
International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 7, July 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Blockchain-Based Secure Routing Protocol for IoT

Networks

Thejiya V.

1Department of Computer Application, Krupanidhi Group of Institutions, Bangalore, India
Email: thejiya22[at]gmail.com

Abstract: The proliferation of the Internet of Things (IoT) has intensified the need for secure and reliable routing protocols that can

operate within the severe resource constraints of IoT devices. Traditional IoT routing protocols (e.g., RPL and AODV) often struggle with

security vulnerabilities such as blackhole and wormhole attacks, limited scalability, and trade-offs between overhead and performance. In

this paper, we propose a theoretical design for a blockchain-based secure routing protocol tailored to IoT networks. The design integrates

a lightweight distributed ledger (using platforms like IOTA’s directed acyclic graph or Hyperledger Fabric’s permissioned blockchain) to

serve as a shared, immutable memory for routing information. We detail the architectural framework, including resource-aware consensus

mechanisms and lightweight smart contracts to automate route validation and trust management. Our protocol leverages blockchain’s

immutability and decentralized consensus to authenticate routing messages, validate route paths, and record reputation metrics for nodes,

all while minimizing computational and energy overhead on constrained devices. We present an in-depth comparison with RPL and

AODV, demonstrating improved security (resilience against common attacks), enhanced trust and data integrity, and reasonable scalability

for IoT deployments. Evaluation criteria are discussed qualitatively, showing that the proposed approach can achieve robust defense

against blackhole and wormhole attacks, with manageable latency and energy consumption overhead. We also analyze the strengths and

limitations of the design – highlighting how blockchain adds security and transparency at the cost of extra overhead – and outline future

research directions to further optimize blockchain-based routing in IoT. The insights and analysis in this paper aim to pave the way for

next-generation secure and scalable routing protocols suitable for the emerging IoT ecosystem.

Keywords: IoT Routing, RPL, AODV, Blockchain, Secure Routing, Distributed Ledger, Smart Contracts, Consensus, IoT Security.

1. Introduction

The Internet of Things (IoT) connects vast networks of

resource-constrained devices (sensors, actuators, smart

appliances) that communicate to deliver innovative services.

At the heart of IoT communication lies the routing protocol,

which enables multi-hop data transfer across devices. In low-

power and lossy networks (LLNs) typical of IoT, the IPv6

Routing Protocol for Low Power and Lossy Networks (RPL)

has become a de facto standard. RPL builds a Destination-

Oriented Directed Acyclic Graph (DODAG) topology

optimized for energy efficiency and is widely used in

applications such as environment monitoring and smart cities.

Similarly, in mobile or ad-hoc IoT scenarios, classic MANET

protocols like Ad hoc On-Demand Distance Vector (AODV)

may be applied due to their reactive route discovery suitable

for dynamic topologies. However, like other network

protocols, RPL and AODV were not originally designed with

strong security against malicious actors, leaving IoT networks

vulnerable to a variety of routing attacks.

1.1 Security challenges in IoT routing

IoT devices often operate unattended and communicate

wirelessly, making them easy targets for attackers. Routing

attacks can degrade network performance or hijack traffic. For

instance, RPL is susceptible to rank attacks (a malicious node

advertises a fake optimal route by manipulating its rank value,

tricking others into routing through it) and blackhole attacks

(where a node intentionally drops all packets it forward). A

successful rank attack can effectively create a sinkhole,

diverting traffic through the attacker, while a blackhole causes

denial of service by discarding packets. RPL can also suffer

from wormhole attacks, version number attacks, and other

exploits of its DODAG maintenance process.

AODV, on the other hand, can fall prey to classic MANET

attacks: e.g., in a blackhole attack on AODV, a malicious node

can respond to route requests with false RREP messages

claiming a short path (often advertising a very low hop-count

or high sequence number), then absorb or drop the passing

traffic. Without additional security, AODV’s route discovery

trusts the first RREP, which an attacker can exploit. Similarly,

wormhole attacks may occur when two colluding attackers

tunnel routing messages between distant parts of the network

to create a shortcut that attracts traffic, bypassing legitimate

routes. These attacks not only disrupt IoT applications

(causing data loss, added latency, or network partitioning) but

also can be stepping stones to deeper intrusions (e.g.,

intercepting sensor data or injecting false data).

1.2 Limitations of traditional countermeasures

Conventional security solutions for routing (such as

cryptographic authentication or intrusion detection systems)

are often hard to directly apply in IoT settings. IoT nodes

typically have limited CPU, memory, bandwidth, and energy

supply, so lightweight protocols are required. RPL does define

some security modes (pre-installed or authenticated keys for

control messages), but in practice these add significant

overhead and require key management that might be

infeasible for large IoT deployments. Many RPL networks

therefore run in unsecured mode, exposing them to attacks.

Likewise, secure variants of AODV (e.g., SAODV) use digital

signatures and hash chains to authenticate routing messages,

but they incur extra transmission overhead and computational

cost that battery-powered IoT nodes may not handle well.

Research has explored trust-based or reputation-based routing

enhancements (where nodes evaluate the trustworthiness of

neighbors based on behavior), as well as dedicated detection

algorithms for specific attacks. While these approaches can

Paper ID: SE25710115055 DOI: https://dx.doi.org/10.70729/SE25710115055 56 of 71

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/
mailto:thejiya22@gmail.com

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 7, July 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

mitigate certain threats, they often address one attack at a time

and may rely on central authorities or assumed trust which

counteracts the decentralized nature of ad-hoc IoT networks.

1.3 Blockchain as a potential solution

Blockchain technology offers a promising new foundation to

enhance security and trust in distributed networks. A

blockchain is essentially a distributed ledger maintained by a

network of nodes that reach consensus on the ledger’s state.

Once data are recorded on the blockchain, they are extremely

difficult to tamper with thanks to cryptographic linking of

blocks and decentralized consensus. These properties align

well with the needs of IoT routing security: immutability can

ensure that once a routing decision or network event is logged,

it cannot be maliciously altered or repudiated; decentralized

consensus can remove reliance on any single trusted node

(important since any IoT node could be captured or become

malicious); and transparency of the ledger can enable

auditability of routing behavior (making it easier to detect

misbehavior). By providing a shared, secure “memory” for the

network, a blockchain can effectively serve as a trust anchor

and coordination mechanism among IoT devices.

Previous research indicates that Blockchain-Based Routing

(BBR) frameworks can improve overall routing performance

and security by securely storing routing decisions and updates,

enabling automatic routing management via smart contracts,

providing robust authentication, and even supporting

reputation-based or onion-routing schemes. These features

directly target the pain points of traditional protocols,

suggesting that a well-designed integration of blockchain

could yield a secure routing protocol resilient to common

attacks.

Despite the appeal, integrating blockchain into IoT routing is

non-trivial. Standard blockchain platforms like Bitcoin or

Ethereum are far too resource-intensive (in terms of

computation, energy, and bandwidth) for IoT devices – e.g.

Proof-of-Work consensus would quickly drain battery-

powered nodes. The challenge, then, is designing a

lightweight blockchain framework and routing protocol co-

design that preserves IoT-friendly efficiency while

dramatically enhancing security. In this paper, we focus on a

theoretical design of such a protocol, called BCR-IoT for

convenience (Blockchain-based Secure Routing for IoT). We

choose suitable blockchain technologies (e.g., IOTA or

Hyperledger Fabric) that are amenable to IoT integration, and

we incorporate consensus and smart contract mechanisms

optimized for low-power devices.

We compare our proposed BCR-IoT design with traditional

protocols (RPL and AODV) in terms of security, scalability,

and communication overhead. Our analysis shows that BCR-

IoT can significantly bolster security – preventing or

mitigating attacks like blackholes and wormholes that easily

defeat RPL/AODV – at the cost of a moderate increase in

routing overhead. We justify that this trade-off is acceptable

in many IoT scenarios, especially as devices become more

capable, and that the improved trust and reliability can enable

IoT networks to operate in untrusted environments (e.g.,

multi-party ad-hoc networks) where traditional protocols

would be too risky. Finally, we discuss the strengths and

limitations of the BCR-IoT approach and outline future

research directions, such as further optimizations in consensus

algorithms and real-world prototyping.

2. Background and Related Work

2.1 IoT Routing Protocols and Challenges

2.1.1 RPL – IPv6 Routing Protocol for LLNs

RPL is a distance-vector routing protocol optimized for low-

power and lossy networks (LLNs), standardized by the IETF

for IoT scenarios. RPL organizes nodes into a topology called

a DODAG (Destination Oriented Directed Acyclic Graph),

rooted at a border router (sink). Each node has a rank (an

integer or floating metric) signifying its distance to the root

(e.g., hop count, expected transmission count, or other

objective function). RPL’s operation is largely proactive: the

root initiates the network by broadcasting DODAG

Information Objects (DIO) that propagate through the

network, allowing nodes to join the graph by selecting

preferred parents (usually the neighbor with the lowest

advertised rank). Periodic trickle-timer mechanisms govern

the frequency of control messages (DIO, and DAO for

downward routes) to keep overhead low in stable conditions.

RPL’s strengths include loop avoidance and local repair

mechanisms, and as studies show, it tends to be power-

efficient and scalable under static conditions – indeed,

simulations indicate that RPL outperforms AODV in terms of

power consumption, especially as network size increases.

RPL’s efficient DODAG maintenance yields stable energy

usage even as more nodes join, making it suitable for large-

scale, mostly-static IoT deployments.

However, RPL faces issues in dynamic or adversarial

conditions. Under mobility, RPL’s trickle timers and repairs

may lag, leading to increased latency or temporary routing

loops. More critically, RPL is vulnerable to a range of routing

attacks. We highlighted rank attacks and blackhole attacks

earlier; additionally, there are sinkhole attacks (malicious

node impersonates a root or advertises an attractive route to

draw traffic), wormhole attacks (out-of-band tunnel that

confuses topology), DODAG inconsistency attacks (spoofed

inconsistency messages forcing unnecessary repairs), and

routing information replay or DIS flooding (exploiting the

DODAG Information Solicitation mechanism to drain nodes’

energy). Many of these are exacerbated by RPL’s design

choices: it trusts routing control messages within the network

(unless operating in a secure mode which is rarely enabled due

to complexity), and it lacks built-in verification of route

optimality or consistency – a malicious node’s claims are

generally accepted by neighbors in the absence of an external

trust mechanism. Research has proposed various

countermeasures, such as intrusion detection systems and

trust-based RPL enhancements. For example, trust-based RPL

variants maintain a reputation score for neighbors and avoid

those with low trust to mitigate blackhole/sinkhole attacks.

These methods can improve security (one such model

improved packet delivery and throughput by >35% while only

modestly increasing power use), but they often require

complex tuning and are not yet part of the RPL standard.

Paper ID: SE25710115055 DOI: https://dx.doi.org/10.70729/SE25710115055 57 of 71

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 7, July 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

2.1.2 AODV – Ad hoc On-Demand Distance Vector

AODV is a classic routing protocol initially designed for

mobile ad-hoc networks (MANETs), which has also been

applied in IoT contexts (particularly IoT networks with

dynamic topology or no fixed infrastructure). Unlike RPL,

AODV is a reactive protocol: it discovers routes on-demand.

When a source node needs a route to a destination, it

broadcasts a Route Request (RREQ) which floods through the

network. When either the destination or an intermediate node

with a fresh route to the destination receives the RREQ, it

responds with a Route Reply (RREP) that traces back to the

source, establishing the forward path. AODV maintains routes

as needed and times them out if unused, and uses Route Error

(RERR) messages to notify nodes of link breakages. One key

feature is AODV’s use of sequence numbers to ensure loop-

free and up-to-date routes (the sequence number indicates the

freshness of routing information). Because of its on-demand

nature, AODV can be more efficient than proactive protocols

in networks where traffic is sporadic or the topology changes

frequently – it avoids the overhead of maintaining routes that

are never used. However, AODV may introduce higher

latency for initial packet delivery due to the route discovery

process.

In IoT scenarios (e.g., a swarm of drones or vehicles

communicating, or a wireless sensor network that isn’t easily

structured into a tree), AODV can provide flexibility. But

similar to RPL, vanilla AODV lacks intrinsic security. It is

well documented that AODV is susceptible to routing

misuses: a notorious example is the blackhole attack, where a

malicious node answers RREQs with bogus RREPs claiming

a very short path, then drops all data packets that arrive. Since

AODV nodes typically choose the first or best RREP and have

no knowledge of the network beyond their neighbors, they can

be easily misled by such false replies. Cooperative blackhole

(multiple colluding attackers) and gray hole (selective

dropping) attacks further challenge AODV’s reliability.

Another issue is wormhole attacks, in which two distant

attackers tunnel RREQ/RREP packets between them: this can

create the illusion that two far-apart nodes are neighbors,

resulting in routes that pass through the wormhole pair.

AODV (and indeed any routing protocol without geographical

or temporal checks) has difficulty detecting wormholes

because the routing packets themselves do not appear

malicious – they arrive with valid data but from unexpected

locations. Standard AODV also doesn’t authenticate the

source of routing messages, making it vulnerable to

impersonation or Sybil attacks (an attacker can fabricate

multiple identities to influence routing). Researchers have

proposed enhancements like Secure AODV (SAODV) which

introduces cryptographic signatures for RREQ/RREP and

hashing for hop counts. SAODV can thwart impersonation

and ensure that route advertisements are authentic, but it still

might not fully stop wormholes (as those could forward even

authentic packets). More recently, innovative ideas such as the

use of blockchain and trust in AODV have been explored. For

example, Ran et al. (2021) proposed an improved AODV that

uses a blockchain to store node state and deploy smart

contracts to select routes meeting QoS constraints, effectively

finding multiple disjoint paths (one main, one backup) to

improve reliability. Their simulation results showed

performance gains especially under malicious conditions,

hinting at the potential of blockchain to harden AODV-like

protocols.

2.2 Blockchain Technologies for IoT Integration

2.2.1 Blockchain fundamentals

A blockchain is a distributed ledger consisting of an append-

only chain of blocks, where each block contains a set of

transactions and a cryptographic hash of the previous block.

A network of nodes maintains the blockchain through a

consensus mechanism that ensures all honest nodes agree on

the contents of the ledger. The absence of a centralized

authority and the tamper-evident nature of the ledger make

blockchains attractive for establishing trust in open networks.

Beyond cryptocurrencies, blockchain systems can record

arbitrary data with associated smart contracts – essentially

code that executes on the blockchain to enforce custom rules

or automate operations. Key properties of blockchain relevant

to routing are: immutability (once a routing event is recorded,

it cannot be altered unnoticed), decentralization (no single

point of failure or trust), transparency (important events are

visible to all participants, aiding audit and forensics), and

authentication (transactions are signed by nodes’ private keys,

ensuring accountability for actions). These can directly

enhance security: for instance, if routing control messages or

metrics are stored on a ledger, an attacker cannot forge or

tamper with them without detection. Additionally, distributed

consensus means an attacker would need to subvert a majority

of the network (often economically or computationally

infeasible) to corrupt the routing information, dramatically

raising the bar for potential attackers compared to targeting a

single root or flooding a network with fake messages.

2.2.2 Lightweight and IoT-oriented ledgers

Traditional blockchains like Bitcoin’s are too heavy for IoT

(in terms of energy for Proof-of-Work and data volume).

Fortunately, alternatives more suitable for IoT have emerged.

IOTA is one prominent example – it’s an open distributed

ledger specifically designed for the “Internet of Everything”

(IoE) and IoT context. IOTA eschews the conventional linear

blockchain in favor of a Directed Acyclic Graph (DAG) called

the Tangle. In IOTA, each transaction verifies two previous

transactions via a small Proof-of-Work, resulting in a DAG of

transactions rather than sequential blocks. This design yields

feeless transactions (no miners to pay) and theoretically high

scalability as more transactions lead to faster confirmation

(through parallelism). For IoT devices, the lack of fees and the

ability to perform tiny transactions (even a single sensor

reading) are advantageous. However, IOTA’s consensus

(especially in its early iterations) relied on a Coordinator node

for finality, raising questions of centralization – the IOTA

Foundation has been working on “coordicide” to remove that.

Still, IOTA remains attractive for IoT scenarios like sensor

data integrity and lightweight trust, and it can support simple

smart contracts through second-layer solutions.

On the other side of the spectrum, Hyperledger Fabric

represents a permissioned blockchain approach suitable for

controlled IoT environments (e.g., industrial IoT managed by

a company or consortium). Hyperledger Fabric is an open-

source enterprise-grade distributed ledger platform, which

allows networks of known participants (permissioned

identities). It features a modular architecture with pluggable

Paper ID: SE25710115055 DOI: https://dx.doi.org/10.70729/SE25710115055 58 of 71

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 7, July 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

consensus and advanced privacy features like channels

(subnets of the blockchain where a subset of nodes can

conduct private transactions). Fabric does not require energy-

intensive mining; instead, it can use crash fault tolerant or

byzantine fault tolerant consensus algorithms (such as Raft or

PBFT) to achieve finality in a matter of seconds or less. Smart

contracts (chaincode) in Fabric can be written in general-

purpose programming languages and are executed by

endorsing peers. For IoT, Fabric’s permissioned model means

that devices or gateways are registered with cryptographic

identities by an administrator, which immediately mitigates

Sybil attacks (no unverified device can join pretending to be

many nodes). Its channel mechanism can confine routing-

related transactions to relevant participants, saving bandwidth.

Fabric’s privacy controls ensure that only authorized nodes

see certain data – useful if routing information is sensitive

(e.g., could reveal device roles or locations). There have been

prototypes where Hyperledger Fabric is integrated with IoT

networks for access control and secure data sharing, showing

viability in practice. The trade-off is that running even a Fabric

client or node may be heavy for a tiny sensor; thus, often IoT

architectures with Fabric assume that IoT devices

communicate with a more powerful gateway, which in turn

interfaces with the blockchain network.

2.2.3 Related work on blockchain-based routing

In recent years, researchers have started exploring blockchain

or distributed ledger systems to secure routing in various

contexts. A survey by Wijesekara et al. (2023) analyzed

dozens of Blockchain-Based Routing (BBR) proposals and

found that about 20.5% of these were geared towards IoT

networks. These BBR proposals often leverage blockchain in

several ways: (1) to store routing information (routes, metrics,

topology changes) immutably on a ledger; (2) to use smart

contracts for automating routing decisions or enforcing

forwarding agreements; (3) to provide inherent authentication

and identity management for routers (every node has a

blockchain identity, making it harder for an attacker to spoof

another node); (4) to implement reputation systems where

nodes’ trustworthy behavior is recorded and evaluated on-

chain; and (5) to create incentive mechanisms (often via

micropayments or cryptocurrency) that reward honest routing

behavior and penalize malicious acts. For example, Ramezan

and Leung (2018) proposed a Blockchain-based Contractual

Routing (BCR) protocol for IoT, using Ethereum smart

contracts to handle route establishment as a contract between

nodes. In their design, intermediate nodes would be

compensated for forwarding packets as per the contract, and

any misbehavior (like dropping packets) could be detected and

lead to loss of reward – aligning economic incentives with

truthful routing. Another work, called MARS (Monetized Ad-

hoc Routing System), presented a position paper on using

cryptocurrency payments to incentivize packet forwarding in

MANETs. These approaches indicate that blockchain can

introduce a notion of trust and accountability economically,

which was never present in traditional ad-hoc routing.

Beyond incentives, purely technical enforcement has been

explored. For instance, Chen et al. (2023) developed a

blockchain-based RPL optimization to secure and stabilize

IoT routing: their method recorded certain routing information

on-chain and ensured data integrity and security while actually

improving energy consumption and route stability in critical

IoT applications. This suggests that, if designed carefully,

blockchain integration need not come at a huge cost to

performance; it can be leveraged to optimize as well (e.g., by

providing a reliable global view of the network state to aid

route selection). Additionally, blockchain has been combined

with emerging techniques like machine learning for secure

routing. A recent framework used Hyperledger Fabric with an

ML-based consensus to filter out outlier (potentially

malicious) routing data, thereby creating an outlier-aware

secure consensus for IoT routing updates.

In summary, the literature highlights that blockchain can

secure routing by making the network collectively uphold

routing correctness rather than trusting individual nodes.

However, a gap remains in fully specifying a practical, end-

to-end design that is implementable on constrained devices.

Many proposals are at conceptual or simulation stages, and

real-world deployments are still rare. In the following

sections, we build upon these ideas to describe our unified

design for a blockchain-based secure routing protocol in IoT,

explicitly addressing the issues of resource constraints,

security attack coverage, and comparative performance with

existing protocols.

3. Proposed Blockchain-Based Secure Routing

Protocol (BCR-IoT)

In this section, we present the design of BCR-IoT, a

Blockchain-Based Secure Routing Protocol tailored for IoT

networks. The design is theoretical, but we ground it in

realistic assumptions about IoT hardware and emerging

lightweight blockchain frameworks. We begin with the

architecture of the network and system, then detail the route

discovery and validation mechanisms that intertwine with the

blockchain ledger. We describe the chosen consensus

mechanism and how it is optimized for resource-constrained

settings, and we discuss the use of lightweight smart contracts

to automate trust management and routing decisions. Our

design goal is to maximize security and trustworthiness of

routing with minimal additional overhead, by intelligently

offloading heavy tasks to more capable nodes or distributing

them over time.

3.1 Architecture Overview

The proposed architecture consists of three main layers of

entities (illustrated in Figure 1): (1) the IoT Devices

(sensor/actuator nodes that need routing), (2) the Miner or

Validator Nodes (which maintain the blockchain ledger and

run most of the blockchain logic), and (3) an optional

Gateway/Edge layer that interfaces between the constrained

devices and the blockchain network. This architecture

leverages the heterogeneity often present in IoT networks –

not all nodes are equally resource-constrained. We assume

that at least a small subset of the network (it could be

dedicated devices, cluster heads, or edge servers) has

comparatively higher capabilities (energy, computation,

storage) and can shoulder the burden of blockchain

operations. Regular IoT devices participate in routing by

sending and receiving packets and providing authentication

(digital signatures) for their messages, but they do not perform

expensive consensus algorithms. Instead, they rely on the

miner/validator nodes to add records to the distributed ledger

Paper ID: SE25710115055 DOI: https://dx.doi.org/10.70729/SE25710115055 59 of 71

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 7, July 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

on their behalf. This division of roles keeps the overhead on

tiny devices low, while still achieving a decentralized trust

model via the validators.

Figure 1: Proposed Architecture overview

We organize IoT devices into clusters, each managed by a

more capable cluster head (CH) node (shown in blue). The

CHs collectively form a peer-to-peer blockchain network to

maintain the ledger of routing information. Regular IoT

devices (green nodes) are connected to their local CH, which

serves as their gateway to the blockchain. In this design, IoT

devices do not communicate with the blockchain directly;

instead, CHs verify device identities, collect routing

information (such as route requests, acknowledgments, etc.),

and publish transactions to the blockchain. The CHs reach

consensus on the blockchain state (for example, using a

Byzantine fault tolerant algorithm or an IOTA-like gossip),

thereby ensuring that all CHs (and thus all clusters) share a

consistent, tamper-proof view of network routes and node

reputations. This hierarchical approach balances

decentralization with efficiency: trust is distributed among

multiple CH nodes, and there is no single point of failure, yet

individual low-power nodes are spared the cost of running a

full blockchain client.

IoT devices and identities: Each participating IoT device is

provisioned with a unique cryptographic identity (e.g., an

ECC public/private key pair). This identity is used to sign

routing messages and transactions, binding actions to the

device and preventing impersonation. The identity can be

established by a one-time registration on the blockchain

(perhaps via the gateway or CH): for example, when a new

node joins, its public key and an identifier (like a hash of its

MAC or a logical ID) are recorded on the ledger by an

authorized entity (this could be done by a system

administrator or via a self-registration smart contract if the

network allows open joining with certain proofs). We assume

a permissioned participation model for simplicity – meaning

unknown devices cannot participate in routing until they

register – but the consensus is decentralized among the known

participants. This addresses Sybil attacks since creating a fake

identity would require registering a new key on the

blockchain, which the consensus can control or rate-limit.

Once identities are set, all routing protocol messages (Route

Requests, Replies, etc.) will be signed by the sender’s private

key. Neighboring devices and CHs will verify these signatures

against the sender’s public key (retrieved from the

blockchain’s identity registry). This cryptographic

verification ensures authenticity of routing messages: a

malicious node cannot masquerade as someone else, and

injected fake messages (not signed by any known key) will be

discarded as invalid.

Miner/Validator nodes: In our architecture diagram (Figure 1),

the cluster heads (CH1, CH2, CH3) act as validator nodes that

maintain the blockchain. They form a peer-to-peer network

among themselves (shown by the horizontal connections

between CHs) and run a consensus algorithm to agree on new

blocks. Depending on deployment, these could be special IoT

devices with extra resources, or simply a role assigned to a

few normal devices. We might also consider that every IoT

device above a certain capacity could run the blockchain

software – the design is flexible to network size. For clarity,

we depict a clustered scenario where each CH represents a

group of devices. The blockchain maintained by the CHs

contains entries such as: route discovery transactions, route

validation records, and node behavior logs (trust scores,

misbehavior reports). Because the blockchain state is shared,

even if one cluster is under attack, other validators ensure the

integrity of data – an attacker would have to corrupt a majority

of CHs to subvert the ledger, which is much harder than

attacking individual links or nodes as in traditional routing.

Gateway functionality: If a strict clustering is not present, a

generic gateway concept can be applied. A gateway (which

could coincide with a CH or be another edge device) handles

communications between low-power nodes and the

blockchain network. IoT devices might talk to a gateway using

a lightweight protocol (like BLE, Zigbee, or CoAP/UDP) and

the gateway translates and forwards relevant info to the

blockchain network (over, say, TCP/IP). The gateway also

buffers and aggregates updates to avoid overloading the ledger

with frequent small transactions. In many IoT systems (like

LoRaWAN or NB-IoT networks), such gateways are naturally

present; our protocol can be embedded partly in gateway

software to leverage that existing component.

3.2 Route Discovery with Blockchain Integration

3.2.1 Baseline routing approach

Our protocol follows a route-on-demand philosophy similar to

AODV, adapted for blockchain support. We choose on-

demand routing because it naturally fits an event-driven

logging system (blockchain) – routes are discovered and can

be logged when needed, rather than attempting to log every

periodic update as would happen in a proactive protocol like

RPL (which could overwhelm the ledger with constant data).

However, we incorporate certain elements of RPL’s approach

for efficiency, such as preferring reliable links and

maintaining some local route caching to reduce the frequency

of discoveries.

When a source IoT device (let’s call it Node S) has data to

send to a destination device Node D and does not have a

current route, it initiates a Route Request (RREQ). Node S

constructs an RREQ packet containing: its own ID, the

destination ID, a route request sequence number (to match

replies and prevent replay), and possibly some metrics (e.g.,

current battery level or required QoS). Crucially, Node S signs

the RREQ with its private key. This RREQ is then broadcast

to S’s neighbors (if multi-hop at device level) or simply sent

to its cluster head/gateway (if a star topology per cluster). We

Paper ID: SE25710115055 DOI: https://dx.doi.org/10.70729/SE25710115055 60 of 71

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 7, July 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

assume neighbors or the CH verify the signature and then

process the RREQ.

In a pure peer-to-peer scenario, each receiving node (let’s call

one Node X) will verify the RREQ’s signature (ensuring it

indeed originated from S), then check if it has seen this RREQ

before (via sequence number and source ID). If not, it records

the RREQ (to avoid rebroadcast loops) and appends its own

ID to the route record in the RREQ before forwarding it

onward. This ID list constitutes the discovered path as the

RREQ propagates. Node X then rebroadcasts the RREQ

further (or passes it to its CH to broadcast to other clusters).

This is similar to AODV’s flooding mechanism, but one key

difference is that each node signs the portion of the RREQ it

forwards or at least signs a statement “I forwarded this RREQ

at time T”. We can achieve this without excessive overhead

by having each node’s signature on the accumulated route info

or by separate small attestation transactions to the ledger

(more on this shortly).

Eventually, the RREQ reaches either the destination D or an

intermediate node that has a fresh route to D. Suppose it

reaches D. Node D now prepares a Route Reply (RREP). In

our design, the RREP will carry the complete route (the

sequence of node IDs) from S to D that was accumulated. It

also carries the original sequence number from S’s request.

Node D signs the RREP (ensuring authenticity of the reply),

and unicasts it back towards S along the reverse of the

discovered path. Since each node in the path knows from the

RREQ which neighbor it received the request from, it can

forward the RREP along that chain. Alternatively, and more

securely in our case, Node D could create a transaction on the

blockchain to publish the discovered route. For example, D

(or the first CH that sees the RREP) submits a “RouteReply”

transaction that includes the hash of the route (or the full

route), the source, destination, and a timestamp, all signed by

D. This acts as a ledger-record of the route.

3.2.2 Blockchain-based validation of route

Once the route is reported (either via transactions as it was

discovered, or via the final RREP transaction), the validator

nodes (CHs) engage to validate the route. Validation means

checking that: (a) all nodes on the route are legitimate

(registered in the blockchain’s identity list), (b) the route does

not contain any obvious inconsistency (like a loop or a

forbidden node), and (c) each hop on the route was actually

witnessed by the supposed intermediate node. Condition (c) is

novel – how do we ensure each link was genuine? We

implement a mechanism wherein intermediate nodes, upon

forwarding the RREQ, also post a route witness transaction.

Specifically, when Node X forwards a RREQ to Node Y,

Node X can submit a tiny signed statement to the blockchain:

“X heard RREQ S−>…−>XS->…->X and forwarded to Y at

time t”. Alternatively, Node X might simply sign the RREQ’s

content and include it in the RREQ itself (a cumulative

signature approach), but that can bloat the packet. Offloading

to blockchain means we separate concerns: the network

propagates minimal info, and the blockchain carries the

heavier audit trail. So, as the RREQ propagates through CHs,

those CHs (on behalf of their member nodes) collectively add

entries like “Node A -> Node B neighbor relation observed for

RREQ #123” onto the ledger. This creates a chain of custody

for the route discovery.

When Node D’s RouteReply transaction is added, validators

cross-check it against these prior “neighbor witness”

transactions. If every pair of consecutive nodes (U,V) in the

route had earlier logged that they have a direct communication

for that RREQ, the route is confirmed consistent. If any link

in the route was fabricated (e.g., an attacker injected a fake

neighbor), the ledger would lack a corresponding witness

from the supposed transmitter or receiver, and the validators

would reject the RREP transaction as invalid. This approach

thwarts wormhole attacks: in a wormhole, two far apart nodes

(say M and N) might appear adjacent in the route without

having direct radio contact. In our system, when M forwards

to N via a wormhole tunnel, N can log a witness “N heard

RREQ from M”, but M and N are not real neighbors in the

network topology – how would the system detect that? If M

and N collude fully, they could both log witness transactions

(M says “I forwarded to N”, N says “I received from M”). To

address this, we might integrate geographic or timing

information: e.g., a witness transaction could include a

timestamp and perhaps the signal quality of the heard RREQ.

If M and N are distant, their transmission time and reception

time might not line up with a single-hop radio propagation

(especially if the wormhole transmission took longer). Also,

other nearby honest nodes of M or N might dispute the

neighbor relation (if N is not within radio range of M,

normally N’s neighbors wouldn’t include M; a smart contract

could flag if an alleged new neighbor relation pops up that

contradicts known distance or coverage data). Admittedly,

complete wormhole mitigation may require additional

methods (like distance bounding or radio watermarking), but

the blockchain provides a framework to store and analyze

such evidence. For our theoretical design, we assume either

the wormhole can be detected by inconsistent timing or the

need for multiple colluders makes it detectable by unusual

patterns in the ledger.

Once the route is validated, it is considered an agreed route

and can be used for data forwarding. Node S can now send its

data packets along the path S->…->D. We require that each

data packet is marked with an identifier of the route (e.g., a

route ID or the hash of the node sequence) and possibly

sequence numbers, and that nodes along the way only forward

it if it matches the route they agreed to forward. Because the

route was established via a contract, intermediate nodes have

essentially committed to forward packets for a session from S

to D. This could be enforced by a smart contract that holds a

security deposit for each node or a reputation stake; however,

in a purely theoretical design, we can simply rely on the

auditability: if an intermediate node drops the packet, the

destination D won’t see it and can trigger an alert (perhaps

sending a “packet not received” event to the blockchain after

a timeout). The contract then could decrement the reputation

of the suspect node or mark that node as a potential blackhole

in the ledger.

3.3 Consensus Mechanism for the Blockchain

The choice of blockchain platform (and thus consensus

algorithm) is critical to ensure the system remains lightweight.

We consider two scenarios aligned with the platforms

mentioned: one using IOTA (DAG-based) and one using

Hyperledger Fabric (permissioned BFT). Both avoid Proof-

of-Work mining in the classical sense.

Paper ID: SE25710115055 DOI: https://dx.doi.org/10.70729/SE25710115055 61 of 71

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 7, July 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

In an IOTA-based design, every validator (CH or capable IoT

node) participates in the Tangle by issuing transactions. When

a validator needs to add a new record (say a route witness or

route reply), it selects two tip transactions to approve (per

IOTA protocol) and does a small Proof-of-Work to attach the

new transaction. The small PoW is sized such that even IoT-

class processors (with perhaps tens of MHz CPU) can

compute it in a fraction of a second, ensuring that adding a

transaction doesn’t stall the network. As transactions

accumulate, the consensus emerges from the weight of

cumulative approvals. The final confirmation time in IOTA

can be on the order of seconds. One advantage of IOTA is

scalability: as IoT devices generate more transactions (like

many route updates), the network can theoretically handle

more throughput since validation is parallelized. Another

advantage is that IOTA has no miners or transaction fees – this

is important because IoT nodes cannot handle complex reward

mechanisms or micropayments with fees for something as

frequent as routing updates. By using IOTA’s DAG, every

node that issues a transaction contributes a bit of work and

helps confirm others, sharing the burden. However, pure

IOTA (at least historically) had issues with partition tolerance

and required a coordinator for finality; in our theoretical

design, we’ll assume a coordinator-free IOTA where a

lightweight consensus (like tip selection and maybe a voting

mechanism for conflict resolution) runs distributed among

CHs. If conflicts occur (e.g., two different routes submitted at

same time for the same source-dest), a rule is in place –

perhaps the one with more cumulative weight wins or the

earliest timestamp wins if no conflict in ledger references.

In a Hyperledger Fabric-based design, since the set of

validator nodes (CHs) is known and permissioned, we can use

an efficient consensus like Raft (Crash Fault Tolerant) or a

lightweight Byzantine Fault Tolerance (like Istanbul BFT or

Simplified PBFT) given the scale is relatively small (maybe

tens of validator nodes). Fabric’s approach would involve an

ordering service: one or more CHs act as orderers to collect

transactions, order them, and package them into blocks, which

then get distributed to all CHs. The ordering service can be

made crash fault tolerant (which is fine if we assume CHs are

mostly honest but we want reliability), or if we suspect up to

f of N CHs might be malicious, a BFT ordering service can be

used to still guarantee consistency as long as a majority (or

supermajority) are honest. The consensus in Fabric ensures

immediate finality of blocks – once a block is agreed and

committed, it’s final (no forks). This is beneficial for a routing

scenario because nodes can trust the route information as soon

as it’s committed, without worrying about chain

reorganizations. The latency for consensus in a LAN

environment can be around 50–500 ms for Fabric (depending

on settings and number of nodes) which is low. We would

configure Fabric’s block time or block size to be small, to

commit routing info quickly. For example, each RREQ or

RREP transaction could be committed in the next block within

a second. Fabric also allows us to implement the logic as

chaincode: e.g., a chaincode that automatically checks those

“witness” records and validates route transactions could run

as part of transaction validation phase, making consensus

decisions partly application-aware (smart contract-enabled

consensus).

We emphasize that Proof-of-Work (PoW) is avoided in our

protocol (except for IOTA’s negligible PoW) due to energy

concerns. We also avoid Proof-of-Stake (PoS) with token

incentives in this context because IoT networks may not have

a concept of cryptocurrency readily integrated, and we want

to minimize complexity. However, one could imagine a

variant where each node has a stake (like reputation or

deposit) that it could lose if it misbehaves; that’s more of a

penalty mechanism than a consensus mechanism. Recent

research has even suggested IoT-specific consensus like

Proof-of-Resource (PoR) where nodes prove they have certain

resources (like free memory or sensors) to earn the right to

publish blocks. Such approaches are intriguing as future

directions – they could allow even sensor nodes to partake in

consensus by leveraging the very resource constraints (for

example, demonstrating you have sufficient battery and radio

bandwidth before being allowed to add many transactions, to

prevent spam).

In our design’s default mode, consensus is maintained by a

small subset of moderately powerful nodes. This keeps the

blockchain lean (not every sensor does everything) and fits

with many real deployments where perhaps each field site or

area has a gateway. If fully decentralized (every node a

validator) is desired, one could scale down the consensus (e.g.,

use a simplified consensus where each node takes turns to add

blocks in a round-robin – effectively Proof-of-Authority by

rotation). The main security consideration is that the

consensus algorithm should tolerate some fraction of nodes

being malicious, since we are explicitly trying to secure

against insider threats (compromised IoT nodes). Therefore, a

BFT-style consensus (able to handle f malicious out of n) is

preferable to a simple leader election. Many permissioned

blockchains (Fabric, Quorum, etc.) already implement such

BFT consensus or can plug one in.

3.4 Lightweight Smart Contracts for Routing and Trust

Smart contracts in the BCR-IoT protocol are used to automate

verification and enforcement tasks that would otherwise be

difficult to manage in a distributed setting. We design these

contracts to be lightweight – meaning the logic is

straightforward and executes with low computational

overhead – so that even constrained environments or limited-

execution platforms (like IOTA’s second-layer or Fabric’s

chaincode on small VMs) can run them.

The primary smart contract (or set of chaincode functions) in

our system has the following responsibilities:

a) Route Validation Contract

This contract is invoked when a proposed route is submitted

(as in the RREP stage). It automatically checks the ledger for

the requisite witness transactions from each hop. Pseudocode

logic: on Route Proposal(route R, source S, dest D): for each

consecutive pair (node i, node_{i+1}) in R, look up a recent

“Link Proof” event for those two nodes under the same RREQ

ID; if any link proof is missing or if any node in R is not

registered/authorized, then reject the transaction; else accept

and mark route R as valid until a certain expiration time. By

doing this in a contract, we eliminate manual offline checking

– the consensus nodes all run this same code and will only

commit the route if it passes. This ensures all validators

enforce the same security policy for routes. The result is that

only legitimate routes get recorded.

Paper ID: SE25710115055 DOI: https://dx.doi.org/10.70729/SE25710115055 62 of 71

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 7, July 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

b) Reputation/Trust Management Contract

We include a contract that keeps track of a trust score or

reputation for each node. This score can be simple (e.g., an

integer count of misbehaviors or a rating between 0 and 100).

Initially, all nodes might start with a neutral score. The ledger

updates this score based on certain events:

• If a node is part of a route that successfully delivered data,

perhaps it gains a small trust increment (or conversely, you

mainly decrement on bad behavior).

• If a node was supposed to forward a packet but was

suspected of dropping it (for example, the destination

reports a packet loss or an intermediary watchdog node

reports a drop), the contract will decrement that node’s

trust.

• If a node issues an invalid transaction or is caught in an

attempted attack (e.g., it claimed a neighbor that was not

actually a neighbor, or it tried to flood the network with

RREQs above a threshold), its trust score drops

significantly.

• Optionally, periodic “rewards” for good participation

(staying online, responding to RREQs, etc.) could boost

trust to incentivize reliability.

The trust scores stored on-chain are accessible to the routing

protocol: when selecting routes, the protocol (via the CH or

via the contract itself) can prefer routes that avoid low-trust

nodes. For instance, if two route replies come back, one

including a node with very poor trust, the source (or a smart

contract) can disregard that route. In extreme cases, the

contract can blacklist a node (trust score too low) which

essentially means excluding it from routing entirely until

possibly re-authenticated or manually reset. This creates a

self-policing network: repeated malicious actions get logged

and that node is gradually isolated. Traditional routing lacked

this memory – once an attack happened, nodes had to

independently decide to avoid someone, whereas here the

knowledge is global and persistent.

c) Incentive Contract (optional)

If we integrate a token mechanism (which could be a custom

token on the ledger), a contract could implement

micropayments for forwarding. For example, the source S

attaches a tiny reward for delivering a packet to D. On

successful delivery (D or intermediate nodes could log an

acknowledgment transaction when they forward or receive

data), the contract releases the reward to the forwarding nodes.

Conversely, if delivery fails and a particular node is identified

as dropping, that node might lose a collateral deposit. This

idea, similar to the “contractual routing” model and prior

works like Sprite (a credit-based system for ad-hoc networks),

can directly motivate nodes to participate correctly. However,

implementing this requires a currency and handling the

complexities of who pays and how to prevent abuse (e.g., an

attacker might try to farm rewards by spamming its own

routes). For our theoretical design, we consider this an

optional extension for scenarios where an incentive layer is

appropriate (such as a multi-owner IoT network where devices

belong to different stakeholders and need compensation to

relay others’ traffic).

d) Topology and Performance Contract (monitoring)

Another auxiliary contract can monitor general network health

– for example, tracking how many RREQs are going on, how

many get replies, average hop count, etc. This is more for

analysis and optimization: the contract could flag if certain

areas have consistently long routes (maybe suggesting a new

CH needed), or if a particular node seems to attract a lot of

traffic (perhaps a hint of a central data aggregator that might

become a bottleneck or target). This goes beyond classic

routing into network management, but since we have the data

on-chain, it’s feasible to use it.

The lightweight nature of these contracts is seen in that each

operation is simple lookups or additions, and often the logic

triggers only on certain events (route discovery, packet

delivery). They do not require heavy computation like large-

scale matrix math or big data processing on-chain. By keeping

contracts simple, we minimize the execution cost on the

blockchain nodes and reduce latency.

It’s worth noting that IOTA’s base protocol does not natively

support expressive smart contracts on the ledger (it’s more a

transaction ledger), but the IOTA Smart Contract (ISC) layer

or integrating with an off-chain compute can achieve similar

outcomes. In a Fabric scenario, chaincode easily handles all

the above as it’s essentially running on a host machine.

e) Security of contracts

We make sure these contracts themselves are secure: e.g., the

route validation contract should only accept properly signed

witness logs; the trust update contract should ensure one event

triggers one update (to avoid a malicious spammer giving

someone bad reputation by faking multiple reports – but since

all reports are signed by real nodes, that is controlled). Also,

we ensure that a compromised node cannot directly

manipulate its trust score – it would have to misbehave and

get caught to be lowered, or behave to be raised, as the logic

is predetermined. The immutability of the blockchain means

the history of trust changes is available for auditing if needed

(for example, an owner of a device might want to dispute if

their device was unfairly blacklisted – they can see all

recorded incidents).

3.5 Route Maintenance and Updating the Ledger

Routes in IoT networks can break due to node mobility, node

failure (battery depletion), or environmental changes affecting

link quality. Our BCR-IoT protocol handles route

maintenance similarly to traditional protocols but adds the

blockchain logging for consistency and security.

If a link on a route breaks (e.g., node X cannot reach node Y

anymore due to Y moving out of range or shutting down), X

will detect a link failure (no link-layer ACK or an error from

the MAC). In a normal AODV, X would send a RERR to the

source to notify that route is invalid. We do the same but with

signed RERR messages. When a RERR is generated, it is also

posted to the blockchain: a RouteError transaction stating

“Link X->Y on route S-D broken at time t”. This promptly

invalidates the route in the ledger’s view. The source S on

seeing the RERR (or on observing on the ledger) knows it

must initiate a new route discovery if it still has data for D.

The trust management contract may treat frequent link

breakage differently from malicious drop – link break is not

malicious per se, so it might not penalize X or Y (except if

Paper ID: SE25710115055 DOI: https://dx.doi.org/10.70729/SE25710115055 63 of 71

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 7, July 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

there is suspicion that one of them deliberately went silent; but

that’s hard to distinguish from normal failure).

Because the blockchain keeps track of active routes, we can

also optimize route discovery frequency: if the same source S

and dest D communicate often, S can check the ledger if a

valid recent route exists before flooding a new RREQ. Even if

S had not cached it, the blockchain might have it. This is

effectively leveraging the blockchain as a distributed cache or

routing table. All nodes can query it (through their CH) to find

if a route to a given destination is known. This “global

memory” aspect can reduce overhead by reusing routes

network-wide, something not possible in purely local

algorithms. However, we must ensure using a cached route is

safe – the ledger would have an expiration or a last-seen

timestamp, and if that is older than some threshold (or if a

RERR was logged later), it should be considered stale. If up-

to-date, using it avoids a new flood, saving energy and time.

Scalability considerations: The architecture and protocol

described are intended to scale to networks of potentially

hundreds or thousands of IoT devices, but not unlimited size.

One must consider how the blockchain itself scales: if using

cluster heads, as clusters grow, CHs may become a bottleneck.

This can be alleviated by increasing the number of CHs (more

clusters with fewer devices each), or by using a multi-tier

blockchain (e.g., each region has its own ledger and

occasionally syncs with others – beyond our current scope but

a possible extension). The amount of blockchain traffic is

proportional to routing activity; in relatively static networks

with occasional data flows, this is small. In worst-case

scenarios (very dynamic network with continuous flows), the

overhead could be high – optimizations like aggregate

transactions, limiting frequency of route updates, or even

using probabilistic routing with partial info might come into

play.

We assume typical IoT conditions: mostly stable topology

with infrequent changes, so the blockchain overhead is

amortized. In extremely dynamic cases, one might integrate

our design with opportunistic routing and only use blockchain

for crucial transactions.

Finally, we highlight an implicit assumption: the

communication between IoT devices and CHs, and among

CHs, needs to be secure (to not introduce a new vulnerability).

We rely on the fact that all messages are signed and that CHs

run the consensus – so even if an attacker eavesdrops or injects

at the radio level, they cannot forge a signed message or alter

the blockchain without keys. Encryption of data packets can

be done at the application layer if needed; the routing protocol

itself doesn’t need to encrypt RREQs/RREPs (they’re not

secret), but could if privacy is a concern (though then

intermediate forwarding becomes tricky if payload is

encrypted; likely better to keep routing messages

authenticated but plaintext).

With the design laid out, we next compare its expected

performance and security properties with the traditional

protocols and evaluate how effectively it meets the IoT

network requirements.

4. Security and Performance Analysis

In this section, we analyze how the proposed blockchain-

based routing protocol (BCR-IoT) fares in terms of security

(resilience to attacks), scalability, communication overhead,

latency, and energy consumption. We compare these aspects

with the baseline protocols (RPL and AODV) to highlight

improvements and trade-offs. Since our work is theoretical,

the analysis is qualitative and based on logical reasoning

supported by findings from related studies. We also use

insights from literature where similar approaches were

simulated or measured.

4.1 Resilience to Routing Attacks

One of the primary motivations for BCR-IoT is to

dramatically improve security relative to RPL and AODV,

which are vulnerable to numerous attacks. Here we examine

common attack scenarios and how our protocol addresses

them:

• Blackhole/Sinkhole Attacks: In both RPL and AODV, a

blackhole can easily occur because nodes trust advertised

routes or rank values without a global verification. In RPL,

a node might advertise a very good rank to lure traffic

(sinkhole) and then drop it (blackhole); in AODV, a node

replies to RREQs with a false short path. In BCR-IoT, any

route reply or RPL-like rank advertisement must be

validated against the blockchain records. A malicious node

cannot unilaterally declare it has the best path – it would

need to forge a whole sequence of link proofs on the

ledger, which is not possible without collusion from

neighbors. If a node tries to drop packets silently after

attracting them, the trust contract will catch this due to

missing delivery acknowledgments. Over time, its

reputation plummets, and it will be excluded from routes.

This is a significant improvement: where traditional

protocols might continually be fooled by a blackhole until

an external mechanism intervenes, BCR-IoT builds

detection and exclusion into the routing process (with an

immutable audit trail to support it). Even without a trust

score, the immediate effect is that the source will see on

the ledger that packets didn’t reach the destination and

which hop was the last confirmed – pinpointing the

suspicious node. By contrast, in AODV, the source might

only know the packet was lost but not where.

• Wormhole Attacks: A wormhole is harder to tackle but

our route validation mechanism provides some defense. If

two colluding attackers create a wormhole, to successfully

use it in our protocol they must fake neighbor relations on

the ledger. This requires them to at least produce signed

witness transactions for a link that doesn’t actually exist in

normal radio range. While they could do that (since they

are colluding, one can sign for “I heard from the other”),

these fake transactions might be detectable by context

(e.g., if the network usually doesn’t have that link). In

addition, because every other hop on the route is validated,

a wormhole doesn’t let the attackers inject false nodes, it

only shortcut the path. If their goal was to snoop data,

they’d still have to forward it (since dropping would get

them caught as blackhole). If their goal was to disrupt, they

could drop via wormhole – but then two nodes lose

reputation at once. There is a rich area of research on

wormhole detection (like packet leash protocols, etc.),

Paper ID: SE25710115055 DOI: https://dx.doi.org/10.70729/SE25710115055 64 of 71

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 7, July 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

which could be integrated: for example, the blockchain

could store location claims of nodes and detect if an

alleged one-hop link is geographically impossible. For our

scope, we assume wormholes are at least partially

mitigated because the system would notice unusual route

patterns and possibly because other nodes will report

inconsistencies. At worst, the wormhole provides a way to

forward quicker, but it cannot tamper with data without

being the dropping point (which is then just a blackhole

case). RPL has almost no built-in wormhole defense, and

AODV neither; so any capability here is an improvement.

• Sybil Attack: This is when one attacker pretends to be

multiple identities. In RPL/AODV, a Sybil attacker could

inject multiple fake RREQs or appear as multiple nodes

to confuse routing. In BCR-IoT, Sybil is mitigated at the

identity layer – since each identity must be registered on

the blockchain, creating many fake identities would either

require compromising many real keys or somehow

subverting the registration process. If an attacker pre-

loaded a bunch of fake identities, the network could be

spammed, but we can implement limits (like the contract

could throttle the rate of new identities or require proof-

of-work to register). Additionally, if a Sybil node tries to

act as many nodes, the trust system will eventually

correlate that those identities always appear together or

misbehave similarly, raising suspicion. Hyperledger

Fabric’s permissioned nature essentially nullifies Sybil by

not letting arbitrary nodes join. So BCR-IoT is robust

against Sybil except possibly during initial bootstrapping

if not carefully controlled.

• Rank and Routing Metric Manipulation: This is

specific to RPL – an attacker changes its rank to

something illegitimate. In our design (which is more

AODV-like on demand), we don’t have ranks; but in any

distance-vector context, a node lying about distance is

akin to claiming a false route. Because route proposals are

verified via actual neighbor sequences, it can’t lie about

distance without physically being at that position in the

route. For instance, if an attacker claims to be only one

hop away from the destination (to shorten distance), it

would have to produce a witness from the destination as

its neighbor – essentially saying “I’m neighbor to D”. If

that’s false, the real neighbors of D (or D itself) won’t

corroborate that on the ledger. So rank manipulation is

stopped by requiring collective validation of any

topological claim. This addresses a host of RPL attacks

(rank, version, even DIS flooding to some extent because

the blockchain can detect excessive solicitations).

• Denial of Service & Resource Exhaustion: One concern

is that introducing blockchain could open new DoS angles

– e.g., an attacker flooding RREQs to overload the ledger

with transactions. We mitigate this by requiring PoW in

IOTA or by having rate controls in the consensus (a Fabric

network can simply ignore excessive requests from one

identity or put them in a lower priority). The nature of

blockchain also means a single node’s misbehavior (like

spamming) is globally visible, and countermeasures can

be taken (like temporarily not routing for that node, or

slashing its deposit if using one). Traditional protocols

often fail more silently under resource exhaustion

(neighbors drop packets, but the network may not

immediately know who’s spamming). Here, if an attacker

sends 1000 RREQs per second, everyone sees those on

the ledger and can react (the contract could implement a

rate limit where if >N RREQ from same source in

timeframe, ignore or penalize). So BCR-IoT inherently

provides a trace and tools to manage DoS.

• Data Integrity and Confidentiality: Our focus is routing

security, but ensuring that the data packets aren’t tampered

in transit is also important. BCR-IoT’s blockchain can

guarantee the integrity of routing decisions, but does not

automatically encrypt data (that can be handled by

application-layer encryption). However, if an attacker tries

to tamper with data, the receiver could notice (via

checksum or crypto verification) and then log that the data

was corrupted in transit. This might be beyond what

routing normally concerns, but in a holistic sense, a smart

contract could note that “packets from S to D consistently

corrupted when passing through node X” – implying node

X might be tampering or faulty. This again would lower

trust of X.In sum, BCR-IoT provides strong defenses

against attacks that plague RPL and AODV. By having a

shared ledger of routing state and events, it transforms

many silent or local attacks into detectable global events.

A key point is that even if an attack succeeds briefly (e.g.,

one packet drop), it leaves a forensic evidence on the

ledger (like where it likely dropped) and the network can

adapt. Traditional protocols often required external

intrusion detection or couldn’t trace issues beyond local

logs. Our approach builds detection and response into the

routing fabric.

No security solution is perfect, of course. The main

assumption is that the majority of validator nodes remain

honest. If an attacker can compromise a majority of CHs (or

whatever nodes run consensus), then they could falsify the

ledger – this is analogous to an attacker owning most network

infrastructure in any system, in which case little can be done.

We assume that scenario is highly unlikely due to the

distributed trust (e.g., CHs might be run by different

organizations or have tamper-resistant hardware).

Additionally, by using permissioning, we drastically reduce

the attack surface for consensus.

4.2 Routing Overhead and Scalability

Any added security usually comes with overhead. We now

consider the communication and computation overhead

introduced by BCR-IoT and whether it is acceptable for IoT

networks, as well as how the system scales with network size

compared to RPL/AODV.

4.2.1 Communication Overhead: In BCR-IoT, extra

communications come in two forms: on-chain transactions

and possibly slightly larger routing packets.

a) On-chain transactions: These include neighbor witness

logs, route proposals, route error reports, etc., which are

not present in traditional routing. However, not every

single packet triggers a blockchain transaction. We try to

aggregate and minimize frequency:

• During route discovery, a witness transaction might

be created per hop. In a worst-case n-hop route, n-1

witness logs + 1 route proposal = n transactions. But

we can have CHs batch them into one block or

compress multiple hops into one multi-signed

transaction. For rough comparison: AODV in

Paper ID: SE25710115055 DOI: https://dx.doi.org/10.70729/SE25710115055 65 of 71

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 7, July 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

flooding a RREQ sends a lot of RREQ packets (O(n)

per node in worst-case flood), whereas we send those

plus log them. If n is large (say 100 nodes), the flood

overhead dominates anyway. The ledger writing is

mostly handled by CHs at a higher layer, possibly over

a more reliable connection.

• For each data session, we might incur these route

setup transactions once. Data packets themselves are

not individually put on chain (unless using

micropayment per packet, which we consider

optional). So data forwarding overhead is identical to

AODV (just normal unicast per hop).

• Periodic trust updates or heartbeat transactions can be

tuned (maybe only upon notable events or at low

frequency).

The additional bandwidth used by blockchain traffic is a

concern on low-power radios. But if CHs are, say, border

routers with Ethernet or high-power radios, that’s fine. If

every node were participating via the same 802.15.4 link, then

yes the control overhead might be higher than RPL’s trickle

of DIOs. One study indicated RPL was most power-efficient

among AODV and LOADng in 6LoWPAN. BCR-IoT will not

beat RPL in raw efficiency because we intentionally add more

information exchange. The question is: is it within a

reasonable factor? If RPL sends periodic updates every

minute, and our BCR-IoT might send a bit more due to

security events, perhaps the overhead is 10-20% more in quiet

networks, and maybe 2x in very dynamic networks. Given IoT

radios often sit idle or at low duty cycles, many networks can

tolerate some overhead increase for the sake of security

(especially for critical applications).

b) Routing packet size: We include signatures on

RREQ/RREP. A typical ECC signature might be 64 bytes.

RPL messages are few bytes normally; adding 64 bytes

could be significant. However, on a per-hop basis, 64 bytes

extra is usually acceptable in 802.15.4 frames (127-byte

max) as long as not too many stacked signatures. We

avoided accumulating all signatures in the RREQ because

that would blow up size; instead we log to chain. So RREQ

carries essentially one signature (of initiator), maybe an

HMAC from intermediate if needed for immediate

neighbor check, but not a chain of sigs. RREP carries one

signature (dest). So the packets are only slightly larger than

AODV’s. RPL’s DIO could be secured by its internal

mechanism (which also adds similar overhead per message

with MIC or signature if used). So BCR-IoT’s on-air

packet overhead is comparable to using RPL’s built-in

security option, but we do much more with it.

4.2.2 Computation Overhead: IoT devices will perform

cryptographic operations: verifying signatures of neighbors,

maybe doing a PoW (in IOTA’s case) or some hashing for

transactions. Modern IoT nodes can handle elliptic curve

signatures – e.g., using ECDSA or Ed25519, a typical

microcontroller might verify in a few milliseconds to tens of

ms. This is more cost than doing nothing, but it may be

acceptable given that not every packet requires a new

verification (neighbors can cache public keys, etc.). The

validator nodes handle the brunt of consensus computations.

If using Fabric, that might even run on cloud or edge servers,

so sensors do almost zero heavy lifting beyond signing their

messages. If using IOTA and assuming even sensors do PoW:

IOTA’s PoW difficulty can be adjusted such that a sensor can

do it in maybe 100 ms, which might be acceptable for

occasional transactions.

The effect on energy consumption ties both comm and comp.

Transmitting extra bytes and computing crypto will consume

more energy per operation. There is a risk that on battery-

operated nodes, this reduces lifetime. However, consider that

many IoT devices (like sensors) wake up, send some data,

sleep. The routing overhead only occurs when needed. If the

network is mostly static with infrequent communications, the

overhead might barely dent the battery. If the network is very

active, those devices likely have a power supply or the

network is designed to accommodate traffic anyway.

Additionally, our hierarchical approach can allow very sleepy

nodes – a leaf node could wake up, send data to CH, and CH

handles routing with others. The leaf might not even hear all

the blockchain chatter, saving its energy.

Interestingly, a study on a trust-based RPL security

mechanism showed it achieved significant security gains with

only ~2.3% increase in average power consumption. Our

approach is more comprehensive than a simple trust model,

but if efficiently implemented, the overhead might be on the

order of a few percent to, say, 50% more in worst cases. Over

provisioning battery by that factor could be worthwhile for the

security provided.

4.2.3 Scalability: Scalability can refer to number of nodes and

also to network density/traffic. RPL is known to handle large

networks (hundreds of nodes) by its trickle algorithm which

reduces message frequency as the network stabilizes. AODV

can handle reasonably large networks but its flooding can

become costly beyond a certain scale or high mobility. BCR-

IoT’s scalability depends on the blockchain’s scalability. If

using IOTA, the system can potentially scale to very large

networks because there isn’t a hard limit – more transactions

means more verification but also faster consensus. The

partitioning of network into clusters also helps horizontal

scalability: you can add more clusters with new CHs joining

the blockchain network. A permissioned blockchain like

Fabric can scale to perhaps dozens of organizations and

hundreds of nodes, but if we imagine thousands of tiny nodes

through gateways, that’s still fine (only gateways run Fabric,

thousands of leaves connect to, say, 10 gateways).

One concern is ledger size growth: if the network runs for

years and keeps logging, the blockchain can become huge

(MBs to GBs). Storage is cheap on gateways, but not on

sensors. However, sensors don’t have to store the ledger; only

validators do. Validators can also use pruning or summarizing

techniques: e.g., check-points after certain intervals (like a

snapshot of trust scores and active routes, then prune older

transaction history beyond some window). As long as one

archival node keeps everything for auditing offline, others

could drop old data to save space. This is similar to

Ethereum’s concept of state vs history or IOTA’s periodic

snapshotting of the tangle to keep size manageable.

Compared to RPL, which is extremely lightweight in

overhead but has poor security, our protocol is heavier but

scales in a controlled way. Compared to AODV, our initial

Paper ID: SE25710115055 DOI: https://dx.doi.org/10.70729/SE25710115055 66 of 71

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 7, July 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

route discovery is similar or slightly more overhead (since

AODV floods, we flood plus log events – the flood dominates

complexity). AODV’s problem at scale is lots of broadcasts if

many sources simultaneously need routes. Our approach could

alleviate some of that by route caching via ledger: nodes can

look up routes rather than always flood, which actually could

reduce overhead in a busy network. In an extreme scenario

with many flows, AODV floods might congest the network,

whereas BCR-IoT might reuse known routes or at least spread

out the information via blockchain (which can propagate over

possibly out-of-band channels among CHs, not using the same

radio as devices). So it’s plausible that beyond a certain scale,

our approach might show better throughput for large IoT

networks, thanks to better coordination of routing info.

4.2.4 Latency: The route establishment latency in BCR-IoT

includes the time to perform consensus. For example, if a

RREQ is flooded and reaches dest in 50 ms (depending on

hops and propagation), and then an RREP is returned in

another 50 ms, AODV would consider the route ready at that

point (~100 ms). In our case, we would ideally wait until the

route is validated on-chain. If using Fabric with sub-second

finality, maybe add 500 ms, so route ready in ~600 ms. If

using IOTA and waiting for confirmation (which might be a

few seconds for safety), route ready in ~2-3 seconds. This is

additional delay before data can be confidently sent. We could

allow data to start flowing tentatively while validation is

underway to optimize for time, especially if we expect it to

pass. But to be safe, one might wait. This latency is not an

issue for non-real-time applications (a few seconds setup for a

multi-hop route in IoT is often fine, e.g., environmental

sensing). For real-time or very delay-sensitive flows (like

some industrial control), this could be a downside – though

such scenarios often have fixed topologies or engineered

routes, not discovering on the fly.

Once routes are established, the per-hop latency for data

forwarding is not affected (we don’t add processing per packet

except maybe an ID check which is trivial). In RPL, you might

have slightly longer routes sometimes (because RPL might not

choose the absolute shortest path if using certain metrics),

whereas in on-demand protocols typically you get near-

shortest paths. Our protocol chooses routes primarily based on

who responded, but the ledger could help choose an optimal

route if multiple are proposed (it can store metrics). We might

incorporate a slight bias to routes with fewer hops or higher

quality, which could reduce end-to-end latency of data relative

to a random or trust-only choice.

In terms of consistency, one must consider latency of

information propagation: in RPL, if a node becomes

malicious, it might take a while for others to notice or for

trickle to fix topology, whereas in BCR-IoT, as soon as an

incident is recorded on ledger, everyone knows at next block.

That is a faster reaction (at most the block time). So while

initial setup is slower, adaptation to failures or attacks can be

faster globally. This is a different aspect of network

performance – resilience speed.

4.3 Comparative Summary (BCR-IoT vs Traditional

Protocols)

We consolidate the comparison as follows:

4.3.1 Security: BCR-IoT strongly outperforms RPL and

AODV. RPL and AODV in default forms provide little

security (aside from optional measures rarely used), being

vulnerable to multiple attacks. BCR-IoT offers built-in

authentication, audit trails, and trust management. It

effectively mitigates blackhole, rank, Sybil attacks, and

provides tools to handle wormholes and DoS, which neither

RPL nor AODV could handle without external solutions.

4.3.2 Scalability: RPL is known for good scalability

(hundreds of nodes) in static scenarios due to its efficient

upkeep. AODV scales less gracefully if there are frequent

route discoveries, but still used in moderate network sizes

(tens of nodes in field tests, possibly 100s with optimizations).

BCR-IoT introduces new scaling dimensions: the blockchain

network among CHs must scale with number of clusters.

Permissioned blockchains can scale to enterprise-level (tens

of orgs, 100s of nodes). DAG-based approach can scale much

further. For extremely large IoT (thousands of nodes), one

might hierarchicalize further or use sharding (e.g., separate

blockchains per region that occasionally sync). We foresee

BCR-IoT can scale to networks of at least the same order of

magnitude as RPL networks (hundreds of devices) and likely

more, due to route info sharing. The overhead per device

might increase slower than linear because of shared

knowledge (10 route discoveries might serve 100 nodes if info

reused). In contrast, RPL overhead increases with nodes but

slowly (since DIO trickle slows down in bigger network), and

AODV overhead increases roughly linearly with number of

pairwise communications demands.

4.3.3 Overhead & Efficiency: RPL is the most efficient in

terms of control traffic under normal operation, as it sends

periodic beacons and occasional adjustments. AODV is

reactive so overhead is proportional to traffic demands – idle

network means no overhead, active means possibly many

RREQ floods. BCR-IoT’s overhead is proportional to routing

changes and attacks: in a stable network with no malicious

activity, overhead could be moderate (just route setups and

occasional trust updates). In a network facing many attacks,

ironically RPL/AODV might fail (so low overhead but

network not working), whereas BCR-IoT will have overhead

(as it logs and fights attacks) but keep network service. If we

quantify, RPL control overhead is often <5% of network

bandwidth in many deployments; AODV might spike to

higher during route finds. BCR-IoT might make that maybe

10% in steady state if transactions are small and infrequent

relative to data. This is speculative – an actual measurement

would require prototyping.

• Latency: RPL can have higher data latency if topology

repairs are slow (one reason some prefer reactive protocols

for dynamic networks). AODV can have route discovery

latency but after that quick. BCR-IoT adds a setup latency

due to consensus but ensures reliable performance after.

For many IoT applications that are not ultra-low-latency,

this is acceptable. If needed, parameters like block time

can be tuned down to sub-second to minimize delay, at the

cost of more frequent blocks.

• Energy: As indicated in Section 4.2, RPL tends to be

extremely frugal on energy (devices mostly sleeping

except brief DIO exchanges) – it was designed for that.

AODV requires nodes to wake for network-wide floods

Paper ID: SE25710115055 DOI: https://dx.doi.org/10.70729/SE25710115055 67 of 71

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 7, July 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

occasionally, consuming more energy especially in dense

networks (more receptions of RREQ). BCR-IoT requires

nodes to do crypto and possibly more listening (e.g., to

hear CH announcements). The cluster head approach can

actually save energy for leaves because a leaf might just

talk to CH and not participate in entire network flood (CH

might do RREQ on behalf of cluster, via other CHs). So if

we partition well, leaves save energy (like a TDMA

schedule to talk to CH). CHs spend more (they might be

mains-powered or have stronger battery). Thus, energy

usage is not uniform: it is shifted towards more capable

nodes. This is a classic trade-off in heterogeneous

networks. Overall network lifetime can be prolonged if

critical battery-powered nodes are not overburdened. So

BCR-IoT can be energy-aware by design (i.e., only a

subset pays the price). This is different from RPL where

every node including tiny ones must rebroadcast DIO and

maintain state, or AODV where any node can be part of

route discovery propagation.

Table 1 below qualitatively summarizes the comparison:

Table 1: Qualitative comparison of RPL, AODV, and the proposed BCR-IoT protocol

The comparison shows that the blockchain-based approach

significantly enhances security and trust at the cost of

additional overhead and complexity. In contexts like industrial

IoT, smart city infrastructure, or any application where

security is paramount (e.g., medical IoT data, military sensor

networks), this trade-off is often justified. Attacks that could

easily partition or deceive an RPL/AODV network would be

thwarted or detected by BCR-IoT, ensuring network

availability and data integrity in scenarios where failures

could be very costly. On the other hand, extremely constraint-

driven applications (like a tiny sensor network meant to last

years on battery with minimal traffic) might opt to stick with

RPL if the threat model is mild, due to BCR-IoT’s higher

demands.

4.4 Discussion of Limitations and Mitigations

While BCR-IoT offers many improvements, it’s important to

recognize its limitations. First, the requirement of a

blockchain infrastructure means additional complexity in

network setup and maintenance. IoT deployments must

manage the blockchain nodes (CHs or equivalent), keep them

in sync, and secure their software – essentially adding an

overlay network that network administrators need to monitor.

If a blockchain node fails or is hacked, it could disrupt the

routing for that cluster. This is partly mitigated by having

multiple validators and perhaps backup cluster heads that can

take over if one fails (consensus can continue as long as a

quorum remains).

Second, blockchain consistency vs network partition: if the

network splits (e.g., some cluster heads lose connection to

others), the blockchain could temporarily partition, and

routing information might diverge. This could lead to

suboptimal or even insecure routes until the partition heals

(like one partition might not know a node was flagged

malicious in the other). Mechanisms to merge ledgers or

ensure at least local safety in partitions would be needed –

possibly outside the scope of basic design (it could be handled

by defaulting to more cautious routing if not enough validators

are reachable).

Another limitation is dependency on time synchronization to

some extent. Not as much as some systems, but for logging

Paper ID: SE25710115055 DOI: https://dx.doi.org/10.70729/SE25710115055 68 of 71

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 7, July 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

events and detecting anomalies like wormholes, having

loosely synchronized clocks helps (to compare timestamps).

We might need the CHs to sync clocks via NTP or GPS. IoT

devices themselves can be unsynchronized and it won’t break

the protocol, but anything cross-network often benefits from

time sync.

Future research directions we identify include: more efficient

consensus tailored to IoT (like Proof-of-Resource as

mentioned, or scheduled consensus where each validator leads

for a short epoch to reduce chatter), integrating machine

learning to dynamically adjust trust thresholds (e.g., an ML

algorithm could analyze the blockchain data to predict which

nodes might fail soon or become malicious, pre-emptively

alerting the network), and real-world testbed evaluations.

Particularly, implementing BCR-IoT on a small testbed of IoT

nodes (with Raspberry Pi or Arduino-class devices as regular

nodes and some single-board computers as CHs) would help

measure actual overhead, latency, and energy usage,

validating the assumptions made in this analysis. Another

promising direction is to consider interoperability with

existing protocols: for example, could we design BCR-IoT as

an extension to RPL (so that if you have RPL nodes and BCR-

IoT nodes, they can coexist)? Perhaps by treating the

blockchain as an external audit system while RPL continues

handling basic routing – giving an upgrade path for legacy

systems.

5. Strengths, Limitations, and Future Work

5.1 Strengths of the proposed approach

The BCR-IoT protocol offers a paradigm shift in securing IoT

networks. By using blockchain as a backbone for routing, we

achieve a level of decentralized trust and transparency

unprecedented in traditional network protocols. Every routing

decision and action is verifiable and accountable. This

dramatically reduces the impact of insider attacks – a

compromised node can no longer lie about its status or actions

without the rest of the network knowing. In essence, we have

introduced a form of collective security enforcement: the

network watches itself. This is a powerful concept for IoT,

where physical security of nodes is weak; even if some nodes

are taken over by an adversary, they cannot easily bring down

the network or spoof others because the blockchain

(maintained by the healthy nodes) acts as a gatekeeper.

Another strength is longevity of trust information: decisions

are not just made on the fly from scratch (as in AODV each

time); instead, the network “learns” about nodes’ behavior

over time and can optimize routing accordingly (avoiding

troublemakers, preferring reliable nodes). This could lead to

more stable network performance in long-lived IoT

deployments. Additionally, the approach is flexible: by

changing smart contract logic, one can tweak the routing

policy or trust model without altering the core firmware of all

devices. For example, if a new type of attack emerges, a

software update to the contracts or validator logic could

implement detection for that attack’s pattern on the ledger.

This updatability is valuable given IoT devices often have

infrequent firmware updates once deployed.

Another strength is that the architecture naturally

accommodates multi-owner environments. Consider a smart

city where sensors from different departments (traffic,

weather, energy) share a network. Traditional routing might

struggle with trust if devices don’t trust each other cross-

department. But with a blockchain, each department can run a

validator node and collectively maintain the routing ledger,

ensuring no single party can bias the routing for everyone yet

everyone can trust the outcome. This is aligned with

blockchain’s general strength of enabling trust among

mutually distrusting parties.

5.2 Limitations and challenges

The benefits do come at the cost of complexity and overhead,

as thoroughly discussed. One limitation is reliance on

somewhat more powerful nodes (CHs). If an IoT scenario is

extremely homogeneous and ultra-constrained (say a network

of simple contact sensors with nothing that can act as a CH),

deploying a blockchain may be impractical. We’ve essentially

assumed a heterogeneous network or an external

infrastructure. This assumption holds in many IoT contexts

(smartphones, gateways, or edge servers are around), but not

in all (a pure ad-hoc network in a remote area with only

identical tiny sensors might not have a “big” node). A

potential mitigation is the development of ultra-light

blockchain clients that even small microcontrollers can run –

for example, use of minimalistic consensus like witness-

coordinated consensus where nodes take turns (like a token-

passing ledger). Research prototypes of lightweight

blockchain for IoT (with minimal code footprint) are

underway in the community and could help address this.

Another challenge is data privacy: Blockchain’s strength is

transparency, but that could conflict with privacy

requirements. Routing information might reveal node

locations or communication patterns. If an attacker gains read

access to the ledger (which in a permissionless chain is open),

they could glean sensitive info (like which sensors talk

frequently – possibly indicating their roles). We mentioned

that Fabric’s channels can restrict who sees what (so maybe

only the organization validators see full details, while

outsiders cannot). In IOTA (public), data is public, but one

could encrypt certain fields in transactions. Our design could

incorporate encryption for route details, such that only

authorized nodes can decrypt the actual path in a transaction

(maybe using a group key). However, adding encryption

complicates validation (the validators need to check route

consistency; they could do so on encrypted data only if using

more advanced cryptographic proofs). This is a trade-off: our

current design favors security and trust over confidentiality of

the meta-data. In future work, exploring privacy-preserving

blockchain routing (using techniques like zero-knowledge

proofs to prove a route is valid without revealing it fully)

would be very interesting.

5.3 Future Research Directions

Building on this work, several avenues emerge:

a) Prototype Implementation and Experimentation:

Implement BCR-IoT in a simulator (e.g., Cooja/Contiki for

IoT combined with a blockchain simulator, or using

Hyperledger Fabric SDK with a network emulator) to measure

performance under various scenarios. This would validate

assumptions about overhead and latency, and allow fine-

Paper ID: SE25710115055 DOI: https://dx.doi.org/10.70729/SE25710115055 69 of 71

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 7, July 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

tuning. Metrics like packet delivery ratio under attack, control

overhead, and energy usage can be quantified.

b) Optimizing Consensus for IoT: Investigate custom

consensus algorithms tailored to the typical scale and trust

assumptions of IoT networks. For instance, a hybrid

consensus where on small scales a fast BFT is used, and if the

network grows or becomes more open, it gracefully switches

to a more decentralized scheme. Or a consensus that exploits

the sensor network’s physical properties – e.g., using the fact

that network diameter is small, one could design a fast flood-

based agreement (not unlike RPL’s root announcements)

combined with cryptographic commitments. The Proof-of-

Resource (PoR) concept is one such idea: nodes prove they

have done certain sensor tasks (like providing data or uptime)

to earn the right to validate blocks, thus tying consensus to

useful work.

c) Integration with Software-Defined Networking (SDN):

There is an emerging idea of using blockchain with SDN

controllers to secure networks. One could imagine an SDN-

like approach to IoT where controllers use blockchain to share

network state and collectively control the network. In fact, if

an SDN controller is compromised, a blockchain of

controllers could detect conflicting instructions. For routing,

our approach is distributed, but some IoT deployments have

central control – merging those paradigms could yield a robust

hybrid.

d) Cross-domain Routing and Blockchain

Interoperability: Future IoT networks might interconnect

different blockchain systems. Perhaps one network uses IOTA

and a neighboring network uses Fabric; how would routing

work across them? Research into blockchain interoperability

(via relays or atomic swaps of info) could enable routes that

span multiple administrative domains, each securing their part

but handing off information through a gateway that is on both

ledgers.

e) Energy Harvesting and Economic Models: If we

introduce incentive mechanisms (like micropayments for

forwarding), the economics of the network become important.

Future work could simulate what reward level is needed to

encourage participation, or how to prevent abuse of rewards.

Also, one could tie it with energy harvesting – e.g., a node that

has surplus solar energy could advertise willingness to take

more routing load for some reward, while battery-powered

nodes might avoid it unless necessary. A blockchain could

dynamically broker such deals.

f) AI for Attack Prediction: With the wealth of data on the

ledger, using machine learning to analyze patterns (perhaps

off-line or by the validators) could predict attacks or node

failures before they happen. For example, if a node’s behavior

gradually changes (longer delays, slight increase in dropping),

an ML model might flag it as likely to fail or be compromised

soon, prompting preventive measures (like rerouting traffic

preemptively). This predictive security could greatly enhance

network resilience.

g) Real-world applicability: Ultimately, any solution must

justify its complexity by the security need. We see critical

applications like smart grids, healthcare monitoring, or

defense sensor networks as prime candidates where the data

and availability are so important that adding blockchain is

warranted. The progression of IoT in industry suggests that as

deployments scale and become part of national infrastructure,

security frameworks like BCR-IoT will draw interest. In fact,

standards bodies (IETF, IEEE) have started discussing

blockchain in network management and trust (e.g., IETF’s

blockchain for trust management drafts). Our work can inform

these discussions by showing a concrete design and its trade-

offs.

6. Conclusion

In this paper, we presented a comprehensive design for a

Blockchain-Based Secure Routing Protocol tailored to IoT

networks, addressing the pressing need for enhanced security

in resource-constrained environments. By integrating

blockchain technology – whether through IOTA’s DAG or

Hyperledger Fabric’s permissioned ledger – with routing

processes, we introduced a decentralized trust layer that

mitigates many vulnerabilities of traditional protocols like

RPL and AODV. Our proposed protocol leverages the

immutable and consensus-driven nature of blockchain to act

as a shared source of truth for routing decisions, thereby

preventing malicious nodes from misrepresenting network

information and enabling the detection and isolation of attacks

such as blackholes, wormholes, and Sybil incursions.

We detailed the architecture, highlighting how resource-

constrained IoT devices can participate with minimal

overhead by offloading heavy tasks to more capable validators

(cluster heads or gateways), and how smart contracts can

automate route validation and trust management. The

comparative analysis underscored significant improvements

in security and reliability – for example, routes are established

with collective verification and data integrity is ensured end-

to-end – at the cost of some additional latency and overhead.

The evaluation discussion acknowledged that while our

approach is more complex than conventional routing, the

evolution of IoT is reaching a point where such complexity is

justifiable. IoT networks are forming the backbone of critical

services (smart cities, industrial automation, etc.), and attacks

on these can have real physical consequences. Thus, the

strongest point of our work is demonstrating that it is feasible

to embed strong security and trust mechanisms at the routing

layer without rendering the system unusable for low-power

devices. We showed pathways to implement consensus in a

lightweight manner and to contain overhead mostly to

infrastructure nodes, thus fitting within IoT constraints.

Our work opens several avenues for future exploration – from

optimizing the performance of the blockchain layer to

deploying pilot networks to validate our assumptions. We also

encourage work on standardizing such approaches, possibly

as an extension to existing routing protocols (imagine an RFC

for “Secure Routing for LLNs using Distributed Ledger”).

In conclusion, the blockchain-based secure routing protocol

offers a promising solution for secure, scalable, and robust IoT

networking. It combines the best of both worlds: the proven

efficiency of protocols like RPL/AODV for routing, and the

trust guarantees of blockchain for security. As IoT networks

continue to expand in scale and importance, such

interdisciplinary approaches will be key to ensuring they

Paper ID: SE25710115055 DOI: https://dx.doi.org/10.70729/SE25710115055 70 of 71

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 7, July 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

remain resilient against the evolving threat landscape while

still operating within the practical limits of small devices. The

work presented here lays a strong theoretical foundation for

that vision, bringing us a step closer to IoT networks that are

not only smart and connected but also secure and self-healing

by design.

References

[1] Muzammal, S. M., et al. “A Trust-Based Model for

Secure Routing against RPL Attacks in Internet of

Things.” Sensors, vol. 22, no. 18, 2022, 7052.

[2] Ran, C., et al. "An improved AODV routing security

algorithm based on blockchain technology in ad hoc

network." EURASIP J. Wireless Comm. and

Networking, 2021.

[3] Wijesekara, P. A. D. S. N., et al. “A Survey on

Blockchain-Based Routing in Communication

Networks.” IJEEI, vol. 11, no. 3, 2023.

[4] Ramezan, G., and C. Leung. “A blockchain-based

contractual routing protocol for the Internet of Things

using smart contracts.” Wireless Comm. and Mobile

Computing, 2018, Article ID 4029591.

[5] Chen, X., et al. "Blockchain-based RPL optimization for

secure and reliable IoT routing." IEEE Internet of Things

Journal, 2023 (referenced in).

[6] Chia, P. S., et al. "Routing Protocols Performance on

6LoWPAN IoT Networks." IoT, vol. 6, no. 1, 2022,

p.12.

[7] Abuagoub, A. M. A. "Security Concerns with IoT

Routing: A Review of Attacks, Countermeasures, and

Future Prospects." Advances in Internet of Things, vol.

14, 2024.

[8] Hyperledger Fabric – IBM Blockchain. “What is

Hyperledger Fabric?” IBM, [Online].

Author Profile

Thejiya V is an Assistant Professor in the Department of

Computer Application, Krupanidhi Group of Institutions,

Bangalore. She completed her Bachelors in Computer

Science & Engineering and her Masters in Computer

Science & Engineering from Amrita School of

Engineering, India under Amrita University. Her current research

interests lie in the areas of Computer Networks and Artificial

Intelligence.

Paper ID: SE25710115055 DOI: https://dx.doi.org/10.70729/SE25710115055 71 of 71

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

