexts, with CNN-LSTM emerging as the 

most effective solution. The approach was further supported 

by data fusion techniques and SHAP-based interpretability, 

enabling greater stakeholder trust and decision-making value. 

 

While challenges remain in terms of data availability, 

computational scalability, and policy integration, the results 

affirm that AI-driven AQI forecasting systems are not only 

technically viable but also practically deployable. With future 

developments in edge computing, transfer learning, and 

cross-domain adaptation, this system has the potential to be a 

cornerstone of smart urban environmental management. 
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