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Abstract: Image stitching combines visible light images from various perspectives to create wide-angle composites. However, adverse 

weather degrades these images, compromising stitching quality. Infrared sensors, which capture thermal radiation, excel in such 

conditions by highlighting targets. To overcome these challenges, we propose a multimodal fusion approach that integrates the robustness 

of infrared imaging with the rich textures of visible light. Our method uses a coarse-to-fine offset estimation based on infrared structural 

features and visible texture details, followed by a non-parametric Direct Linear Transformation for accurate geometric alignment, and 

finally fuses the stitched images to enhance scene perception. Tested on a real dataset of 530 multimodal pairs and a synthetic set of 200 

pairs, our approach reduces average corner point error by 53%, eliminates ghosting, and boosts information entropy by 24.6% over 

DATFuse-UDIS++, demonstrating superior robustness and accuracy. 
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1. Introduction 
 

Due to the limited field of view, a single image cannot display 

the complete scene information. To address this issue, images 

from different viewpoints can be stitched together to obtain a 

composite image with a wider field of view. Image stitching 

is a fundamental step for further image understanding, and the 

quality of the stitching directly affects subsequent tasks, 

therefore an effective stitching algorithm is essential. 

 

Traditional image stitching methods can be roughly divided 

into four steps: feature point detection, feature point 

matching, image registration, and image fusion. Among these 

steps, image registration is the key step influencing the 

stitching performance. Image registration estimates a 3×3 

matrix to represent the deformation model from the target 

image domain to the reference image domain. However, in 

practical scenarios, targets at different viewpoints are often at 

different depth levels, and simply using a single global 

homography estimate for stitching often results in ghosting 

issues. To overcome this, existing algorithms 0, [2] perform 

position-adaptive transformations by learning, for example, 

an image can be divided into several small regions, each 

using a transformation model. This way, overlapping areas 

can achieve more effective registration results to some extent. 

Another class of traditional stitching methods is seam-driven 

[3]. These methods minimize the error of the seam to 

eliminate the influence of artifacts. 

 

In recent years, deep learning has shown excellent 

performance in various tasks in the field of computer vision, 

and deep learning-based methods have also emerged in image 

stitching tasks [4]-Error! Reference source not found.[6]. 

These methods typically use deep convolutional neural 

networks to directly perform homography estimation and are 

only suitable for image stitching tasks from specific 

viewpoints, as they require a relatively small baseline range 

between different viewpoint images, thus limiting their 

generalization ability. 

Considering the shortcomings of both traditional image 

stitching algorithms and deep learning-based stitching 

algorithms, we propose a multimodal data-based stitching 

method. First, the infrared sensor captures scene images by 

sensing thermal radiation in the environment, unaffected by 

occlusion, lighting, and other factors, avoiding the 

susceptibility to interference of conventional visible light 

imaging methods. However, due to the nature of infrared 

imaging, it has a relatively poor ability to perceive texture 

details in the target. As is well known, texture details are 

important as feature information in environmental perception, 

and visible light images can provide rich texture information 

through normal light reflection. Therefore, considering the 

complementary nature of infrared and visible light data, we 

integrates the advantages of both modalities during 

registration, and we adopt a multi-scale feature-pyramid 

structure. Deformation parameters are estimated from coarse 

to fine across multimodal data, and non-parametric direct 

linear transformation is used to estimate the deformation 

matrix. To fully utilize the feature information of different 

modalities, after obtaining the deformation parameters for the 

target and reference images, we use a reconstruction module 

to simultaneously achieve multi-view scene stitching and 

multimodal data fusion. In reconstruction module, deep scene 

features are mined to provide contextual semantic 

information, and shallow features are used to improve the 

upsampling of insufficient information, thus achieving more 

accurate and reliable fusion stitching results. This paper aims 

to develop and evaluate a multimodal infrared–visible 

image-stitching framework that delivers artifact-free 

wide-angle panoramas under challenging environmental 

conditions. 

 

The main contributions are as follows: 

• We introduce a wide-angle image generation algorithm 

based on multimodal data that harnesses the strengths of 

both infrared and visible imagery, overcoming 

environmental challenges faced by conventional 

methods and enriching scene information for improved 

perception. 

• Our approach utilizes a multi-scale feature pyramid to 

regress global correlation loss and compute the 

transformation matrix non-parametrically, while the 

reconstruction module effectively compensates for 

information loss through contextual semantic awareness. 
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• Qualitative and quantitative evaluations on both real and 

synthetic datasets demonstrate that our algorithm 

achieves more accurate stitching with greater robustness 

and generalizability compared to existing traditional and 

deep learning-based methods. 

 

2. Related Work 
 

Traditional Image Stitching Methods 

Traditional stitching methods are inherently prone to 

ghosting issues, and many approaches have been proposed to 

overcome artifacts. Gao et al. [2] introduced a dual 

homography estimation method for background and 

foreground targets. We use homography during alignment to 

achieve nonlinear distortion. Once the images are 

geometrically stitched, they are further processed to reduce 

artifacts in the stitching seam regions. Lin et al. [7] proposed 

a smooth deformation field, which reduces the impact of 

disparity in the stitching process by deforming the 

overlapping regions and performing extrapolation. This 

approach also meets the tolerance requirements for moving 

objects in different time domains to some extent. Zaragoza et 

al. [8] studied projection estimation when data does not fully 

satisfy the basic assumptions of the projection model and 

proposed the APAP (As Projective As Possible) method. It 

allows local non-projective biases to account for issues that 

do not meet the imaging assumptions, achieving seamless 

stitching via a novel moving direct linear transformation 

estimation technique. However, the APAP algorithm assumes 

that distortion changes are minimal in adjacent areas. In 

practical applications, the depth of adjacent regions can vary 

significantly, leading to disparity artifacts near the image 

boundaries. Chuang et al. [9] proposed a new parameter 

distortion algorithm that combines projection and similarity 

transformations, performing reasonable extrapolation for 

non-overlapping image areas based on projection. It retains 

the perspective information of the original image while 

achieving good alignment accuracy. Lin et al. [10] considered 

the smoothness of the deformation field while ensuring local 

image transformations, reducing the curvature and artifacts in 

the stitched image, thus improving the overall stitching result. 

Lee and Sim [11] introduced a deformation residual vector to 

distinguish matched features on different depth planes. For 

images with large disparity, the algorithm achieves more 

precise alignment by using corresponding homography 

estimates to distort different planes. 

 

At the same time, another category of traditional stitching 

methods focuses specifically on the stitching regions and has 

also achieved notable performance in recent years. In the 

work of Gao et al. [2], a seam loss based on homography was 

proposed to measure the discontinuity between the distorted 

target image and the reference image, and the homography 

with the minimum seam loss was selected to achieve optimal 

stitching. It estimates geometric transformations not based on 

the best fit of feature correspondences but evaluates the 

quality of the transformation based on the visual quality of the 

seam cut. Experimental results show that the new image 

stitching strategy usually produces better perceptual results 

than existing methods, especially for challenging scenes. 

Zhang and Liu [3] introduced content-preserving warp 

(CPW) to align the re-looked areas for small local 

adjustments, while using homography to maintain the global 

image structure. Specifically, the method employed a hybrid 

alignment model that combined homography and 

content-preserving warping. This not only provided more 

accurate disparity estimation but also avoided local distortion 

issues. Furthermore, the method developed a seam detection 

approach that estimates reasonable seams from roughly 

aligned images by considering geometric alignment and 

image content. The resulting homography is then used to 

pre-align the input images, followed by local refinement 

using content-preserving warping. The aligned images are 

finally combined using a standard seam-cutting algorithm 

and multi-band blending. Unlike pixel alignment in 

overlapping regions, Lin et al. [12] used the estimated seams 

to guide the optimization of local alignment processes, 

improving seam quality with each iteration. Additionally, a 

new structure-preserving deformation method was introduced 

to preserve significant curves and line structures during 

deformation. These strategies greatly enhanced the 

effectiveness of the method in handling various challenging 

images with large disparities. Jia et al. [13] explored global 

collinear structures and incorporated them into the objective 

function to guide the balancing of features required for image 

deformation, thus preserving both local and global structures 

while reducing distortion. Liao et al. [14] addressed 

low-quality pixels in seams by separating prominent image 

blocks in the aligned images and performing local alignment 

using modified dense correspondences extracted via SIFT 

flow. 

 

Deep Learning-Based Image Stitching 

With the superior performance of Convolutional Neural 

Networks (CNNs) in computer vision, many researchers have 

explored their application in image stitching. DeTone et al. 

[15]were pioneers in integrating homography estimation into 

a CNN framework, estimating an eight-degree-of-freedom 

homography matrix to warp images from different 

perspectives into a unified spatial domain. However, due to 

the inherent limitations of linear transformations, this 

approach is mainly suitable for small-baseline scenes with 

minor parallax and struggles when dealing with significant 

depth variations, leading to poor perceptual quality and seam 

continuity issues. To overcome these challenges, Nie et al. [4] 

developed a deep image stitching method capable of handling 

arbitrary viewpoints. Their framework comprises a deep 

homography module, a spatial transformation module, and a 

deep image refinement module that collectively work to 

minimize artifacts and seam discrepancies via a 

structure-to-content stitching strategy. In an effort to improve 

generalizability, Nie et al. [5] later incorporated a local 

thin-plate spline interpolation to allow for more flexible 

warping and applied an iterative strategy for adaptive 

deformation across different resolutions. Unfortunately, due 

to the difficulty of obtaining ground-truth stitching labels in 

real-world settings, a fully supervised dataset for image 

stitching has yet to be established. 

 

3. Methods 
 

3.1 Net structure 

 

Based on the above analysis, conventional visible light image 

stitching is easily influenced by environmental factors, such 

as rain, snow, fog, dust, low light, strong light, occlusion, etc. 
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In contrast, infrared sensors, which capture thermal radiation 

for imaging, are less affected by environmental factors. 

However, infrared sensors can only capture large-scale 

structural information of the scene, lacking the ability to 

represent fine details within the scene. This limitation makes 

it challenging for conventional algorithms to perceive the 

scene effectively. On the other hand, visible light images, 

captured via reflected light, can present detailed information 

 
Figure 1: Workflow of the proposed method 

 

well and complement the features of infrared imaging. 

Therefore, to generate wide-angle images under arbitrary 

scenes and perspectives, we propose a multi-modal data 

stitching method based on infrared and visible light images. 

Specifically, infrared image pairs (IR) and visible image pairs 

(VIS) captured from different viewpoints are first input into a 

multi-scale learnable pyramid network, which estimates the 

scene shift of specific modalities from coarse to fine. To 

achieve feature complementarity between the two modalities 

and highlight the advantages of multi-modal processing, the 

predicted latent offsets from the two modalities are fused to 

obtain a more accurate homography matrix. Here, the 

structural features of the infrared data can be combined with 

the detailed content of the visible light data. Then, the 

deformed images undergo global context-guided image 

reconstruction. Not only does it provide stitching results for 

scenes captured from different perspectives, but it also 

integrates information from multiple modalities, producing 

wide-angle images that are rich in information, clear, and 

accurate without artifacts. The overall network structure is 

shown in Figure 1. The entire network can be divided into 

three stages, which complement each other and achieve 

deformation parameter estimation from coarse to fine. 

 

3.2 Multi-Scale Pyramid Based Homography Estimation 

 

We first input images from different viewpoints of the same 

modality into the network and extracts features using two 

convolutional layers. Then, max pooling and two consecutive 

convolution operations are applied three times to construct a 

multi-scale feature pyramid, generating three feature sets 

F ,
1 2
F and 1/4F , where each operation reduces the feature size 

by half. 

 

The homography matrix estimation starts from the 

smallest-scale feature ( )
1/4

16 16F  . First, global correlation is 

computed at this scale to capture pixel-wise global feature 

relationships. A regression network, consisting of three 

convolutional layers and two fully connected layers, then 

predicts eight coordinate displacement parameters, which are 

used to compute the homography matrix in a non-parametric 

manner: 

 ( ),1/4 ,1/41
,A BR F F =  (1) 

 ( ) 1 ,1/4 ,1/4,A BH DLT R F F=  (2) 

where ,1/4 ,1/4,A BF F  are features from two viewpoints, 

( )R  represents the regression network, and DLT  denotes 

the non-parametric transformation calculation. 

 

After computing the first-stage homography matrix 1H , it is 

applied to the second-stage feature ,1/2BF  for preliminary 

warping. Then, local correlation computation, regression, and 

transformation are performed again to obtain the second-stage 

homography matrix 2H , which provides a more refined 

transformation. 

 

To further enhance performance, the method employs a 

three-stage recursive estimation. In the third stage, 2H  is 

used to transform 
,1/4B

F , followed by the same operations as in 

previous stages, ultimately obtaining the homography 

estimation for a single modality. 

 

Since infrared and visible light images exhibit significant 

differences in content, the estimated homography matrices 

from different modalities are often inconsistent. To leverage 

their complementary advantages while mitigating individual 

limitations, we integrate the two homography matrices using 

a regression network with two fully connected layers, 

yielding a final homography estimation that fuses both 

modalities effectively 

 

3.3 Wide-Angle Image Reconstruction Module 

 

For the homography matrix obtained from the multi-scale 

pyramid structure, we deform the collected infrared and 

visible light image pairs to obtain pre-aligned image data 

suitable for stitching. However, the homography matrix 

performs best when both views lie on a common depth plane. 

In practical scenarios, it is difficult to meet such conditions. 

Additionally, because the two input images may be captured 

at different times and with different sensors, the brightness 

and color of the same spatial information often differ, leading 

to noticeable color differences in the seam area if the distorted 

images are directly integrated. Therefore, after the 
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deformation using the homography matrix, further 

reconstruction is required to generate a high-quality 

panoramic image with rich perceptual information while 

retaining the two perspectives. 

 

Considering the differences in the information representation 

between infrared and visible light data, during the 

reconstruction stage, we simultaneously integrate both 

infrared and visible data to ensure that the final stitching 

result not only has a wider field of view but also contains 

complementary information from both modalities. To achieve 

this, we first introduce the U-net network, which extracts 

deep scene features to provide contextual semantic 

information and uses shallow features to further address the 

issue of insufficient upsampling information. Additionally, 

the attention mechanism is introduced in the skip connection 

process between the encoding and decoding layers to achieve 

 

 
Figure 2: Detailed architecture of the image reconstruction module 

 

accurate stitching in a self-supervised manner. The stitching 

results from both infrared and visible light data are then input 

into two dense connection blocks [16] for encoding. The 

encoded features from different modalities are fused through 

a weighted operation, and then decoded using another dense 

connection block to reconstruct the fused stitching result. A 

detailed network structure diagram is shown in Figure 2. In 

this way, by inputting images from different modalities and 

viewpoints, we generate a wide-angle image that combines 

the advantages of multi-modal data. 

 

3.4 Loss Function 

 

For the multi-scale homography estimation module, we adopt 

an unsupervised training approach. Specifically, a 

consistency constraint is applied to the common overlapping 

region of the deformed images from different viewpoints to 

ensure that the content in the overlapping region remains 

consistent after deformation and alignment. It indirectly 

ensures the accuracy of the deformation estimation. The loss 

function for this process is defined as follows: 

 
( ) ( )

( )

1 21 21 1

33 1

, , , ,

, ,

A B A BH

A B

I I H I I H

I I H

 



=  +  +



L
 (3) 

where 
A
I , 

B
I  present two images from the same modality but 

different viewpoints.   indicates the operation of selecting 

their overlapping region, can be formulated as: 

 ( ) ( ) ( )1 1 1, , , ,A B BA
I I H I W E H W I H =  −  (4) 

where ( )W   represents the distortion operation that does not 

change the window size, and E is a mask of ones with the 

same size as 
B
I . 

For the stitching part of the reconstruction module, a 

supervised approach is used. The stitching result is divided 

into two parts for reference: the stitching seam region and the 

non-stitching seam region. For the stitching seam region, an 

L1 norm constraint is applied. For the non-stitching seam 

region, to ensure that the features of the reconstructed image 

match as closely as possible with the features of the target 

image deformed by the homography matrix, we use a VGG 

(Visual Geometry Group) network for deep feature extraction. 

High-level features are then constrained to maintain 

perceptual consistency, thereby alleviating the stitching 

information mismatch caused by depth differences between 

the input images. Two loss functions are as follows: 

 1 1 2 21 1A S S S B S S SS
I M I M I M I M=  −  +  − L  (5) 

 
( ) ( )

( ) ( )

1 2

2 2

A S CC

B S C

VGG I VGG I M

VGG I VGG I M

= −  +

− 

L
 (6) 

 

4. Experiments 
 

Experiments are implemented using TensorFlow on an RTX 

3090 GPU. The input images are first passed through the 

multi-modal homography estimation network to obtain the 

homography matrix for initial alignment. The aligned images 

are then input into the reconstruction network for smooth 

seam transitions. For pretraining the homography network, 

the batch size is 4, with 50 epochs, 128×128 pixel input, and 

an initial learning rate of 1e-4. Loss function weight 

coefficients are set to 1 16 = , 
2

14 = , and 
3

1 = . For the 

feature reconstruction network, the batch size is 8, with 20 

epochs, 128×256 pixel input, and an initial learning rate of 

1e-3. Weight coefficients for 
S
L and 

C
L  are set to 1 and 1e-5, 

respectively. After pretraining, both networks are jointly 

trained with a batch size of 1, 30 epochs, an initial learning 

rate of 2e-5, and weight coefficients for 
H
L , 

S
L , and 

C
L  set 

to 1, 1, and 1e-5. Adam optimizer is used with a learning rate 
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decay factor of 0.96. 

 

4.1 Quantitative comparison 

 

Table 1: Quantitative Comparison Results 

Method EN SF AG BRISQUE 

VFIS 5.89 9.994 3.301 0.492 

RSFI 5.93 10.029 2.667 0.489 

UDIS++ 5.61 9.669 3.057 0.491 

Our 6.99 11.186 3.373 0.495 

 

To objectively evaluate the performance of different stitching 

algorithms, we use four image quality assessment metrics on 

a real-world database: entropy (EN) (Roberts et al., 2008), 

spatial frequency (SF) [17], average gradient (AG) [18], and 

blind/referenceless image spatial quality evaluator 

(BRISQUE). All four metrics show a positive correlation 

with image quality. 

 

The experimental results are shown in  

Table 1. Our method achieves the highest values in EN, SF, 

and BRISQUE, while slightly lagging behind the SPW 

method in AG. Overall, compared to existing deep 

learning-based stitching algorithms, our method demonstrates 

clear advantages and robust performance. 

 

4.2 Qualitative comparison 

 

Figure 3 shows a comparison of the results between our 

algorithm and deep learning-based methods. In both 

examples, the VFIS, RSEI, and UDIS++ algorithms fail to 

effectively utilize the content information from the two-view 

scenes, leading to noticeable registration issues in multi-view 

scenarios and a significant loss of information in the final 

stitching result. In contrast, our method produces better 

stitching outcomes, with smooth transitions in the 

overlapping regions and a clear, accurate reconstructed scene, 

providing strong support for subsequent algorithms in 

environmental perception. 

 

 
Figure 3: Qualitative Comparative Experimental Results 

 

5. Conclusion 
 

In this paper, we propose a wide-angle image generation 

method based on multi-modal data fusion, which combines 

the structural details of infrared images and the texture 

features of visible light images, overcoming environmental 

limitations of traditional stitching algorithms. Using a 

multi-scale feature pyramid and non-parametric deformation 

matrix calculation, the method ensures precise and reliable 

stitching. The context-aware reconstruction module further 

compensates for missing information. Experiments on 

synthetic and real-world datasets show that the method 

provides stable performance, accurate stitching in 

overlapping areas, and realistic scene restoration, avoiding 

ghosting and deformation. 
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