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Abstract: The proliferation of the Internet of Things (IoT) has intensified the need for secure and reliable routing protocols that can 

operate within the severe resource constraints of IoT devices. Traditional IoT routing protocols (e.g., RPL and AODV) often struggle with 

security vulnerabilities such as blackhole and wormhole attacks, limited scalability, and trade-offs between overhead and performance. In 

this paper, we propose a theoretical design for a blockchain-based secure routing protocol tailored to IoT networks. The design integrates 

a lightweight distributed ledger (using platforms like IOTA’s directed acyclic graph or Hyperledger Fabric’s permissioned blockchain) to 

serve as a shared, immutable memory for routing information. We detail the architectural framework, including resource-aware consensus 

mechanisms and lightweight smart contracts to automate route validation and trust management. Our protocol leverages blockchain’s 

immutability and decentralized consensus to authenticate routing messages, validate route paths, and record reputation metrics for nodes, 

all while minimizing computational and energy overhead on constrained devices. We present an in-depth comparison with RPL and 

AODV, demonstrating improved security (resilience against common attacks), enhanced trust and data integrity, and reasonable scalability 

for IoT deployments. Evaluation criteria are discussed qualitatively, showing that the proposed approach can achieve robust defense 

against blackhole and wormhole attacks, with manageable latency and energy consumption overhead. We also analyze the strengths and 

limitations of the design – highlighting how blockchain adds security and transparency at the cost of extra overhead – and outline future 

research directions to further optimize blockchain-based routing in IoT. The insights and analysis in this paper aim to pave the way for 

next-generation secure and scalable routing protocols suitable for the emerging IoT ecosystem. 
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1. Introduction 
 

The Internet of Things (IoT) connects vast networks of 

resource-constrained devices (sensors, actuators, smart 

appliances) that communicate to deliver innovative services. 

At the heart of IoT communication lies the routing protocol, 

which enables multi-hop data transfer across devices. In low-

power and lossy networks (LLNs) typical of IoT, the IPv6 

Routing Protocol for Low Power and Lossy Networks (RPL) 

has become a de facto standard. RPL builds a Destination-

Oriented Directed Acyclic Graph (DODAG) topology 

optimized for energy efficiency and is widely used in 

applications such as environment monitoring and smart cities. 

Similarly, in mobile or ad-hoc IoT scenarios, classic MANET 

protocols like Ad hoc On-Demand Distance Vector (AODV) 

may be applied due to their reactive route discovery suitable 

for dynamic topologies. However, like other network 

protocols, RPL and AODV were not originally designed with 

strong security against malicious actors, leaving IoT networks 

vulnerable to a variety of routing attacks. 

 

1.1 Security challenges in IoT routing 

 

IoT devices often operate unattended and communicate 

wirelessly, making them easy targets for attackers. Routing 

attacks can degrade network performance or hijack traffic. For 

instance, RPL is susceptible to rank attacks (a malicious node 

advertises a fake optimal route by manipulating its rank value, 

tricking others into routing through it) and blackhole attacks 

(where a node intentionally drops all packets it forward). A 

successful rank attack can effectively create a sinkhole, 

diverting traffic through the attacker, while a blackhole causes 

denial of service by discarding packets. RPL can also suffer 

from wormhole attacks, version number attacks, and other 

exploits of its DODAG maintenance process.  

AODV, on the other hand, can fall prey to classic MANET 

attacks: e.g., in a blackhole attack on AODV, a malicious node 

can respond to route requests with false RREP messages 

claiming a short path (often advertising a very low hop-count 

or high sequence number), then absorb or drop the passing 

traffic. Without additional security, AODV’s route discovery 

trusts the first RREP, which an attacker can exploit. Similarly, 

wormhole attacks may occur when two colluding attackers 

tunnel routing messages between distant parts of the network 

to create a shortcut that attracts traffic, bypassing legitimate 

routes. These attacks not only disrupt IoT applications 

(causing data loss, added latency, or network partitioning) but 

also can be stepping stones to deeper intrusions (e.g., 

intercepting sensor data or injecting false data). 

 

1.2 Limitations of traditional countermeasures 

 

Conventional security solutions for routing (such as 

cryptographic authentication or intrusion detection systems) 

are often hard to directly apply in IoT settings. IoT nodes 

typically have limited CPU, memory, bandwidth, and energy 

supply, so lightweight protocols are required. RPL does define 

some security modes (pre-installed or authenticated keys for 

control messages), but in practice these add significant 

overhead and require key management that might be 

infeasible for large IoT deployments. Many RPL networks 

therefore run in unsecured mode, exposing them to attacks. 

Likewise, secure variants of AODV (e.g., SAODV) use digital 

signatures and hash chains to authenticate routing messages, 

but they incur extra transmission overhead and computational 

cost that battery-powered IoT nodes may not handle well. 

Research has explored trust-based or reputation-based routing 

enhancements (where nodes evaluate the trustworthiness of 

neighbors based on behavior), as well as dedicated detection 

algorithms for specific attacks. While these approaches can 
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mitigate certain threats, they often address one attack at a time 

and may rely on central authorities or assumed trust which 

counteracts the decentralized nature of ad-hoc IoT networks. 

 

1.3   Blockchain as a potential solution 

 

Blockchain technology offers a promising new foundation to 

enhance security and trust in distributed networks. A 

blockchain is essentially a distributed ledger maintained by a 

network of nodes that reach consensus on the ledger’s state. 

Once data are recorded on the blockchain, they are extremely 

difficult to tamper with thanks to cryptographic linking of 

blocks and decentralized consensus. These properties align 

well with the needs of IoT routing security: immutability can 

ensure that once a routing decision or network event is logged, 

it cannot be maliciously altered or repudiated; decentralized 

consensus can remove reliance on any single trusted node 

(important since any IoT node could be captured or become 

malicious); and transparency of the ledger can enable 

auditability of routing behavior (making it easier to detect 

misbehavior). By providing a shared, secure “memory” for the 

network, a blockchain can effectively serve as a trust anchor 

and coordination mechanism among IoT devices. 

 

Previous research indicates that Blockchain-Based Routing 

(BBR) frameworks can improve overall routing performance 

and security by securely storing routing decisions and updates, 

enabling automatic routing management via smart contracts, 

providing robust authentication, and even supporting 

reputation-based or onion-routing schemes. These features 

directly target the pain points of traditional protocols, 

suggesting that a well-designed integration of blockchain 

could yield a secure routing protocol resilient to common 

attacks. 

 

Despite the appeal, integrating blockchain into IoT routing is 

non-trivial. Standard blockchain platforms like Bitcoin or 

Ethereum are far too resource-intensive (in terms of 

computation, energy, and bandwidth) for IoT devices – e.g. 

Proof-of-Work consensus would quickly drain battery-

powered nodes. The challenge, then, is designing a 

lightweight blockchain framework and routing protocol co-

design that preserves IoT-friendly efficiency while 

dramatically enhancing security. In this paper, we focus on a 

theoretical design of such a protocol, called BCR-IoT for 

convenience (Blockchain-based Secure Routing for IoT). We 

choose suitable blockchain technologies (e.g., IOTA or 

Hyperledger Fabric) that are amenable to IoT integration, and 

we incorporate consensus and smart contract mechanisms 

optimized for low-power devices. 

 

We compare our proposed BCR-IoT design with traditional 

protocols (RPL and AODV) in terms of security, scalability, 

and communication overhead. Our analysis shows that BCR-

IoT can significantly bolster security – preventing or 

mitigating attacks like blackholes and wormholes that easily 

defeat RPL/AODV – at the cost of a moderate increase in 

routing overhead. We justify that this trade-off is acceptable 

in many IoT scenarios, especially as devices become more 

capable, and that the improved trust and reliability can enable 

IoT networks to operate in untrusted environments (e.g., 

multi-party ad-hoc networks) where traditional protocols 

would be too risky. Finally, we discuss the strengths and 

limitations of the BCR-IoT approach and outline future 

research directions, such as further optimizations in consensus 

algorithms and real-world prototyping. 

 

2. Background and Related Work 
 

2.1   IoT Routing Protocols and Challenges 

 

2.1.1   RPL – IPv6 Routing Protocol for LLNs 

RPL is a distance-vector routing protocol optimized for low-

power and lossy networks (LLNs), standardized by the IETF 

for IoT scenarios. RPL organizes nodes into a topology called 

a DODAG (Destination Oriented Directed Acyclic Graph), 

rooted at a border router (sink). Each node has a rank (an 

integer or floating metric) signifying its distance to the root 

(e.g., hop count, expected transmission count, or other 

objective function). RPL’s operation is largely proactive: the 

root initiates the network by broadcasting DODAG 

Information Objects (DIO) that propagate through the 

network, allowing nodes to join the graph by selecting 

preferred parents (usually the neighbor with the lowest 

advertised rank). Periodic trickle-timer mechanisms govern 

the frequency of control messages (DIO, and DAO for 

downward routes) to keep overhead low in stable conditions. 

RPL’s strengths include loop avoidance and local repair 

mechanisms, and as studies show, it tends to be power-

efficient and scalable under static conditions – indeed, 

simulations indicate that RPL outperforms AODV in terms of 

power consumption, especially as network size increases. 

RPL’s efficient DODAG maintenance yields stable energy 

usage even as more nodes join, making it suitable for large-

scale, mostly-static IoT deployments. 

 

However, RPL faces issues in dynamic or adversarial 

conditions. Under mobility, RPL’s trickle timers and repairs 

may lag, leading to increased latency or temporary routing 

loops. More critically, RPL is vulnerable to a range of routing 

attacks. We highlighted rank attacks and blackhole attacks 

earlier; additionally, there are sinkhole attacks (malicious 

node impersonates a root or advertises an attractive route to 

draw traffic), wormhole attacks (out-of-band tunnel that 

confuses topology), DODAG inconsistency attacks (spoofed 

inconsistency messages forcing unnecessary repairs), and 

routing information replay or DIS flooding (exploiting the 

DODAG Information Solicitation mechanism to drain nodes’ 

energy). Many of these are exacerbated by RPL’s design 

choices: it trusts routing control messages within the network 

(unless operating in a secure mode which is rarely enabled due 

to complexity), and it lacks built-in verification of route 

optimality or consistency – a malicious node’s claims are 

generally accepted by neighbors in the absence of an external 

trust mechanism. Research has proposed various 

countermeasures, such as intrusion detection systems and 

trust-based RPL enhancements. For example, trust-based RPL 

variants maintain a reputation score for neighbors and avoid 

those with low trust to mitigate blackhole/sinkhole attacks. 

These methods can improve security (one such model 

improved packet delivery and throughput by >35% while only 

modestly increasing power use), but they often require 

complex tuning and are not yet part of the RPL standard. 
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2.1.2   AODV – Ad hoc On-Demand Distance Vector 

AODV is a classic routing protocol initially designed for 

mobile ad-hoc networks (MANETs), which has also been 

applied in IoT contexts (particularly IoT networks with 

dynamic topology or no fixed infrastructure). Unlike RPL, 

AODV is a reactive protocol: it discovers routes on-demand. 

When a source node needs a route to a destination, it 

broadcasts a Route Request (RREQ) which floods through the 

network. When either the destination or an intermediate node 

with a fresh route to the destination receives the RREQ, it 

responds with a Route Reply (RREP) that traces back to the 

source, establishing the forward path. AODV maintains routes 

as needed and times them out if unused, and uses Route Error 

(RERR) messages to notify nodes of link breakages. One key 

feature is AODV’s use of sequence numbers to ensure loop-

free and up-to-date routes (the sequence number indicates the 

freshness of routing information). Because of its on-demand 

nature, AODV can be more efficient than proactive protocols 

in networks where traffic is sporadic or the topology changes 

frequently – it avoids the overhead of maintaining routes that 

are never used. However, AODV may introduce higher 

latency for initial packet delivery due to the route discovery 

process. 

 

In IoT scenarios (e.g., a swarm of drones or vehicles 

communicating, or a wireless sensor network that isn’t easily 

structured into a tree), AODV can provide flexibility. But 

similar to RPL, vanilla AODV lacks intrinsic security. It is 

well documented that AODV is susceptible to routing 

misuses: a notorious example is the blackhole attack, where a 

malicious node answers RREQs with bogus RREPs claiming 

a very short path, then drops all data packets that arrive. Since 

AODV nodes typically choose the first or best RREP and have 

no knowledge of the network beyond their neighbors, they can 

be easily misled by such false replies. Cooperative blackhole 

(multiple colluding attackers) and gray hole (selective 

dropping) attacks further challenge AODV’s reliability. 

Another issue is wormhole attacks, in which two distant 

attackers tunnel RREQ/RREP packets between them: this can 

create the illusion that two far-apart nodes are neighbors, 

resulting in routes that pass through the wormhole pair. 

AODV (and indeed any routing protocol without geographical 

or temporal checks) has difficulty detecting wormholes 

because the routing packets themselves do not appear 

malicious – they arrive with valid data but from unexpected 

locations. Standard AODV also doesn’t authenticate the 

source of routing messages, making it vulnerable to 

impersonation or Sybil attacks (an attacker can fabricate 

multiple identities to influence routing). Researchers have 

proposed enhancements like Secure AODV (SAODV) which 

introduces cryptographic signatures for RREQ/RREP and 

hashing for hop counts. SAODV can thwart impersonation 

and ensure that route advertisements are authentic, but it still 

might not fully stop wormholes (as those could forward even 

authentic packets). More recently, innovative ideas such as the 

use of blockchain and trust in AODV have been explored. For 

example, Ran et al. (2021) proposed an improved AODV that 

uses a blockchain to store node state and deploy smart 

contracts to select routes meeting QoS constraints, effectively 

finding multiple disjoint paths (one main, one backup) to 

improve reliability. Their simulation results showed 

performance gains especially under malicious conditions, 

hinting at the potential of blockchain to harden AODV-like 

protocols. 

 

2.2 Blockchain Technologies for IoT Integration 

 

2.2.1   Blockchain fundamentals 

A blockchain is a distributed ledger consisting of an append-

only chain of blocks, where each block contains a set of 

transactions and a cryptographic hash of the previous block. 

A network of nodes maintains the blockchain through a 

consensus mechanism that ensures all honest nodes agree on 

the contents of the ledger. The absence of a centralized 

authority and the tamper-evident nature of the ledger make 

blockchains attractive for establishing trust in open networks. 

Beyond cryptocurrencies, blockchain systems can record 

arbitrary data with associated smart contracts – essentially 

code that executes on the blockchain to enforce custom rules 

or automate operations. Key properties of blockchain relevant 

to routing are: immutability (once a routing event is recorded, 

it cannot be altered unnoticed), decentralization (no single 

point of failure or trust), transparency (important events are 

visible to all participants, aiding audit and forensics), and 

authentication (transactions are signed by nodes’ private keys, 

ensuring accountability for actions). These can directly 

enhance security: for instance, if routing control messages or 

metrics are stored on a ledger, an attacker cannot forge or 

tamper with them without detection. Additionally, distributed 

consensus means an attacker would need to subvert a majority 

of the network (often economically or computationally 

infeasible) to corrupt the routing information, dramatically 

raising the bar for potential attackers compared to targeting a 

single root or flooding a network with fake messages. 

 

2.2.2   Lightweight and IoT-oriented ledgers 

Traditional blockchains like Bitcoin’s are too heavy for IoT 

(in terms of energy for Proof-of-Work and data volume). 

Fortunately, alternatives more suitable for IoT have emerged. 

IOTA is one prominent example – it’s an open distributed 

ledger specifically designed for the “Internet of Everything” 

(IoE) and IoT context. IOTA eschews the conventional linear 

blockchain in favor of a Directed Acyclic Graph (DAG) called 

the Tangle. In IOTA, each transaction verifies two previous 

transactions via a small Proof-of-Work, resulting in a DAG of 

transactions rather than sequential blocks. This design yields 

feeless transactions (no miners to pay) and theoretically high 

scalability as more transactions lead to faster confirmation 

(through parallelism). For IoT devices, the lack of fees and the 

ability to perform tiny transactions (even a single sensor 

reading) are advantageous. However, IOTA’s consensus 

(especially in its early iterations) relied on a Coordinator node 

for finality, raising questions of centralization – the IOTA 

Foundation has been working on “coordicide” to remove that. 

Still, IOTA remains attractive for IoT scenarios like sensor 

data integrity and lightweight trust, and it can support simple 

smart contracts through second-layer solutions. 

 

On the other side of the spectrum, Hyperledger Fabric 

represents a permissioned blockchain approach suitable for 

controlled IoT environments (e.g., industrial IoT managed by 

a company or consortium). Hyperledger Fabric is an open-

source enterprise-grade distributed ledger platform, which 

allows networks of known participants (permissioned 

identities). It features a modular architecture with pluggable 
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consensus and advanced privacy features like channels 

(subnets of the blockchain where a subset of nodes can 

conduct private transactions). Fabric does not require energy-

intensive mining; instead, it can use crash fault tolerant or 

byzantine fault tolerant consensus algorithms (such as Raft or 

PBFT) to achieve finality in a matter of seconds or less. Smart 

contracts (chaincode) in Fabric can be written in general-

purpose programming languages and are executed by 

endorsing peers. For IoT, Fabric’s permissioned model means 

that devices or gateways are registered with cryptographic 

identities by an administrator, which immediately mitigates 

Sybil attacks (no unverified device can join pretending to be 

many nodes). Its channel mechanism can confine routing-

related transactions to relevant participants, saving bandwidth. 

Fabric’s privacy controls ensure that only authorized nodes 

see certain data – useful if routing information is sensitive 

(e.g., could reveal device roles or locations). There have been 

prototypes where Hyperledger Fabric is integrated with IoT 

networks for access control and secure data sharing, showing 

viability in practice. The trade-off is that running even a Fabric 

client or node may be heavy for a tiny sensor; thus, often IoT 

architectures with Fabric assume that IoT devices 

communicate with a more powerful gateway, which in turn 

interfaces with the blockchain network. 

 

2.2.3   Related work on blockchain-based routing 

In recent years, researchers have started exploring blockchain 

or distributed ledger systems to secure routing in various 

contexts. A survey by Wijesekara et al. (2023) analyzed 

dozens of Blockchain-Based Routing (BBR) proposals and 

found that about 20.5% of these were geared towards IoT 

networks. These BBR proposals often leverage blockchain in 

several ways: (1) to store routing information (routes, metrics, 

topology changes) immutably on a ledger; (2) to use smart 

contracts for automating routing decisions or enforcing 

forwarding agreements; (3) to provide inherent authentication 

and identity management for routers (every node has a 

blockchain identity, making it harder for an attacker to spoof 

another node); (4) to implement reputation systems where 

nodes’ trustworthy behavior is recorded and evaluated on-

chain; and (5) to create incentive mechanisms (often via 

micropayments or cryptocurrency) that reward honest routing 

behavior and penalize malicious acts. For example, Ramezan 

and Leung (2018) proposed a Blockchain-based Contractual 

Routing (BCR) protocol for IoT, using Ethereum smart 

contracts to handle route establishment as a contract between 

nodes. In their design, intermediate nodes would be 

compensated for forwarding packets as per the contract, and 

any misbehavior (like dropping packets) could be detected and 

lead to loss of reward – aligning economic incentives with 

truthful routing. Another work, called MARS (Monetized Ad-

hoc Routing System), presented a position paper on using 

cryptocurrency payments to incentivize packet forwarding in 

MANETs. These approaches indicate that blockchain can 

introduce a notion of trust and accountability economically, 

which was never present in traditional ad-hoc routing. 

 

Beyond incentives, purely technical enforcement has been 

explored. For instance, Chen et al. (2023) developed a 

blockchain-based RPL optimization to secure and stabilize 

IoT routing: their method recorded certain routing information 

on-chain and ensured data integrity and security while actually 

improving energy consumption and route stability in critical 

IoT applications. This suggests that, if designed carefully, 

blockchain integration need not come at a huge cost to 

performance; it can be leveraged to optimize as well (e.g., by 

providing a reliable global view of the network state to aid 

route selection). Additionally, blockchain has been combined 

with emerging techniques like machine learning for secure 

routing. A recent framework used Hyperledger Fabric with an 

ML-based consensus to filter out outlier (potentially 

malicious) routing data, thereby creating an outlier-aware 

secure consensus for IoT routing updates. 

 

In summary, the literature highlights that blockchain can 

secure routing by making the network collectively uphold 

routing correctness rather than trusting individual nodes. 

However, a gap remains in fully specifying a practical, end-

to-end design that is implementable on constrained devices. 

Many proposals are at conceptual or simulation stages, and 

real-world deployments are still rare. In the following 

sections, we build upon these ideas to describe our unified 

design for a blockchain-based secure routing protocol in IoT, 

explicitly addressing the issues of resource constraints, 

security attack coverage, and comparative performance with 

existing protocols. 

 

3. Proposed Blockchain-Based Secure Routing      

Protocol (BCR-IoT) 
 

In this section, we present the design of BCR-IoT, a 

Blockchain-Based Secure Routing Protocol tailored for IoT 

networks. The design is theoretical, but we ground it in 

realistic assumptions about IoT hardware and emerging 

lightweight blockchain frameworks. We begin with the 

architecture of the network and system, then detail the route 

discovery and validation mechanisms that intertwine with the 

blockchain ledger. We describe the chosen consensus 

mechanism and how it is optimized for resource-constrained 

settings, and we discuss the use of lightweight smart contracts 

to automate trust management and routing decisions. Our 

design goal is to maximize security and trustworthiness of 

routing with minimal additional overhead, by intelligently 

offloading heavy tasks to more capable nodes or distributing 

them over time. 

 

3.1 Architecture Overview 

 

The proposed architecture consists of three main layers of 

entities (illustrated in Figure 1): (1) the IoT Devices 

(sensor/actuator nodes that need routing), (2) the Miner or 

Validator Nodes (which maintain the blockchain ledger and 

run most of the blockchain logic), and (3) an optional 

Gateway/Edge layer that interfaces between the constrained 

devices and the blockchain network. This architecture 

leverages the heterogeneity often present in IoT networks – 

not all nodes are equally resource-constrained. We assume 

that at least a small subset of the network (it could be 

dedicated devices, cluster heads, or edge servers) has 

comparatively higher capabilities (energy, computation, 

storage) and can shoulder the burden of blockchain 

operations. Regular IoT devices participate in routing by 

sending and receiving packets and providing authentication 

(digital signatures) for their messages, but they do not perform 

expensive consensus algorithms. Instead, they rely on the 

miner/validator nodes to add records to the distributed ledger 

Paper ID: SE25710115055 DOI: https://dx.doi.org/10.70729/SE25710115055 59 of 71 

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/


International Journal of Scientific Engineering and Research (IJSER) 
ISSN (Online): 2347-3878 

SJIF (2024): 6.623 

Volume 13 Issue 7, July 2025 

www.ijser.in 
Licensed Under Creative Commons Attribution CC BY 

on their behalf. This division of roles keeps the overhead on 

tiny devices low, while still achieving a decentralized trust 

model via the validators. 

 

 
Figure 1: Proposed Architecture overview 

 

We organize IoT devices into clusters, each managed by a 

more capable cluster head (CH) node (shown in blue). The 

CHs collectively form a peer-to-peer blockchain network to 

maintain the ledger of routing information. Regular IoT 

devices (green nodes) are connected to their local CH, which 

serves as their gateway to the blockchain. In this design, IoT 

devices do not communicate with the blockchain directly; 

instead, CHs verify device identities, collect routing 

information (such as route requests, acknowledgments, etc.), 

and publish transactions to the blockchain. The CHs reach 

consensus on the blockchain state (for example, using a 

Byzantine fault tolerant algorithm or an IOTA-like gossip), 

thereby ensuring that all CHs (and thus all clusters) share a 

consistent, tamper-proof view of network routes and node 

reputations. This hierarchical approach balances 

decentralization with efficiency: trust is distributed among 

multiple CH nodes, and there is no single point of failure, yet 

individual low-power nodes are spared the cost of running a 

full blockchain client. 

 

IoT devices and identities: Each participating IoT device is 

provisioned with a unique cryptographic identity (e.g., an 

ECC public/private key pair). This identity is used to sign 

routing messages and transactions, binding actions to the 

device and preventing impersonation. The identity can be 

established by a one-time registration on the blockchain 

(perhaps via the gateway or CH): for example, when a new 

node joins, its public key and an identifier (like a hash of its 

MAC or a logical ID) are recorded on the ledger by an 

authorized entity (this could be done by a system 

administrator or via a self-registration smart contract if the 

network allows open joining with certain proofs). We assume 

a permissioned participation model for simplicity – meaning 

unknown devices cannot participate in routing until they 

register – but the consensus is decentralized among the known 

participants. This addresses Sybil attacks since creating a fake 

identity would require registering a new key on the 

blockchain, which the consensus can control or rate-limit. 

Once identities are set, all routing protocol messages (Route 

Requests, Replies, etc.) will be signed by the sender’s private 

key. Neighboring devices and CHs will verify these signatures 

against the sender’s public key (retrieved from the 

blockchain’s identity registry). This cryptographic 

verification ensures authenticity of routing messages: a 

malicious node cannot masquerade as someone else, and 

injected fake messages (not signed by any known key) will be 

discarded as invalid. 

 

Miner/Validator nodes: In our architecture diagram (Figure 1), 

the cluster heads (CH1, CH2, CH3) act as validator nodes that 

maintain the blockchain. They form a peer-to-peer network 

among themselves (shown by the horizontal connections 

between CHs) and run a consensus algorithm to agree on new 

blocks. Depending on deployment, these could be special IoT 

devices with extra resources, or simply a role assigned to a 

few normal devices. We might also consider that every IoT 

device above a certain capacity could run the blockchain 

software – the design is flexible to network size. For clarity, 

we depict a clustered scenario where each CH represents a 

group of devices. The blockchain maintained by the CHs 

contains entries such as: route discovery transactions, route 

validation records, and node behavior logs (trust scores, 

misbehavior reports). Because the blockchain state is shared, 

even if one cluster is under attack, other validators ensure the 

integrity of data – an attacker would have to corrupt a majority 

of CHs to subvert the ledger, which is much harder than 

attacking individual links or nodes as in traditional routing. 

 

Gateway functionality: If a strict clustering is not present, a 

generic gateway concept can be applied. A gateway (which 

could coincide with a CH or be another edge device) handles 

communications between low-power nodes and the 

blockchain network. IoT devices might talk to a gateway using 

a lightweight protocol (like BLE, Zigbee, or CoAP/UDP) and 

the gateway translates and forwards relevant info to the 

blockchain network (over, say, TCP/IP). The gateway also 

buffers and aggregates updates to avoid overloading the ledger 

with frequent small transactions. In many IoT systems (like 

LoRaWAN or NB-IoT networks), such gateways are naturally 

present; our protocol can be embedded partly in gateway 

software to leverage that existing component. 

 

3.2 Route Discovery with Blockchain Integration 

 

3.2.1   Baseline routing approach 

Our protocol follows a route-on-demand philosophy similar to 

AODV, adapted for blockchain support. We choose on-

demand routing because it naturally fits an event-driven 

logging system (blockchain) – routes are discovered and can 

be logged when needed, rather than attempting to log every 

periodic update as would happen in a proactive protocol like 

RPL (which could overwhelm the ledger with constant data). 

However, we incorporate certain elements of RPL’s approach 

for efficiency, such as preferring reliable links and 

maintaining some local route caching to reduce the frequency 

of discoveries. 

 

When a source IoT device (let’s call it Node S) has data to 

send to a destination device Node D and does not have a 

current route, it initiates a Route Request (RREQ). Node S 

constructs an RREQ packet containing: its own ID, the 

destination ID, a route request sequence number (to match 

replies and prevent replay), and possibly some metrics (e.g., 

current battery level or required QoS). Crucially, Node S signs 

the RREQ with its private key. This RREQ is then broadcast 

to S’s neighbors (if multi-hop at device level) or simply sent 

to its cluster head/gateway (if a star topology per cluster). We 
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assume neighbors or the CH verify the signature and then 

process the RREQ. 

 

In a pure peer-to-peer scenario, each receiving node (let’s call 

one Node X) will verify the RREQ’s signature (ensuring it 

indeed originated from S), then check if it has seen this RREQ 

before (via sequence number and source ID). If not, it records 

the RREQ (to avoid rebroadcast loops) and appends its own 

ID to the route record in the RREQ before forwarding it 

onward. This ID list constitutes the discovered path as the 

RREQ propagates. Node X then rebroadcasts the RREQ 

further (or passes it to its CH to broadcast to other clusters). 

This is similar to AODV’s flooding mechanism, but one key 

difference is that each node signs the portion of the RREQ it 

forwards or at least signs a statement “I forwarded this RREQ 

at time T”. We can achieve this without excessive overhead 

by having each node’s signature on the accumulated route info 

or by separate small attestation transactions to the ledger 

(more on this shortly). 

 

Eventually, the RREQ reaches either the destination D or an 

intermediate node that has a fresh route to D. Suppose it 

reaches D. Node D now prepares a Route Reply (RREP). In 

our design, the RREP will carry the complete route (the 

sequence of node IDs) from S to D that was accumulated. It 

also carries the original sequence number from S’s request. 

Node D signs the RREP (ensuring authenticity of the reply), 

and unicasts it back towards S along the reverse of the 

discovered path. Since each node in the path knows from the 

RREQ which neighbor it received the request from, it can 

forward the RREP along that chain. Alternatively, and more 

securely in our case, Node D could create a transaction on the 

blockchain to publish the discovered route. For example, D 

(or the first CH that sees the RREP) submits a “RouteReply” 

transaction that includes the hash of the route (or the full 

route), the source, destination, and a timestamp, all signed by 

D. This acts as a ledger-record of the route. 

 

3.2.2 Blockchain-based validation of route 

Once the route is reported (either via transactions as it was 

discovered, or via the final RREP transaction), the validator 

nodes (CHs) engage to validate the route. Validation means 

checking that: (a) all nodes on the route are legitimate 

(registered in the blockchain’s identity list), (b) the route does 

not contain any obvious inconsistency (like a loop or a 

forbidden node), and (c) each hop on the route was actually 

witnessed by the supposed intermediate node. Condition (c) is 

novel – how do we ensure each link was genuine? We 

implement a mechanism wherein intermediate nodes, upon 

forwarding the RREQ, also post a route witness transaction. 

Specifically, when Node X forwards a RREQ to Node Y, 

Node X can submit a tiny signed statement to the blockchain: 

“X heard RREQ S−>…−>XS->…->X and forwarded to Y at 

time t”. Alternatively, Node X might simply sign the RREQ’s 

content and include it in the RREQ itself (a cumulative 

signature approach), but that can bloat the packet. Offloading 

to blockchain means we separate concerns: the network 

propagates minimal info, and the blockchain carries the 

heavier audit trail. So, as the RREQ propagates through CHs, 

those CHs (on behalf of their member nodes) collectively add 

entries like “Node A -> Node B neighbor relation observed for 

RREQ #123” onto the ledger. This creates a chain of custody 

for the route discovery. 

When Node D’s RouteReply transaction is added, validators 

cross-check it against these prior “neighbor witness” 

transactions. If every pair of consecutive nodes (U,V) in the 

route had earlier logged that they have a direct communication 

for that RREQ, the route is confirmed consistent. If any link 

in the route was fabricated (e.g., an attacker injected a fake 

neighbor), the ledger would lack a corresponding witness 

from the supposed transmitter or receiver, and the validators 

would reject the RREP transaction as invalid. This approach 

thwarts wormhole attacks: in a wormhole, two far apart nodes 

(say M and N) might appear adjacent in the route without 

having direct radio contact. In our system, when M forwards 

to N via a wormhole tunnel, N can log a witness “N heard 

RREQ from M”, but M and N are not real neighbors in the 

network topology – how would the system detect that? If M 

and N collude fully, they could both log witness transactions 

(M says “I forwarded to N”, N says “I received from M”). To 

address this, we might integrate geographic or timing 

information: e.g., a witness transaction could include a 

timestamp and perhaps the signal quality of the heard RREQ. 

If M and N are distant, their transmission time and reception 

time might not line up with a single-hop radio propagation 

(especially if the wormhole transmission took longer). Also, 

other nearby honest nodes of M or N might dispute the 

neighbor relation (if N is not within radio range of M, 

normally N’s neighbors wouldn’t include M; a smart contract 

could flag if an alleged new neighbor relation pops up that 

contradicts known distance or coverage data). Admittedly, 

complete wormhole mitigation may require additional 

methods (like distance bounding or radio watermarking), but 

the blockchain provides a framework to store and analyze 

such evidence. For our theoretical design, we assume either 

the wormhole can be detected by inconsistent timing or the 

need for multiple colluders makes it detectable by unusual 

patterns in the ledger. 

 

Once the route is validated, it is considered an agreed route 

and can be used for data forwarding. Node S can now send its 

data packets along the path S->…->D. We require that each 

data packet is marked with an identifier of the route (e.g., a 

route ID or the hash of the node sequence) and possibly 

sequence numbers, and that nodes along the way only forward 

it if it matches the route they agreed to forward. Because the 

route was established via a contract, intermediate nodes have 

essentially committed to forward packets for a session from S 

to D. This could be enforced by a smart contract that holds a 

security deposit for each node or a reputation stake; however, 

in a purely theoretical design, we can simply rely on the 

auditability: if an intermediate node drops the packet, the 

destination D won’t see it and can trigger an alert (perhaps 

sending a “packet not received” event to the blockchain after 

a timeout). The contract then could decrement the reputation 

of the suspect node or mark that node as a potential blackhole 

in the ledger. 

 

3.3 Consensus Mechanism for the Blockchain 

 

The choice of blockchain platform (and thus consensus 

algorithm) is critical to ensure the system remains lightweight. 

We consider two scenarios aligned with the platforms 

mentioned: one using IOTA (DAG-based) and one using 

Hyperledger Fabric (permissioned BFT). Both avoid Proof-

of-Work mining in the classical sense. 
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In an IOTA-based design, every validator (CH or capable IoT 

node) participates in the Tangle by issuing transactions. When 

a validator needs to add a new record (say a route witness or 

route reply), it selects two tip transactions to approve (per 

IOTA protocol) and does a small Proof-of-Work to attach the 

new transaction. The small PoW is sized such that even IoT-

class processors (with perhaps tens of MHz CPU) can 

compute it in a fraction of a second, ensuring that adding a 

transaction doesn’t stall the network. As transactions 

accumulate, the consensus emerges from the weight of 

cumulative approvals. The final confirmation time in IOTA 

can be on the order of seconds. One advantage of IOTA is 

scalability: as IoT devices generate more transactions (like 

many route updates), the network can theoretically handle 

more throughput since validation is parallelized. Another 

advantage is that IOTA has no miners or transaction fees – this 

is important because IoT nodes cannot handle complex reward 

mechanisms or micropayments with fees for something as 

frequent as routing updates. By using IOTA’s DAG, every 

node that issues a transaction contributes a bit of work and 

helps confirm others, sharing the burden. However, pure 

IOTA (at least historically) had issues with partition tolerance 

and required a coordinator for finality; in our theoretical 

design, we’ll assume a coordinator-free IOTA where a 

lightweight consensus (like tip selection and maybe a voting 

mechanism for conflict resolution) runs distributed among 

CHs. If conflicts occur (e.g., two different routes submitted at 

same time for the same source-dest), a rule is in place – 

perhaps the one with more cumulative weight wins or the 

earliest timestamp wins if no conflict in ledger references. 

In a Hyperledger Fabric-based design, since the set of 

validator nodes (CHs) is known and permissioned, we can use 

an efficient consensus like Raft (Crash Fault Tolerant) or a 

lightweight Byzantine Fault Tolerance (like Istanbul BFT or 

Simplified PBFT) given the scale is relatively small (maybe 

tens of validator nodes). Fabric’s approach would involve an 

ordering service: one or more CHs act as orderers to collect 

transactions, order them, and package them into blocks, which 

then get distributed to all CHs. The ordering service can be 

made crash fault tolerant (which is fine if we assume CHs are 

mostly honest but we want reliability), or if we suspect up to 

f of N CHs might be malicious, a BFT ordering service can be 

used to still guarantee consistency as long as a majority (or 

supermajority) are honest. The consensus in Fabric ensures 

immediate finality of blocks – once a block is agreed and 

committed, it’s final (no forks). This is beneficial for a routing 

scenario because nodes can trust the route information as soon 

as it’s committed, without worrying about chain 

reorganizations. The latency for consensus in a LAN 

environment can be around 50–500 ms for Fabric (depending 

on settings and number of nodes) which is low. We would 

configure Fabric’s block time or block size to be small, to 

commit routing info quickly. For example, each RREQ or 

RREP transaction could be committed in the next block within 

a second. Fabric also allows us to implement the logic as 

chaincode: e.g., a chaincode that automatically checks those 

“witness” records and validates route transactions could run 

as part of transaction validation phase, making consensus 

decisions partly application-aware (smart contract-enabled 

consensus). 

 

We emphasize that Proof-of-Work (PoW) is avoided in our 

protocol (except for IOTA’s negligible PoW) due to energy 

concerns. We also avoid Proof-of-Stake (PoS) with token 

incentives in this context because IoT networks may not have 

a concept of cryptocurrency readily integrated, and we want 

to minimize complexity. However, one could imagine a 

variant where each node has a stake (like reputation or 

deposit) that it could lose if it misbehaves; that’s more of a 

penalty mechanism than a consensus mechanism. Recent 

research has even suggested IoT-specific consensus like 

Proof-of-Resource (PoR) where nodes prove they have certain 

resources (like free memory or sensors) to earn the right to 

publish blocks. Such approaches are intriguing as future 

directions – they could allow even sensor nodes to partake in 

consensus by leveraging the very resource constraints (for 

example, demonstrating you have sufficient battery and radio 

bandwidth before being allowed to add many transactions, to 

prevent spam). 

 

In our design’s default mode, consensus is maintained by a 

small subset of moderately powerful nodes. This keeps the 

blockchain lean (not every sensor does everything) and fits 

with many real deployments where perhaps each field site or 

area has a gateway. If fully decentralized (every node a 

validator) is desired, one could scale down the consensus (e.g., 

use a simplified consensus where each node takes turns to add 

blocks in a round-robin – effectively Proof-of-Authority by 

rotation). The main security consideration is that the 

consensus algorithm should tolerate some fraction of nodes 

being malicious, since we are explicitly trying to secure 

against insider threats (compromised IoT nodes). Therefore, a 

BFT-style consensus (able to handle f malicious out of n) is 

preferable to a simple leader election. Many permissioned 

blockchains (Fabric, Quorum, etc.) already implement such 

BFT consensus or can plug one in. 

 

3.4 Lightweight Smart Contracts for Routing and Trust 

 

Smart contracts in the BCR-IoT protocol are used to automate 

verification and enforcement tasks that would otherwise be 

difficult to manage in a distributed setting. We design these 

contracts to be lightweight – meaning the logic is 

straightforward and executes with low computational 

overhead – so that even constrained environments or limited-

execution platforms (like IOTA’s second-layer or Fabric’s 

chaincode on small VMs) can run them. 

 

The primary smart contract (or set of chaincode functions) in 

our system has the following responsibilities: 

 

a) Route Validation Contract 

This contract is invoked when a proposed route is submitted 

(as in the RREP stage). It automatically checks the ledger for 

the requisite witness transactions from each hop. Pseudocode 

logic: on Route Proposal(route R, source S, dest D): for each 

consecutive pair (node i, node_{i+1}) in R, look up a recent 

“Link Proof” event for those two nodes under the same RREQ 

ID; if any link proof is missing or if any node in R is not 

registered/authorized, then reject the transaction; else accept 

and mark route R as valid until a certain expiration time. By 

doing this in a contract, we eliminate manual offline checking 

– the consensus nodes all run this same code and will only 

commit the route if it passes. This ensures all validators 

enforce the same security policy for routes. The result is that 

only legitimate routes get recorded. 
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b) Reputation/Trust Management Contract  

We include a contract that keeps track of a trust score or 

reputation for each node. This score can be simple (e.g., an 

integer count of misbehaviors or a rating between 0 and 100). 

Initially, all nodes might start with a neutral score. The ledger 

updates this score based on certain events: 

• If a node is part of a route that successfully delivered data, 

perhaps it gains a small trust increment (or conversely, you 

mainly decrement on bad behavior). 

• If a node was supposed to forward a packet but was 

suspected of dropping it (for example, the destination 

reports a packet loss or an intermediary watchdog node 

reports a drop), the contract will decrement that node’s 

trust. 

• If a node issues an invalid transaction or is caught in an 

attempted attack (e.g., it claimed a neighbor that was not 

actually a neighbor, or it tried to flood the network with 

RREQs above a threshold), its trust score drops 

significantly. 

• Optionally, periodic “rewards” for good participation 

(staying online, responding to RREQs, etc.) could boost 

trust to incentivize reliability. 

 

The trust scores stored on-chain are accessible to the routing 

protocol: when selecting routes, the protocol (via the CH or 

via the contract itself) can prefer routes that avoid low-trust 

nodes. For instance, if two route replies come back, one 

including a node with very poor trust, the source (or a smart 

contract) can disregard that route. In extreme cases, the 

contract can blacklist a node (trust score too low) which 

essentially means excluding it from routing entirely until 

possibly re-authenticated or manually reset. This creates a 

self-policing network: repeated malicious actions get logged 

and that node is gradually isolated. Traditional routing lacked 

this memory – once an attack happened, nodes had to 

independently decide to avoid someone, whereas here the 

knowledge is global and persistent. 

 

c) Incentive Contract (optional)  

If we integrate a token mechanism (which could be a custom 

token on the ledger), a contract could implement 

micropayments for forwarding. For example, the source S 

attaches a tiny reward for delivering a packet to D. On 

successful delivery (D or intermediate nodes could log an 

acknowledgment transaction when they forward or receive 

data), the contract releases the reward to the forwarding nodes. 

Conversely, if delivery fails and a particular node is identified 

as dropping, that node might lose a collateral deposit. This 

idea, similar to the “contractual routing” model and prior 

works like Sprite (a credit-based system for ad-hoc networks), 

can directly motivate nodes to participate correctly. However, 

implementing this requires a currency and handling the 

complexities of who pays and how to prevent abuse (e.g., an 

attacker might try to farm rewards by spamming its own 

routes). For our theoretical design, we consider this an 

optional extension for scenarios where an incentive layer is 

appropriate (such as a multi-owner IoT network where devices 

belong to different stakeholders and need compensation to 

relay others’ traffic). 

 

d) Topology and Performance Contract (monitoring) 

Another auxiliary contract can monitor general network health 

– for example, tracking how many RREQs are going on, how 

many get replies, average hop count, etc. This is more for 

analysis and optimization: the contract could flag if certain 

areas have consistently long routes (maybe suggesting a new 

CH needed), or if a particular node seems to attract a lot of 

traffic (perhaps a hint of a central data aggregator that might 

become a bottleneck or target). This goes beyond classic 

routing into network management, but since we have the data 

on-chain, it’s feasible to use it. 

 

The lightweight nature of these contracts is seen in that each 

operation is simple lookups or additions, and often the logic 

triggers only on certain events (route discovery, packet 

delivery). They do not require heavy computation like large-

scale matrix math or big data processing on-chain. By keeping 

contracts simple, we minimize the execution cost on the 

blockchain nodes and reduce latency. 

 

It’s worth noting that IOTA’s base protocol does not natively 

support expressive smart contracts on the ledger (it’s more a 

transaction ledger), but the IOTA Smart Contract (ISC) layer 

or integrating with an off-chain compute can achieve similar 

outcomes. In a Fabric scenario, chaincode easily handles all 

the above as it’s essentially running on a host machine. 

 

e) Security of contracts  

We make sure these contracts themselves are secure: e.g., the 

route validation contract should only accept properly signed 

witness logs; the trust update contract should ensure one event 

triggers one update (to avoid a malicious spammer giving 

someone bad reputation by faking multiple reports – but since 

all reports are signed by real nodes, that is controlled). Also, 

we ensure that a compromised node cannot directly 

manipulate its trust score – it would have to misbehave and 

get caught to be lowered, or behave to be raised, as the logic 

is predetermined. The immutability of the blockchain means 

the history of trust changes is available for auditing if needed 

(for example, an owner of a device might want to dispute if 

their device was unfairly blacklisted – they can see all 

recorded incidents). 

 

3.5 Route Maintenance and Updating the Ledger 

 

Routes in IoT networks can break due to node mobility, node 

failure (battery depletion), or environmental changes affecting 

link quality. Our BCR-IoT protocol handles route 

maintenance similarly to traditional protocols but adds the 

blockchain logging for consistency and security. 

 

If a link on a route breaks (e.g., node X cannot reach node Y 

anymore due to Y moving out of range or shutting down), X 

will detect a link failure (no link-layer ACK or an error from 

the MAC). In a normal AODV, X would send a RERR to the 

source to notify that route is invalid. We do the same but with 

signed RERR messages. When a RERR is generated, it is also 

posted to the blockchain: a RouteError transaction stating 

“Link X->Y on route S-D broken at time t”. This promptly 

invalidates the route in the ledger’s view. The source S on 

seeing the RERR (or on observing on the ledger) knows it 

must initiate a new route discovery if it still has data for D. 

The trust management contract may treat frequent link 

breakage differently from malicious drop – link break is not 

malicious per se, so it might not penalize X or Y (except if 
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there is suspicion that one of them deliberately went silent; but 

that’s hard to distinguish from normal failure). 

 

Because the blockchain keeps track of active routes, we can 

also optimize route discovery frequency: if the same source S 

and dest D communicate often, S can check the ledger if a 

valid recent route exists before flooding a new RREQ. Even if 

S had not cached it, the blockchain might have it. This is 

effectively leveraging the blockchain as a distributed cache or 

routing table. All nodes can query it (through their CH) to find 

if a route to a given destination is known. This “global 

memory” aspect can reduce overhead by reusing routes 

network-wide, something not possible in purely local 

algorithms. However, we must ensure using a cached route is 

safe – the ledger would have an expiration or a last-seen 

timestamp, and if that is older than some threshold (or if a 

RERR was logged later), it should be considered stale. If up-

to-date, using it avoids a new flood, saving energy and time. 

Scalability considerations: The architecture and protocol 

described are intended to scale to networks of potentially 

hundreds or thousands of IoT devices, but not unlimited size. 

One must consider how the blockchain itself scales: if using 

cluster heads, as clusters grow, CHs may become a bottleneck. 

This can be alleviated by increasing the number of CHs (more 

clusters with fewer devices each), or by using a multi-tier 

blockchain (e.g., each region has its own ledger and 

occasionally syncs with others – beyond our current scope but 

a possible extension). The amount of blockchain traffic is 

proportional to routing activity; in relatively static networks 

with occasional data flows, this is small. In worst-case 

scenarios (very dynamic network with continuous flows), the 

overhead could be high – optimizations like aggregate 

transactions, limiting frequency of route updates, or even 

using probabilistic routing with partial info might come into 

play. 

 

We assume typical IoT conditions: mostly stable topology 

with infrequent changes, so the blockchain overhead is 

amortized. In extremely dynamic cases, one might integrate 

our design with opportunistic routing and only use blockchain 

for crucial transactions. 

 

Finally, we highlight an implicit assumption: the 

communication between IoT devices and CHs, and among 

CHs, needs to be secure (to not introduce a new vulnerability). 

We rely on the fact that all messages are signed and that CHs 

run the consensus – so even if an attacker eavesdrops or injects 

at the radio level, they cannot forge a signed message or alter 

the blockchain without keys. Encryption of data packets can 

be done at the application layer if needed; the routing protocol 

itself doesn’t need to encrypt RREQs/RREPs (they’re not 

secret), but could if privacy is a concern (though then 

intermediate forwarding becomes tricky if payload is 

encrypted; likely better to keep routing messages 

authenticated but plaintext). 

 

With the design laid out, we next compare its expected 

performance and security properties with the traditional 

protocols and evaluate how effectively it meets the IoT 

network requirements. 

 

 

 

4. Security and Performance Analysis 
 

In this section, we analyze how the proposed blockchain-

based routing protocol (BCR-IoT) fares in terms of security 

(resilience to attacks), scalability, communication overhead, 

latency, and energy consumption. We compare these aspects 

with the baseline protocols (RPL and AODV) to highlight 

improvements and trade-offs. Since our work is theoretical, 

the analysis is qualitative and based on logical reasoning 

supported by findings from related studies. We also use 

insights from literature where similar approaches were 

simulated or measured. 

 

4.1 Resilience to Routing Attacks 

 

One of the primary motivations for BCR-IoT is to 

dramatically improve security relative to RPL and AODV, 

which are vulnerable to numerous attacks. Here we examine 

common attack scenarios and how our protocol addresses 

them: 

• Blackhole/Sinkhole Attacks: In both RPL and AODV, a 

blackhole can easily occur because nodes trust advertised 

routes or rank values without a global verification. In RPL, 

a node might advertise a very good rank to lure traffic 

(sinkhole) and then drop it (blackhole); in AODV, a node 

replies to RREQs with a false short path. In BCR-IoT, any 

route reply or RPL-like rank advertisement must be 

validated against the blockchain records. A malicious node 

cannot unilaterally declare it has the best path – it would 

need to forge a whole sequence of link proofs on the 

ledger, which is not possible without collusion from 

neighbors. If a node tries to drop packets silently after 

attracting them, the trust contract will catch this due to 

missing delivery acknowledgments. Over time, its 

reputation plummets, and it will be excluded from routes. 

This is a significant improvement: where traditional 

protocols might continually be fooled by a blackhole until 

an external mechanism intervenes, BCR-IoT builds 

detection and exclusion into the routing process (with an 

immutable audit trail to support it). Even without a trust 

score, the immediate effect is that the source will see on 

the ledger that packets didn’t reach the destination and 

which hop was the last confirmed – pinpointing the 

suspicious node. By contrast, in AODV, the source might 

only know the packet was lost but not where. 

• Wormhole Attacks: A wormhole is harder to tackle but 

our route validation mechanism provides some defense. If 

two colluding attackers create a wormhole, to successfully 

use it in our protocol they must fake neighbor relations on 

the ledger. This requires them to at least produce signed 

witness transactions for a link that doesn’t actually exist in 

normal radio range. While they could do that (since they 

are colluding, one can sign for “I heard from the other”), 

these fake transactions might be detectable by context 

(e.g., if the network usually doesn’t have that link). In 

addition, because every other hop on the route is validated, 

a wormhole doesn’t let the attackers inject false nodes, it 

only shortcut the path. If their goal was to snoop data, 

they’d still have to forward it (since dropping would get 

them caught as blackhole). If their goal was to disrupt, they 

could drop via wormhole – but then two nodes lose 

reputation at once. There is a rich area of research on 

wormhole detection (like packet leash protocols, etc.), 
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which could be integrated: for example, the blockchain 

could store location claims of nodes and detect if an 

alleged one-hop link is geographically impossible. For our 

scope, we assume wormholes are at least partially 

mitigated because the system would notice unusual route 

patterns and possibly because other nodes will report 

inconsistencies. At worst, the wormhole provides a way to 

forward quicker, but it cannot tamper with data without 

being the dropping point (which is then just a blackhole 

case). RPL has almost no built-in wormhole defense, and 

AODV neither; so any capability here is an improvement. 

• Sybil Attack: This is when one attacker pretends to be 

multiple identities. In RPL/AODV, a Sybil attacker could 

inject multiple fake RREQs or appear as multiple nodes 

to confuse routing. In BCR-IoT, Sybil is mitigated at the 

identity layer – since each identity must be registered on 

the blockchain, creating many fake identities would either 

require compromising many real keys or somehow 

subverting the registration process. If an attacker pre-

loaded a bunch of fake identities, the network could be 

spammed, but we can implement limits (like the contract 

could throttle the rate of new identities or require proof-

of-work to register). Additionally, if a Sybil node tries to 

act as many nodes, the trust system will eventually 

correlate that those identities always appear together or 

misbehave similarly, raising suspicion. Hyperledger 

Fabric’s permissioned nature essentially nullifies Sybil by 

not letting arbitrary nodes join. So BCR-IoT is robust 

against Sybil except possibly during initial bootstrapping 

if not carefully controlled. 

• Rank and Routing Metric Manipulation: This is 

specific to RPL – an attacker changes its rank to 

something illegitimate. In our design (which is more 

AODV-like on demand), we don’t have ranks; but in any 

distance-vector context, a node lying about distance is 

akin to claiming a false route. Because route proposals are 

verified via actual neighbor sequences, it can’t lie about 

distance without physically being at that position in the 

route. For instance, if an attacker claims to be only one 

hop away from the destination (to shorten distance), it 

would have to produce a witness from the destination as 

its neighbor – essentially saying “I’m neighbor to D”. If 

that’s false, the real neighbors of D (or D itself) won’t 

corroborate that on the ledger. So rank manipulation is 

stopped by requiring collective validation of any 

topological claim. This addresses a host of RPL attacks 

(rank, version, even DIS flooding to some extent because 

the blockchain can detect excessive solicitations). 

• Denial of Service & Resource Exhaustion: One concern 

is that introducing blockchain could open new DoS angles 

– e.g., an attacker flooding RREQs to overload the ledger 

with transactions. We mitigate this by requiring PoW in 

IOTA or by having rate controls in the consensus (a Fabric 

network can simply ignore excessive requests from one 

identity or put them in a lower priority). The nature of 

blockchain also means a single node’s misbehavior (like 

spamming) is globally visible, and countermeasures can 

be taken (like temporarily not routing for that node, or 

slashing its deposit if using one). Traditional protocols 

often fail more silently under resource exhaustion 

(neighbors drop packets, but the network may not 

immediately know who’s spamming). Here, if an attacker 

sends 1000 RREQs per second, everyone sees those on 

the ledger and can react (the contract could implement a 

rate limit where if >N RREQ from same source in 

timeframe, ignore or penalize). So BCR-IoT inherently 

provides a trace and tools to manage DoS. 

• Data Integrity and Confidentiality: Our focus is routing 

security, but ensuring that the data packets aren’t tampered 

in transit is also important. BCR-IoT’s blockchain can 

guarantee the integrity of routing decisions, but does not 

automatically encrypt data (that can be handled by 

application-layer encryption). However, if an attacker tries 

to tamper with data, the receiver could notice (via 

checksum or crypto verification) and then log that the data 

was corrupted in transit. This might be beyond what 

routing normally concerns, but in a holistic sense, a smart 

contract could note that “packets from S to D consistently 

corrupted when passing through node X” – implying node 

X might be tampering or faulty. This again would lower 

trust of X.In sum, BCR-IoT provides strong defenses 

against attacks that plague RPL and AODV. By having a 

shared ledger of routing state and events, it transforms 

many silent or local attacks into detectable global events. 

A key point is that even if an attack succeeds briefly (e.g., 

one packet drop), it leaves a forensic evidence on the 

ledger (like where it likely dropped) and the network can 

adapt. Traditional protocols often required external 

intrusion detection or couldn’t trace issues beyond local 

logs. Our approach builds detection and response into the 

routing fabric. 

 

No security solution is perfect, of course. The main 

assumption is that the majority of validator nodes remain 

honest. If an attacker can compromise a majority of CHs (or 

whatever nodes run consensus), then they could falsify the 

ledger – this is analogous to an attacker owning most network 

infrastructure in any system, in which case little can be done. 

We assume that scenario is highly unlikely due to the 

distributed trust (e.g., CHs might be run by different 

organizations or have tamper-resistant hardware). 

Additionally, by using permissioning, we drastically reduce 

the attack surface for consensus. 

 

4.2 Routing Overhead and Scalability 

 

Any added security usually comes with overhead. We now 

consider the communication and computation overhead 

introduced by BCR-IoT and whether it is acceptable for IoT 

networks, as well as how the system scales with network size 

compared to RPL/AODV. 

 

4.2.1 Communication Overhead: In BCR-IoT, extra 

communications come in two forms: on-chain transactions 

and possibly slightly larger routing packets. 

a)  On-chain transactions: These include neighbor witness 

logs, route proposals, route error reports, etc., which are 

not present in traditional routing. However, not every 

single packet triggers a blockchain transaction. We try to 

aggregate and minimize frequency: 

•  During route discovery, a witness transaction might 

be created per hop. In a worst-case n-hop route, n-1 

witness logs + 1 route proposal = n transactions. But 

we can have CHs batch them into one block or 

compress multiple hops into one multi-signed 

transaction. For rough comparison: AODV in 
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flooding a RREQ sends a lot of RREQ packets (O(n) 

per node in worst-case flood), whereas we send those 

plus log them. If n is large (say 100 nodes), the flood 

overhead dominates anyway. The ledger writing is 

mostly handled by CHs at a higher layer, possibly over 

a more reliable connection. 

• For each data session, we might incur these route 

setup transactions once. Data packets themselves are 

not individually put on chain (unless using 

micropayment per packet, which we consider 

optional). So data forwarding overhead is identical to 

AODV (just normal unicast per hop). 

• Periodic trust updates or heartbeat transactions can be 

tuned (maybe only upon notable events or at low 

frequency). 

 

The additional bandwidth used by blockchain traffic is a       

concern on low-power radios. But if CHs are, say, border 

routers with Ethernet or high-power radios, that’s fine. If 

every node were participating via the same 802.15.4 link, then 

yes the control overhead might be higher than RPL’s trickle 

of DIOs. One study indicated RPL was most power-efficient 

among AODV and LOADng in 6LoWPAN. BCR-IoT will not 

beat RPL in raw efficiency because we intentionally add more 

information exchange. The question is: is it within a 

reasonable factor? If RPL sends periodic updates every 

minute, and our BCR-IoT might send a bit more due to 

security events, perhaps the overhead is 10-20% more in quiet 

networks, and maybe 2x in very dynamic networks. Given IoT 

radios often sit idle or at low duty cycles, many networks can 

tolerate some overhead increase for the sake of security 

(especially for critical applications). 

 

b) Routing packet size: We include signatures on 

RREQ/RREP. A typical ECC signature might be 64 bytes. 

RPL messages are few bytes normally; adding 64 bytes 

could be significant. However, on a per-hop basis, 64 bytes 

extra is usually acceptable in 802.15.4 frames (127-byte 

max) as long as not too many stacked signatures. We 

avoided accumulating all signatures in the RREQ because 

that would blow up size; instead we log to chain. So RREQ 

carries essentially one signature (of initiator), maybe an 

HMAC from intermediate if needed for immediate 

neighbor check, but not a chain of sigs. RREP carries one 

signature (dest). So the packets are only slightly larger than 

AODV’s. RPL’s DIO could be secured by its internal 

mechanism (which also adds similar overhead per message 

with MIC or signature if used). So BCR-IoT’s on-air 

packet overhead is comparable to using RPL’s built-in 

security option, but we do much more with it. 

 

4.2.2 Computation Overhead: IoT devices will perform 

cryptographic operations: verifying signatures of neighbors, 

maybe doing a PoW (in IOTA’s case) or some hashing for 

transactions. Modern IoT nodes can handle elliptic curve 

signatures – e.g., using ECDSA or Ed25519, a typical 

microcontroller might verify in a few milliseconds to tens of 

ms. This is more cost than doing nothing, but it may be 

acceptable given that not every packet requires a new 

verification (neighbors can cache public keys, etc.). The 

validator nodes handle the brunt of consensus computations. 

If using Fabric, that might even run on cloud or edge servers, 

so sensors do almost zero heavy lifting beyond signing their 

messages. If using IOTA and assuming even sensors do PoW: 

IOTA’s PoW difficulty can be adjusted such that a sensor can 

do it in maybe 100 ms, which might be acceptable for 

occasional transactions. 

 

The effect on energy consumption ties both comm and comp. 

Transmitting extra bytes and computing crypto will consume 

more energy per operation. There is a risk that on battery-

operated nodes, this reduces lifetime. However, consider that 

many IoT devices (like sensors) wake up, send some data, 

sleep. The routing overhead only occurs when needed. If the 

network is mostly static with infrequent communications, the 

overhead might barely dent the battery. If the network is very 

active, those devices likely have a power supply or the 

network is designed to accommodate traffic anyway. 

Additionally, our hierarchical approach can allow very sleepy 

nodes – a leaf node could wake up, send data to CH, and CH 

handles routing with others. The leaf might not even hear all 

the blockchain chatter, saving its energy. 

 

Interestingly, a study on a trust-based RPL security 

mechanism showed it achieved significant security gains with 

only ~2.3% increase in average power consumption. Our 

approach is more comprehensive than a simple trust model, 

but if efficiently implemented, the overhead might be on the 

order of a few percent to, say, 50% more in worst cases. Over 

provisioning battery by that factor could be worthwhile for the 

security provided. 

 

4.2.3 Scalability: Scalability can refer to number of nodes and 

also to network density/traffic. RPL is known to handle large 

networks (hundreds of nodes) by its trickle algorithm which 

reduces message frequency as the network stabilizes. AODV 

can handle reasonably large networks but its flooding can 

become costly beyond a certain scale or high mobility. BCR-

IoT’s scalability depends on the blockchain’s scalability. If 

using IOTA, the system can potentially scale to very large 

networks because there isn’t a hard limit – more transactions 

means more verification but also faster consensus. The 

partitioning of network into clusters also helps horizontal 

scalability: you can add more clusters with new CHs joining 

the blockchain network. A permissioned blockchain like 

Fabric can scale to perhaps dozens of organizations and 

hundreds of nodes, but if we imagine thousands of tiny nodes 

through gateways, that’s still fine (only gateways run Fabric, 

thousands of leaves connect to, say, 10 gateways). 

 

One concern is ledger size growth: if the network runs for 

years and keeps logging, the blockchain can become huge 

(MBs to GBs). Storage is cheap on gateways, but not on 

sensors. However, sensors don’t have to store the ledger; only 

validators do. Validators can also use pruning or summarizing 

techniques: e.g., check-points after certain intervals (like a 

snapshot of trust scores and active routes, then prune older 

transaction history beyond some window). As long as one 

archival node keeps everything for auditing offline, others 

could drop old data to save space. This is similar to 

Ethereum’s concept of state vs history or IOTA’s periodic 

snapshotting of the tangle to keep size manageable. 

 

Compared to RPL, which is extremely lightweight in 

overhead but has poor security, our protocol is heavier but 

scales in a controlled way. Compared to AODV, our initial 
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route discovery is similar or slightly more overhead (since 

AODV floods, we flood plus log events – the flood dominates 

complexity). AODV’s problem at scale is lots of broadcasts if 

many sources simultaneously need routes. Our approach could 

alleviate some of that by route caching via ledger: nodes can 

look up routes rather than always flood, which actually could 

reduce overhead in a busy network. In an extreme scenario 

with many flows, AODV floods might congest the network, 

whereas BCR-IoT might reuse known routes or at least spread 

out the information via blockchain (which can propagate over 

possibly out-of-band channels among CHs, not using the same 

radio as devices). So it’s plausible that beyond a certain scale, 

our approach might show better throughput for large IoT 

networks, thanks to better coordination of routing info. 

 

4.2.4 Latency: The route establishment latency in BCR-IoT 

includes the time to perform consensus. For example, if a 

RREQ is flooded and reaches dest in 50 ms (depending on 

hops and propagation), and then an RREP is returned in 

another 50 ms, AODV would consider the route ready at that 

point (~100 ms). In our case, we would ideally wait until the 

route is validated on-chain. If using Fabric with sub-second 

finality, maybe add 500 ms, so route ready in ~600 ms. If 

using IOTA and waiting for confirmation (which might be a 

few seconds for safety), route ready in ~2-3 seconds. This is 

additional delay before data can be confidently sent. We could 

allow data to start flowing tentatively while validation is 

underway to optimize for time, especially if we expect it to 

pass. But to be safe, one might wait. This latency is not an 

issue for non-real-time applications (a few seconds setup for a 

multi-hop route in IoT is often fine, e.g., environmental 

sensing). For real-time or very delay-sensitive flows (like 

some industrial control), this could be a downside – though 

such scenarios often have fixed topologies or engineered 

routes, not discovering on the fly. 

 

Once routes are established, the per-hop latency for data 

forwarding is not affected (we don’t add processing per packet 

except maybe an ID check which is trivial). In RPL, you might 

have slightly longer routes sometimes (because RPL might not 

choose the absolute shortest path if using certain metrics), 

whereas in on-demand protocols typically you get near-

shortest paths. Our protocol chooses routes primarily based on 

who responded, but the ledger could help choose an optimal 

route if multiple are proposed (it can store metrics). We might 

incorporate a slight bias to routes with fewer hops or higher 

quality, which could reduce end-to-end latency of data relative 

to a random or trust-only choice. 

 

In terms of consistency, one must consider latency of 

information propagation: in RPL, if a node becomes 

malicious, it might take a while for others to notice or for 

trickle to fix topology, whereas in BCR-IoT, as soon as an 

incident is recorded on ledger, everyone knows at next block. 

That is a faster reaction (at most the block time). So while 

initial setup is slower, adaptation to failures or attacks can be 

faster globally. This is a different aspect of network 

performance – resilience speed. 

 

4.3 Comparative Summary (BCR-IoT vs Traditional 

Protocols) 

 

We consolidate the comparison as follows: 

 

4.3.1   Security: BCR-IoT strongly outperforms RPL and 

AODV. RPL and AODV in default forms provide little 

security (aside from optional measures rarely used), being 

vulnerable to multiple attacks. BCR-IoT offers built-in 

authentication, audit trails, and trust management. It 

effectively mitigates blackhole, rank, Sybil attacks, and 

provides tools to handle wormholes and DoS, which neither 

RPL nor AODV could handle without external solutions. 

 

4.3.2 Scalability: RPL is known for good scalability 

(hundreds of nodes) in static scenarios due to its efficient 

upkeep. AODV scales less gracefully if there are frequent 

route discoveries, but still used in moderate network sizes 

(tens of nodes in field tests, possibly 100s with optimizations). 

BCR-IoT introduces new scaling dimensions: the blockchain 

network among CHs must scale with number of clusters. 

Permissioned blockchains can scale to enterprise-level (tens 

of orgs, 100s of nodes). DAG-based approach can scale much 

further. For extremely large IoT (thousands of nodes), one 

might hierarchicalize further or use sharding (e.g., separate 

blockchains per region that occasionally sync). We foresee 

BCR-IoT can scale to networks of at least the same order of 

magnitude as RPL networks (hundreds of devices) and likely 

more, due to route info sharing. The overhead per device 

might increase slower than linear because of shared 

knowledge (10 route discoveries might serve 100 nodes if info 

reused). In contrast, RPL overhead increases with nodes but 

slowly (since DIO trickle slows down in bigger network), and 

AODV overhead increases roughly linearly with number of 

pairwise communications demands. 

 

4.3.3 Overhead & Efficiency: RPL is the most efficient in 

terms of control traffic under normal operation, as it sends 

periodic beacons and occasional adjustments. AODV is 

reactive so overhead is proportional to traffic demands – idle 

network means no overhead, active means possibly many 

RREQ floods. BCR-IoT’s overhead is proportional to routing 

changes and attacks: in a stable network with no malicious 

activity, overhead could be moderate (just route setups and 

occasional trust updates). In a network facing many attacks, 

ironically RPL/AODV might fail (so low overhead but 

network not working), whereas BCR-IoT will have overhead 

(as it logs and fights attacks) but keep network service. If we 

quantify, RPL control overhead is often <5% of network 

bandwidth in many deployments; AODV might spike to 

higher during route finds. BCR-IoT might make that maybe 

10% in steady state if transactions are small and infrequent 

relative to data. This is speculative – an actual measurement 

would require prototyping. 

• Latency: RPL can have higher data latency if topology 

repairs are slow (one reason some prefer reactive protocols 

for dynamic networks). AODV can have route discovery 

latency but after that quick. BCR-IoT adds a setup latency 

due to consensus but ensures reliable performance after. 

For many IoT applications that are not ultra-low-latency, 

this is acceptable. If needed, parameters like block time 

can be tuned down to sub-second to minimize delay, at the 

cost of more frequent blocks. 

• Energy: As indicated in Section 4.2, RPL tends to be 

extremely frugal on energy (devices mostly sleeping 

except brief DIO exchanges) – it was designed for that. 

AODV requires nodes to wake for network-wide floods 
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occasionally, consuming more energy especially in dense 

networks (more receptions of RREQ). BCR-IoT requires 

nodes to do crypto and possibly more listening (e.g., to 

hear CH announcements). The cluster head approach can 

actually save energy for leaves because a leaf might just 

talk to CH and not participate in entire network flood (CH 

might do RREQ on behalf of cluster, via other CHs). So if 

we partition well, leaves save energy (like a TDMA 

schedule to talk to CH). CHs spend more (they might be 

mains-powered or have stronger battery). Thus, energy 

usage is not uniform: it is shifted towards more capable 

nodes. This is a classic trade-off in heterogeneous 

networks. Overall network lifetime can be prolonged if 

critical battery-powered nodes are not overburdened. So 

BCR-IoT can be energy-aware by design (i.e., only a 

subset pays the price). This is different from RPL where 

every node including tiny ones must rebroadcast DIO and 

maintain state, or AODV where any node can be part of 

route discovery propagation. 

 

Table 1 below qualitatively summarizes the comparison: 

 

Table 1: Qualitative comparison of RPL, AODV, and the proposed BCR-IoT protocol 

 
 

The comparison shows that the blockchain-based approach 

significantly enhances security and trust at the cost of 

additional overhead and complexity. In contexts like industrial 

IoT, smart city infrastructure, or any application where 

security is paramount (e.g., medical IoT data, military sensor 

networks), this trade-off is often justified. Attacks that could 

easily partition or deceive an RPL/AODV network would be 

thwarted or detected by BCR-IoT, ensuring network 

availability and data integrity in scenarios where failures 

could be very costly. On the other hand, extremely constraint-

driven applications (like a tiny sensor network meant to last 

years on battery with minimal traffic) might opt to stick with 

RPL if the threat model is mild, due to BCR-IoT’s higher 

demands. 

 

4.4 Discussion of Limitations and Mitigations 

 

While BCR-IoT offers many improvements, it’s important to 

recognize its limitations. First, the requirement of a 

blockchain infrastructure means additional complexity in 

network setup and maintenance. IoT deployments must 

manage the blockchain nodes (CHs or equivalent), keep them 

in sync, and secure their software – essentially adding an 

overlay network that network administrators need to monitor. 

If a blockchain node fails or is hacked, it could disrupt the 

routing for that cluster. This is partly mitigated by having 

multiple validators and perhaps backup cluster heads that can 

take over if one fails (consensus can continue as long as a 

quorum remains). 

 

Second, blockchain consistency vs network partition: if the 

network splits (e.g., some cluster heads lose connection to 

others), the blockchain could temporarily partition, and 

routing information might diverge. This could lead to 

suboptimal or even insecure routes until the partition heals 

(like one partition might not know a node was flagged 

malicious in the other). Mechanisms to merge ledgers or 

ensure at least local safety in partitions would be needed – 

possibly outside the scope of basic design (it could be handled 

by defaulting to more cautious routing if not enough validators 

are reachable). 

 

Another limitation is dependency on time synchronization to 

some extent. Not as much as some systems, but for logging 
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events and detecting anomalies like wormholes, having 

loosely synchronized clocks helps (to compare timestamps). 

We might need the CHs to sync clocks via NTP or GPS. IoT 

devices themselves can be unsynchronized and it won’t break 

the protocol, but anything cross-network often benefits from 

time sync. 

 

Future research directions we identify include: more efficient 

consensus tailored to IoT (like Proof-of-Resource as 

mentioned, or scheduled consensus where each validator leads 

for a short epoch to reduce chatter), integrating machine 

learning to dynamically adjust trust thresholds (e.g., an ML 

algorithm could analyze the blockchain data to predict which 

nodes might fail soon or become malicious, pre-emptively 

alerting the network), and real-world testbed evaluations. 

Particularly, implementing BCR-IoT on a small testbed of IoT 

nodes (with Raspberry Pi or Arduino-class devices as regular 

nodes and some single-board computers as CHs) would help 

measure actual overhead, latency, and energy usage, 

validating the assumptions made in this analysis. Another 

promising direction is to consider interoperability with 

existing protocols: for example, could we design BCR-IoT as 

an extension to RPL (so that if you have RPL nodes and BCR-

IoT nodes, they can coexist)? Perhaps by treating the 

blockchain as an external audit system while RPL continues 

handling basic routing – giving an upgrade path for legacy 

systems. 

 

5. Strengths, Limitations, and Future Work 
 

5.1 Strengths of the proposed approach 

 

The BCR-IoT protocol offers a paradigm shift in securing IoT 

networks. By using blockchain as a backbone for routing, we 

achieve a level of decentralized trust and transparency 

unprecedented in traditional network protocols. Every routing 

decision and action is verifiable and accountable. This 

dramatically reduces the impact of insider attacks – a 

compromised node can no longer lie about its status or actions 

without the rest of the network knowing. In essence, we have 

introduced a form of collective security enforcement: the 

network watches itself. This is a powerful concept for IoT, 

where physical security of nodes is weak; even if some nodes 

are taken over by an adversary, they cannot easily bring down 

the network or spoof others because the blockchain 

(maintained by the healthy nodes) acts as a gatekeeper. 

Another strength is longevity of trust information: decisions 

are not just made on the fly from scratch (as in AODV each 

time); instead, the network “learns” about nodes’ behavior 

over time and can optimize routing accordingly (avoiding 

troublemakers, preferring reliable nodes). This could lead to 

more stable network performance in long-lived IoT 

deployments. Additionally, the approach is flexible: by 

changing smart contract logic, one can tweak the routing 

policy or trust model without altering the core firmware of all 

devices. For example, if a new type of attack emerges, a 

software update to the contracts or validator logic could 

implement detection for that attack’s pattern on the ledger. 

This updatability is valuable given IoT devices often have 

infrequent firmware updates once deployed. 

 

Another strength is that the architecture naturally 

accommodates multi-owner environments. Consider a smart 

city where sensors from different departments (traffic, 

weather, energy) share a network. Traditional routing might 

struggle with trust if devices don’t trust each other cross-

department. But with a blockchain, each department can run a 

validator node and collectively maintain the routing ledger, 

ensuring no single party can bias the routing for everyone yet 

everyone can trust the outcome. This is aligned with 

blockchain’s general strength of enabling trust among 

mutually distrusting parties. 

 

5.2 Limitations and challenges 

 

The benefits do come at the cost of complexity and overhead, 

as thoroughly discussed. One limitation is reliance on 

somewhat more powerful nodes (CHs). If an IoT scenario is 

extremely homogeneous and ultra-constrained (say a network 

of simple contact sensors with nothing that can act as a CH), 

deploying a blockchain may be impractical. We’ve essentially 

assumed a heterogeneous network or an external 

infrastructure. This assumption holds in many IoT contexts 

(smartphones, gateways, or edge servers are around), but not 

in all (a pure ad-hoc network in a remote area with only 

identical tiny sensors might not have a “big” node). A 

potential mitigation is the development of ultra-light 

blockchain clients that even small microcontrollers can run – 

for example, use of minimalistic consensus like witness-

coordinated consensus where nodes take turns (like a token-

passing ledger). Research prototypes of lightweight 

blockchain for IoT (with minimal code footprint) are 

underway in the community and could help address this. 

 

Another challenge is data privacy: Blockchain’s strength is 

transparency, but that could conflict with privacy 

requirements. Routing information might reveal node 

locations or communication patterns. If an attacker gains read 

access to the ledger (which in a permissionless chain is open), 

they could glean sensitive info (like which sensors talk 

frequently – possibly indicating their roles). We mentioned 

that Fabric’s channels can restrict who sees what (so maybe 

only the organization validators see full details, while 

outsiders cannot). In IOTA (public), data is public, but one 

could encrypt certain fields in transactions. Our design could 

incorporate encryption for route details, such that only 

authorized nodes can decrypt the actual path in a transaction 

(maybe using a group key). However, adding encryption 

complicates validation (the validators need to check route 

consistency; they could do so on encrypted data only if using 

more advanced cryptographic proofs). This is a trade-off: our 

current design favors security and trust over confidentiality of 

the meta-data. In future work, exploring privacy-preserving 

blockchain routing (using techniques like zero-knowledge 

proofs to prove a route is valid without revealing it fully) 

would be very interesting. 

 

5.3 Future Research Directions 

 

Building on this work, several avenues emerge: 

a) Prototype Implementation and Experimentation: 

Implement BCR-IoT in a simulator (e.g., Cooja/Contiki for 

IoT combined with a blockchain simulator, or using 

Hyperledger Fabric SDK with a network emulator) to measure 

performance under various scenarios. This would validate 

assumptions about overhead and latency, and allow fine-
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tuning. Metrics like packet delivery ratio under attack, control 

overhead, and energy usage can be quantified. 

 

b) Optimizing Consensus for IoT: Investigate custom 

consensus algorithms tailored to the typical scale and trust 

assumptions of IoT networks. For instance, a hybrid 

consensus where on small scales a fast BFT is used, and if the 

network grows or becomes more open, it gracefully switches 

to a more decentralized scheme. Or a consensus that exploits 

the sensor network’s physical properties – e.g., using the fact 

that network diameter is small, one could design a fast flood-

based agreement (not unlike RPL’s root announcements) 

combined with cryptographic commitments. The Proof-of-

Resource (PoR) concept is one such idea: nodes prove they 

have done certain sensor tasks (like providing data or uptime) 

to earn the right to validate blocks, thus tying consensus to 

useful work. 

 

c) Integration with Software-Defined Networking (SDN): 

There is an emerging idea of using blockchain with SDN 

controllers to secure networks. One could imagine an SDN-

like approach to IoT where controllers use blockchain to share 

network state and collectively control the network. In fact, if 

an SDN controller is compromised, a blockchain of 

controllers could detect conflicting instructions. For routing, 

our approach is distributed, but some IoT deployments have 

central control – merging those paradigms could yield a robust 

hybrid. 

 

d) Cross-domain Routing and Blockchain     

Interoperability: Future IoT networks might interconnect 

different blockchain systems. Perhaps one network uses IOTA 

and a neighboring network uses Fabric; how would routing 

work across them? Research into blockchain interoperability 

(via relays or atomic swaps of info) could enable routes that 

span multiple administrative domains, each securing their part 

but handing off information through a gateway that is on both 

ledgers. 

 

e) Energy Harvesting and Economic Models: If we 

introduce incentive mechanisms (like micropayments for 

forwarding), the economics of the network become important. 

Future work could simulate what reward level is needed to 

encourage participation, or how to prevent abuse of rewards. 

Also, one could tie it with energy harvesting – e.g., a node that 

has surplus solar energy could advertise willingness to take 

more routing load for some reward, while battery-powered 

nodes might avoid it unless necessary. A blockchain could 

dynamically broker such deals. 

 

f) AI for Attack Prediction: With the wealth of data on the 

ledger, using machine learning to analyze patterns (perhaps 

off-line or by the validators) could predict attacks or node 

failures before they happen. For example, if a node’s behavior 

gradually changes (longer delays, slight increase in dropping), 

an ML model might flag it as likely to fail or be compromised 

soon, prompting preventive measures (like rerouting traffic 

preemptively). This predictive security could greatly enhance 

network resilience. 

 

g) Real-world applicability: Ultimately, any solution must 

justify its complexity by the security need. We see critical 

applications like smart grids, healthcare monitoring, or 

defense sensor networks as prime candidates where the data 

and availability are so important that adding blockchain is 

warranted. The progression of IoT in industry suggests that as 

deployments scale and become part of national infrastructure, 

security frameworks like BCR-IoT will draw interest. In fact, 

standards bodies (IETF, IEEE) have started discussing 

blockchain in network management and trust (e.g., IETF’s 

blockchain for trust management drafts). Our work can inform 

these discussions by showing a concrete design and its trade-

offs. 

 

6. Conclusion 
 

In this paper, we presented a comprehensive design for a 

Blockchain-Based Secure Routing Protocol tailored to IoT 

networks, addressing the pressing need for enhanced security 

in resource-constrained environments. By integrating 

blockchain technology – whether through IOTA’s DAG or 

Hyperledger Fabric’s permissioned ledger – with routing 

processes, we introduced a decentralized trust layer that 

mitigates many vulnerabilities of traditional protocols like 

RPL and AODV. Our proposed protocol leverages the 

immutable and consensus-driven nature of blockchain to act 

as a shared source of truth for routing decisions, thereby 

preventing malicious nodes from misrepresenting network 

information and enabling the detection and isolation of attacks 

such as blackholes, wormholes, and Sybil incursions. 

 

We detailed the architecture, highlighting how resource-

constrained IoT devices can participate with minimal 

overhead by offloading heavy tasks to more capable validators 

(cluster heads or gateways), and how smart contracts can 

automate route validation and trust management. The 

comparative analysis underscored significant improvements 

in security and reliability – for example, routes are established 

with collective verification and data integrity is ensured end-

to-end – at the cost of some additional latency and overhead.  

The evaluation discussion acknowledged that while our 

approach is more complex than conventional routing, the 

evolution of IoT is reaching a point where such complexity is 

justifiable. IoT networks are forming the backbone of critical 

services (smart cities, industrial automation, etc.), and attacks 

on these can have real physical consequences. Thus, the 

strongest point of our work is demonstrating that it is feasible 

to embed strong security and trust mechanisms at the routing 

layer without rendering the system unusable for low-power 

devices. We showed pathways to implement consensus in a 

lightweight manner and to contain overhead mostly to 

infrastructure nodes, thus fitting within IoT constraints. 

 

Our work opens several avenues for future exploration – from 

optimizing the performance of the blockchain layer to 

deploying pilot networks to validate our assumptions. We also 

encourage work on standardizing such approaches, possibly 

as an extension to existing routing protocols (imagine an RFC 

for “Secure Routing for LLNs using Distributed Ledger”). 

In conclusion, the blockchain-based secure routing protocol 

offers a promising solution for secure, scalable, and robust IoT 

networking. It combines the best of both worlds: the proven 

efficiency of protocols like RPL/AODV for routing, and the 

trust guarantees of blockchain for security. As IoT networks 

continue to expand in scale and importance, such 

interdisciplinary approaches will be key to ensuring they 
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remain resilient against the evolving threat landscape while 

still operating within the practical limits of small devices. The 

work presented here lays a strong theoretical foundation for 

that vision, bringing us a step closer to IoT networks that are 

not only smart and connected but also secure and self-healing 

by design. 
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