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Abstract: To address the issues in existing methods where text image feature representation lacks scale adaptability and suffers from 

insufficient resolution, which makes it difficult for the recognizer to extract the correct textual information for guiding the reconstruction 

network, we propose a multimodal semantic interaction-based text image super-resolution reconstruction method. By using the attention 

mask in the semantic reasoning module, we correct the textual content information, obtain semantic prior knowledge, and constrain and 

guide the network to reconstruct semantically accurate text super-resolution images. To enhance the network's representation capability 

and adapt to text images of different shapes and lengths, we design a multimodal semantic interaction block. Its basic components include 

a visual dual-stream integration block, a cross-modal adaptive fusion block, and an orthogonal bidirectional gated recurrent unit. 

Experimental results show that, on the Textzoom test set, our proposed method outperforms other mainstream methods in terms of PSNR 

and SSIM quantitative metrics, with average recognition accuracy improvements of 2.9%, 3.6%, and 3.7% on three recognizers (ASTER, 

MORAN, and CRNN) compared to the TPGSR model. These results demonstrate that the text image super-resolution reconstruction 

method based on multimodal semantic interaction can effectively improve text recognition accuracy. 
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1. Introduction 
 

Scene Text Recognition (STR) has wide applications in fields 

such as autonomous driving, mobile payments, education, 

and services for visually impaired individuals. With the 

development of deep learning, significant progress has been 

made in STR research. Currently, most STR algorithms0[2] 

rely on high-resolution text images with clear character 

shapes. However, due to factors such as lighting conditions, 

zooming, long-distance transmission, and capturing devices, 

the real-world scene images collected are often 

low-resolution (Low Resolution, LR) images with blurry 

characters and missing details, which severely affect the text 

recognition performance. Super Resolution (SR) 

reconstruction techniques can effectively address these 

issues. 

 

With the development of convolutional neural networks and 

attention mechanisms, image super-resolution reconstruction 

techniques have achieved remarkable progress, further 

driving the application of super-resolution reconstruction. 

SRCNN[3] apply convolutional neural networks to

 super-resolution reconstruction. HAN[4] enhances 

reconstruction performance by incorporating attention 

modules at various layers. Compared to traditional methods, 

deep learning-based approaches have significantly improved 

reconstruction results. However, these reconstruction 

methods are often general models for natural scenes, lack the 

capability to handle specific scene text content. To address 

this issue, Scene Text Image Super Resolution (STSR) has 

emerged, aiming to enhance the resolution of low-resolution 

(LR) text images, improve their visual effects, and 

reconstruct semantically accurate text structure and shapes, 

thereby improving downstream scene text recognition 

accuracy [5].

 

TextSR[6] utilizes text-aware loss to guide network training,

 enabling the model to focus on the text information in the 

image. CGAN[7] combines dense residual connections with a

 channel attention mechanism in a generative adversarial 

network to learn more effective text feature representations. 

PlugNet[8] introduces a lightweight, pluggable

 super-resolution unit to handle blurred scene text images, 

reducing the network model's complexity and the number of 

parameters. Although these methods achieve excellent 

performance, most are trained using high-low resolution 

image pairs generated by bicubic downsampling. The domain 

gap between artificially blurred text images and real 

low-resolution (LR) text images makes it difficult to 

generalize to complex real-world scenarios. 

 

To address this issue, TSRN[9] constructed the first

 real-world high-low resolution text image pair dataset, 

named TextZoom. In recent years, research has shown that 

utilizing prior information helps restore object shapes and 

textures. Consequently, an increasing number of studies have 

incorporated various text attributes as priors to guide text 

image reconstruction networks. TPGSR[10] uses text

 category information as a prior and embeds it into the 

reconstruction network to guide model training. TATT[11]

 uses Transformer to align deformed text images with text 

priors, further improving model performance. DPGSR[12]

 utilizes a designed degradation prior extractor to capture text 

prior information from LR images, guiding the SR module to 

generate recognizable SR images. TextSRNet[13] applies the

 Otsu method for thresholding text images, extracting text 

image contour prior information through a convolutional 

network to capture fine character details. 

 

Text prior information has further improved the 

super-resolution reconstruction of text images. However, 

most models have not fully considered the semantic 

information brought by the text content in the image. Instead, 

they often rely on simple linear operations such as 

element-wise addition or concatenation to fuse with visual 

features, lacking an adaptive alignment mechanism between 

modalities, which limits the guiding role of text prior 

information. Additionally, many studies focus too much on 

text prior information and neglect the extraction of text visual 
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features, with most using Sequential Residual Blocks 

(SRB)[9] as feature extraction modules. These modules

 typically only utilize two simple CNN layers for feature 

extraction. Due to the inherent limitations of convolutional 

computations, they struggle to capture long-range 

dependencies and subtle spatial variations across different 

granularities of text images, which especially hampers text 

feature representation, as they lack multi-granularity visual 

feature representations. 

 

To address these issues, we propose a method for text image 

super-resolution reconstruction based on multimodal 

semantic interaction (MSISR), which jointly incorporates text 

semantic and visual high-level semantic information. The 

method corrects the text content information using the 

Semantic Reasoning Module (SRM) to obtain semantically 

accurate prior information, which then guides the 

reconstruction network. We introduce the Visual Dual-Flow 

Integration Module (VDFI), which learns the dependencies at 

different distances by focusing on feature maps at different 

layers, capturing multi-granularity high-level visual semantic 

features at both inter-character and intra-character 

granularities. Furthermore, we propose the Cross-modal 

Adaptive Fusion Module (CAFM), it can be seen that deeply 

mines the correlation between visual features and semantic 

priors, narrowing the feature gap between modalities. 

Purpose: This study aims to design and evaluate a multimodal 

semantic interaction network that simultaneously enhances 

text-image resolution and recognition accuracy. The work 

addresses a persistent gap between generic SR models and 

OCR-specific needs, thereby offering practitioners a 

deployable pathway for real-time, language-aware 

enhancement. 

 

2. Methods 
 

2.1 Overall Architecture 

 

Inspired by TPGSR, we propose MSISR, whose overall 

framework is shown in Figure 1. It mainly consists of four 

parts: semantic prior generation, shallow feature extraction, 

deep feature extraction, and image reconstruction. Compared 

to ordinary natural images, text images contain important 

information brought by the text content. To address this 

characteristic of scene text images, the MSISR network 

utilizes a text recognizer and semantic reasoning module to 

extract semantic information from the text, which is then used 

as a prior to guide the reconstruction network in building deep 

features. This approach not only improves the visual quality 

of the reconstructed images but also further enhances the 

accuracy of subsequent text image recognition. 

 

2.2 Semantic Prior Generation 

 

The semantic prior generation mainly consists of two parts: 

the text recognizer and the semantic reasoning module. 

 

2.2.1 Text Recognizer 

The text recognizer utilizes a pre-trained Convolutional 

Recurrent Neural Network (CRNN)[14]. Compared to

 attention-based text recognizers, the CRNN model is simpler 

and considers background regions when predicting 

characters, which helps the model understand the boundaries 

between characters. The specific structure of the CRNN is 

shown in Figure 1, where a CNN convolutional structure is 

used to extract features from the input image, resulting in a 

feature map. Then, a bidirectional RNN is employed to 

predict the feature sequence and output the predicted labels. 

The network uses a Connectionist Temporal Classification 

(CTC) loss function in the transcription layer, converting the 

obtained label distribution into the final label sequence. For 

the input low-resolution text image, the text recognition 

probability sequence is obtained using the CRNN: 

 

  (1) 

 

where CRNN is the text recognizer CRNN operator.  

 

2.2.2 Semantic Reasoning Module 

We use a pre-trained Bidirectional Cloze Network (BCN)[15]

 as the semantic reasoning module to model the character 

correlations in the text sequence, predict contextual 

information, and then correct the text recognition probability 

sequence . The specific structure is shown in Figure 1. 

BCN consists of a series of multi-head attention layers and 

feedforward networks, and in the multi-head attention, it 

incorporates an attention mask to prevent excessive attention 

to the current character. For the text recognition probability 

sequence , the semantic information obtained after 

semantic reasoning through the SRM is: 

 

  (2) 

 

Where SRM is semantic reasoning module. 

 

2.3 Shallow Feature Extraction 

 

As shown in Figure 1, the shallow feature extraction module 

of MSISR consists of an alignment module and a 9x9 

convolutional layer. The dataset we use consists of real-world 

LR-HR image pairs obtained by changing the focal length of 

a camera. There inevitably exists a misalignment between the 

pixels of the LR and HR images. Therefore, we use Thin Plate 

Spline (TPS) transformation based on a Spatial Transformer 

Network (STN) as the alignment module. The TPS 

transformation achieves non-rigid deformation by solving a 

thin plate spline interpolation function, converting the 

corresponding character regions in the LR and HR images 

into uniform size and shape areas. This prevents the network 

from learning incorrect correspondence information and 

alleviates pixel misalignment issues, such as horizontal, 

vertical, and skewed misalignments, between the LR and HR 

images: 

 

  (3) 

 

where  represent the superficial features of images,  

represent LR image. 

 

2.4 Shallow Feature Extraction 

 

The deep feature extraction module is a residual group 

constructed by several Multimodal Semantic Interaction 

Blocks (MSIB), which facilitates effective feature 

transmission while preventing instability during network 

Paper ID: SE25626091503 DOI: https://dx.doi.org/10.70729/SE25626091503 82 of 87 

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/


International Journal of Scientific Engineering and Research (IJSER) 
ISSN (Online): 2347-3878 

SJIF (2024): 6.623 

Volume 13 Issue 6, June 2025 

www.ijser.in 
Licensed Under Creative Commons Attribution CC BY 

training. As an important component of feature extraction, 

MSIB mainly consists of the Visual Dual Flow Integration 

Block, the Cross-modal Adaptive Fusion Block, and the 

orthogonal Bidirectional Gated Recurrent Unit (BiGRU). 

 

2.4.1 Visual Dual Flow Integration Block 

Convolutional Neural Networks (CNNs) have local 

connectivity and translation invariance, which allow them to 

effectively capture local correlations in input images. 

However, they lack long-range dependencies. While global 

attention mechanisms excel at capturing global features, they 

often come with high computational costs and greater 

resource consumption. The window-based self-attention and 

shifting window mechanisms in the Swin Transformer[15]

 can effectively capture pixel correlations within a window 

and enable information exchange across windows, thereby 

enhancing the network's ability to model global relationships. 

To address this, we propose an efficient Visual Dual-Flow 

Integration Block (VDFI) to focus on different levels of 

 

 
Figure 1: Overall architecture of MSISR 

 

feature map information, modeling both local pixel 

correlations and global semantic dependencies. This 

combines local and global information, including 

multi-grained features such as the overall layout and local 

structural details of text characters, to provide rich visual 

information for image reconstruction, which is helpful for 

processing deformed and distorted text images. 

 

In text, coarse-grained refers to inter-character information, 

which includes spatial deformation of text lines. We model 

this using the Transformer self-attention mechanism and the 

shifting window mechanism to learn long-range 

dependencies between characters. Fine-grained refers to 

intra-character information, which uses convolutional 

networks and the self-attention of the Transformer’s local 

window to collaboratively learn short-range dependencies 

between characters. 

 

The specific structure of the VDFI module is shown in Figure 

2. In the Swin Transformer layer, we have added a 

convolution block (CB), composed of convolution, batch 

normalization (BN), activation function (GELU), and 

Efficient Channel Attention (ECA), to enhance the network's 

representation capability. The CB module uses two 3x3 

convolutional layers for local feature extraction. To reduce 

computational cost, the number of channels is compressed 

through the first convolution layer and then restored after the 

second convolution layer. Finally, the ECA adaptively adjusts 

channel features to refine them. 

 
Figure 2: Visual Dual Flow Integration Module 

 

In the VDFI module, after the first Layer Normalization (LN) 

layer, the CB block and Multi-Head Self-Attention (MSA) 

module are parallel to each other, leveraging the 

complementary advantages of global statistical features and 

strong local fitting capability. To ensure coordination and 

stability between the CB and MSA blocks during 

optimization, the output of the CB is regulated using a 

balancing parameter yyy. Then, the LN layer is followed by a 

Multilayer Perceptron (MLP) and residual connections on the 

outer layers. 

 

 ( )( ) ( )( )
( )( )

1 0 0 0

1 1

,

VDFI

F MSA LN F CB LN F F

F MLP LN F F

= + +

= +
 (4) 

 

2.4.2 Cross-modal Adaptive Fusion Block 

Text images contain important content information, which 

plays a crucial role in guiding image reconstruction tasks. 

However, most STSR methods tend to overlook this 

information. To address this issue, we use a CRNN and 

semantic reasoning predictions to obtain rich content 
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information in the form of semantic features . These 

semantic features provide a high-level understanding of the 

text image content and are of a different modality compared 

to multi-grained visual features .To overcome the 

underlying feature gap between these different modalities and 

to adaptively learn the information correlation between visual 

and semantic features, we introduce the CAFM to integrate 

semantic information into the deep feature construction. The 

specific structure of the CAFM module is shown in Figure 3. 

The CAFM module consists of four key components: feature 

conversion, refinement, aggregation, and dual-scale channel 

attention. To match the dimensions of the visual features 

, the semantic features  undergo feature conversion 

through three deconvolution layers with strides of (2, 2) and 

one deconvolution layer with a stride of (2, 1), resulting in a 

semantic feature map . The visual feature map  and 

the semantic feature map  are then concatenated along the 

channel dimension and refined through serial Spatial-Channel 

Reconstruction Convolution (SCConv)[16] blocks.

 

The SCConv blocks consist of Spatial Reconstruction Units 

(SRU) and Channel Reconstruction Units (CRU) that reduce 

redundant information along the spatial and channel 

dimensions, respectively, minimizing the interference from 

background and incorrect semantic information. Next, three 

parallel 1x1 convolutions are applied to compress the 

channels and perform feature aggregation. The aggregated 

features are projected onto three feature spaces. Global 

Average Pooling (GAP) is used to adjust and perform parallel 

local and global attention weight calculations. These attention 

weights are multiplied with the features to adaptively select 

the most relevant features and assign different weights based 

on the information differences. Finally, the enhanced features 

are obtained through a residual connection, allowing for the 

fusion of both semantic and visual features for improved text 

image reconstruction. 

 
Figure 3: Cross-modal Adaptive Fusion Module 

 

2.4.3 Bidirectional Gated Recurrent Unit 

In scene text images, the textual information is mainly 

concentrated in two directions: horizontal and vertical. The 

horizontal context provides semantic relationships between 

characters, while the vertical context offers internal features 

of characters, such as strokes. As shown in Figure 1, based on 

the sequential nature of text data, we use Bidirectional Gated 

Recurrent Units (BiGRU) in both vertical and horizontal 

directions to capture the multimodal features in these two 

directions. Specifically, we employ BiGRU-v to capture the 

vertical direction information and BiGRU-h to capture the 

horizontal direction information, thereby establishing the text 

dependencies in both directions. 

 

2.5 Loss Function 

MSISR is trained using multiple loss functions, mainly 

including pixel loss, edge-aware loss, and semantic prior loss. 

The pixel loss primarily uses the  loss between the 

corresponding pixels of the SR and HR images, as follows: 

 

 
2

2 SR HRL I I= −  (5) 

 

The edge information of text contains key features such as 

text shape, contour, and structure, which are crucial for 

understanding and processing the text content. To avoid 

excessive smoothing of text character edges in the SR image, 

we propose an edge-aware loss 
EPL , as follows: 

 

 ( ) ( )
1EP HR SRL f I f I= −  (6) 

where ( )f   is the edge extraction operator. 

 

The semantic prior loss 
TPL  is used to enhance the guiding 

role of text semantic information, further improving the 

image reconstruction effect, as follows: 

 

 ( )1 2 ||TP SP HP KL SP HPL L H D L H = − +  (7) 

 

where   and  are balancing parameters, ( )||KL SP HPD L H  is 

the KL divergence between 
SPI  and 

HPI . 

 

Based on the above, the total loss of the MSISR network can 

be expressed as: 

 

 
2 EP SPL L L L  = + +  (8) 

 

where ,  , and   are balancing parameters, and we set 

them as 1, 
41 10− , and 1, respectively. 

 

3. Experiments 
 

3.1 Datasets and Evaluation indicators 

 

We use the TextZoom dataset, which is specifically designed 

for scene text image super-resolution reconstruction. This 

real-world scene text image dataset contains 21,740 high and 

low-resolution image pairs taken by a digital camera. Among 

these, 17,367 pairs are used for training, and the rest are used 

for testing. The test images are typically divided into three 

subsets based on the focal length of the camera: easy (1,619 

pairs), medium (1,411 pairs), and hard (1,343 pairs). For the 

fixed input size of 32x128 for the text recognizer, a 2x 
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super-resolution reconstruction is performed, with the LR 

size being 16x64 and the HR size being 32x128. 

 

The core goal of scene text image super-resolution 

reconstruction is to improve the text recognition model's 

accuracy on LR text images. Therefore, we use three 

mainstream text recognition networks. ASTER, CRNN, and 

MORAN  to recognize the reconstructed text images, with the 

recognition accuracy serving as the main evaluation metric 

for the reconstruction network. 

 

3.2 Environment and Parameter Settings 

 

All experiments were implemented on a single NVIDIA GTX 

3090 GPU using PyTorch 1.9 and Python 3.9. The Adam 

optimizer was used for parameter optimization, with a 

momentum of 0.9 and a batch size of 48. The learning rate 

was set to , and the training was conducted for 500 

epochs. 

 

3.3 Compare Experiments and Results 

 

3.3.1 Objective Index Analysis 

To validate the effectiveness of our proposed method, we 

conducted 2x super-resolution reconstruction experiments on 

the publicly available TextZoom dataset and compared it with 

11 state-of-the-art super-resolution methods, including 

Bicubic, SRCNN[3], HAN[4], TSRN[9], PCANError! 

Reference source not found., TBSRN[20], TG[21], 

MTSRError! Reference source not found., TATT[12], 

DPGSR[13], and TPGSR[10]. For TPGSR, we compared the 

TPGSR and TPGSR-3. Table 1 lists the average text 

recognition accuracy of the reconstructed images by different 

methods, with the highest accuracy in each group indicated in 

bold and the second-best method underlined. "Avg" 

represents the 

Table 1: Recognition accuracy of different methods on TextZoom(%) 

Method 
ASTER MORAN CRNN 

easy medium hard avg easy medium hard avg easy medium hard avg 

Bicubic 64.7 42.4 31.2 47.2 60.6 37.9 30.8 44.1 36.4 21.1 21.1 26.8 

SRCNN[3] 69.4 43.4 32.2 49.5 63.2 39.0 30.2 45.3 38.7 21.6 20.9 27.7 

HAN[4] 71.1 52.8 39.0 55.3 67.4 48.5 35.4 51.5 51.6 35.8 29.0 39.6 

TSRN[9] 75.1 56.3 40.1 58.3 70.1 53.3 37.9 54.8 52.5 38.2 31.4 41.4 

PCANError! 

Reference 

source not 

found. 

77.5 60.7 43.1 61.5 73.7 57.6 41.0 58.5 59.6 45.4 34.8 47.4 

TBSRN[20] 75.7 59.9 41.6 60.0 74.1 57.0 40.8 58.4 59.6 47.1 35.3 48.1 

TG[21] 77.9 60.2 42.4 61.3 75.8 57.8 41.4 59.4 61.2 47.6 35.5 48.9 

MTSRError! 

Reference 

source not 

found. 

75.6 59.8 43.4 58.9 73.9 57.2 41.8 56.0 56.2 47.0 35.3 45.4 

TATT[12] 78.9 63.4 45.4 63.6 72.5 60.2 43.1 59.5 62.6 53.4 39.8 52.6 

DPGSR[13] 75.5 57.8 41.9 59.4 69.7 53.4 39.7 55.2 57.6 43.0 33.4 45.5 

TPGSR[10] 77.0 60.9 42.4 61.2 72.2 57.8 41.3 58.1 61.0 49.9 36.7 49.9 

TPGSR-3[10] 78.9 62.7 44.5 62.8 74.9 60.5 44.1 60.5 63.1 52.0 38.6 51.8 

Ours 80.0 63.6 45.6 64.1 76.5 60.9 44.8 61.7 64.8 54.0 39.8 53.6 

 

weighted average calculated based on the number of samples 

in each subset. The results show that the traditional Bicubic 

method has the lowest recognition rate. The recognition 

accuracy of images reconstructed by SRCNN and HAN 

methods is higher than that of Bicubic, but as general models 

for image super-resolution reconstruction, their results are not 

optimal due to their lack of ability to handle specific scene 

text images. Compared with SRCNN and HAN, TSRN and 

PCAN methods, which use LSTM to capture text context 

information, show a significant improvement in text 

recognition accuracy. TBSRN and MTSR methods, based on 

self-attention mechanisms to capture long-range 

dependencies in text images, achieve relatively good results 

but did not see significant improvements in recognition 

accuracy due to the lack of local detail information. 

Benefiting from the incorporation of text prior information, 

methods like TG, TATT, DPGSR, and TPGSR, which apply 

various text attributes to the SR network, achieve relatively 

better recognition accuracy. Our method performs the best, 

with the weighted average recognition accuracy improving by 

16.9%, 17.6%, and 26.8% for ASTER, MORAN, and CRNN, 

respectively, compared to Bicubic upsampling. Compared to 

the mainstream TPGSR, our model increases the average 

recognition accuracy by 2.9%, 3.6%, and 3.7%. 

 

3.3.2 Comparison of Different Methods 

To visually demonstrate the advantages of our method, we 

performed a visualization comparison. Note that the TBSRN 

and MTSR methods did not provide related resources, so they 

were not included in the visual comparison. We selected two 

images from each of the three subdatasets of the TextZoom 

test set for visual effect comparison, as shown in Figure 4. In 

the figure, red characters represent incorrectly recognized 

characters (for color images, please refer to the electronic 

version of the journal).The images reconstructed by the 

Bicubic method suffer from excessive smoothing, leading to 

an overall blurry visual effect, and they fail to capture sharp 

character edges. The visual effect of the SCRNN and HAN 

methods does not show significant improvements, with poor 

edge integrity. Although the TSRN, PCAN, TBSRN, and TG 

methods can achieve relatively good text image 

reconstruction results, they still face issues with detail 

handling, such as fuzzy boundaries between characters and 

adhesion between adjacent characters. Compared to the 
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earlier methods, while TPGSR and TATT methods can 

generate clearer text images, they still reconstruct incorrect 

character information, lack detail reconstruction in text areas, 

and exhibit artifacts in the text edges. Our proposed method is 

able to better reconstruct semantically accurate text images, 

restore sharp character edges, improve the visual quality of 

scene text images, and is more suitable for the STISR (Scene 

Text Image Super-Resolution) reconstruction task. 

 

3.4 Ablation Study 

 

We employ VDFI to extract multi-granularity features from 

text images, uses CAFM to learn the information correlation 

between different modalities, and combines edge loss  to 

supervise the reconstruction of text edges. To investigate the 

impact of different modules on the final reconstruction 

results, this section analyzes the effectiveness of VDFI, 

CAFM, , and semantic prior information on three test 

subsets: easy, medium, and hard. The experimental results are 

presented in Table 2. Here, avg represents the weighted 

average based on the sample sizes of each subset, the best 

recognition rate is highlighted in bold, × indicates that the 

corresponding module was not used, and √ indicates that the 

corresponding module was used. Swin refers to the use of 

Swin Transformer to extract deep features from images. The 

experimental results show that the model achieves its best 

performance when all modules are included. Compared to 

Swin Transformer, the VDFI module model can improve 

recognition accuracy by 0.7% 

 

 

Table 2: Recognition accuracy of different modules 

Swin Semantic prior VDFI CAFM  avg/% 

× × √ × × 44.2 

× √ √ × × 52.3 

× √ × √ × 52.0 

× √ × × √ 51.4 

× √ √ √ × 53.2 

√ √ × √ √ 52.9 

× √ √ √ √ 53.6 

 

4. Conclusion 
 

We propose a multimodal semantic interaction-based scene 

text image super-resolution network for reconstructing 

semantically accurate text images. By leveraging a semantic 

reasoning module and a multimodal feature extraction 

backbone, our approach effectively integrates local and 

global information, learns semantic interactions between 

modalities, and captures horizontal and vertical textual  

 
Figure 4: Visualization Results of Different Methods on TextZoom 

 

dependencies. Experiments on the TextZoom dataset show 

that our method outperforms state-of-the-art models, with 

improvements in PSNR, SSIM, and recognition accuracy. 

Our approach enhances text readability and sets the 

foundation for future work on non-Latin scripts 

super-resolution. 
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