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Abstract: As renewable energy sources increasingly power motor-driven applications, solar-based inverter systems have gained 

significant attention. However, faults within power electronic devices, especially Voltage Source Inverters (VSIs), pose challenges by 

compromising performance and potentially damaging components. This study introduces a convolutional neural network (CNN) 

approach to detect and classify inverter faults in a solar-powered three-phase VSI system that drives an induction motor. A 

comprehensive simulation, developed in MATLAB/Simulink, integrates solar photovoltaic generation, a boost converter, and a VSI. 

The CNN model, trained on current and voltage signals under both normal and faulty conditions, achieved a classification accuracy of 

99%. The findings highlight the feasibility of implementing a fast and accurate fault detection mechanism suitable for real-time 

applications. 
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1. Introduction 
 

As the demand for eco-friendly energy solutions continues 

to rise, photovoltaic (PV) systems have gained prominence 

across commercial and industrial domains. A widely utilized 

setup consists of a PV array connected to a three-phase 

voltage source inverter (VSI), which in turn powers an 

induction motor—presenting a sustainable substitute to 

conventional fossil fuel systems. Despite their advantages, 

such arrangements are prone to electrical faults, especially in 

the inverter segment, where power electronic components 

like IGBTs and MOSFETs operate. Common issues include 

both open- and short-circuit failures, potentially causing 

system instability, increased energy loss, or motor damage. 

 

Conventional methods for fault monitoring typically involve 

hardware protection circuits or manual rule-based 

assessment, which often suffer from slow fault identification 

and limited adaptability under variable conditions. To 

overcome these drawbacks, intelligent fault analysis systems 

capable of rapid, accurate, and real-time operation are 

needed. 

 

In recent advances, AI-based strategies—particularly those 

involving deep learning—have demonstrated strong 

potential in fault diagnosis within power electronic systems. 

Convolutional Neural Networks (CNNs) offer notable 

efficiency in identifying complex patterns in electrical 

waveforms, minimizing the need for manual feature 

extraction. Their ability to detect signal anomalies makes 

them a suitable choice for continuous monitoring of PV-

powered motor drive systems.  

 

This study presents a fault classification framework utilizing 

CNNs to detect malfunctions in a solar-fed three-phase 

inverter supplying an induction motor. Using 

MATLAB/Simulink, fault scenarios including open-switch 

failure, short circuits, and gate driver faults are simulated. 

The resulting current and voltage data are processed to train  

and evaluate a CNN model, aiming to improve system 

resilience, support predictive maintenance, and minimize 

operational downtime. 

 

2. Literature Review 
 

Recent advancements in artificial intelligence (AI) and 

machine learning (ML) have significantly contributed to the 

progress of fault diagnostics in voltage source inverters 

(VSIs). As demonstrated by Patel et al. [13], ML-based 

methods offer valuable insights for detecting switch-level 

faults within inverter circuits. Hosseinzadeh et al. [6] further 

showcased that deep convolutional neural networks (CNNs) 

could attain high accuracy in fault categorization without 

relying on manual feature extraction. Kumar and Panda [9] 

illustrated the robustness of CNNs when applied under 

fluctuating photovoltaic (PV) operating conditions. 

Enhancing real-time detection capabilities, Zhang et al. [22] 

merged wavelet transform techniques with CNN models to 

boost classification performance. In addition, hybrid models 

such as CNN-LSTM, proposed by Lin et al. [12], and 

optimization-based approaches by Tang and Li [19], have 

demonstrated significant improvements in reducing latency 

and enhancing diagnostic precision. Altogether, these 

studies confirm the considerable potential of CNN-based 

algorithms for reliable fault detection in power electronic 

systems. 

 

3. Inverter fault 
 

Voltage Source Inverters (VSIs) are key components in 

photovoltaic (PV)-based motor drive systems, responsible 

for converting regulated DC voltage into a balanced three-

phase AC supply. Despite their high efficiency and 

reliability, VSIs are susceptible to various electrical and 

switching-related faults that can significantly impair system 

performance or cause hardware damage. The most prevalent 

inverter faults include open-circuit, short-circuit, gate driver 
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failure, and shoot-through conditions, each exhibiting distinct electrical signatures. 

 

 

Figure 1: Different types of faults 

 

3.1 Open Circuit Fault 

 

An open-circuit fault arises when at least one switching 

device within the inverter stops conducting as expected, 

interrupting the flow of current in the affected phase. These 

faults typically result from gate driver malfunctions, 

component aging, or disconnection within the control 

circuitry. The most common manifestation is a missing or 

distorted phase current, accompanied by unbalanced line 

voltages. Such faults can degrade torque performance in 

motor drives and increase total harmonic distortion (THD). 

 

3.2 Short Circuit Fault 

 

Short-circuit faults occur when a switching device fails in a 

closed state, resulting in uninterrupted current flow through 

the circuit. This may result from gate signal failures, internal 

device breakdowns, or parasitic latch-up. The consequence 

is an excessive current spike that can damage semiconductor 

devices and downstream components. Rapid detection and 

shutdown are essential to prevent thermal and mechanical 

stress on the inverter and motor. 

 

3.3 Gate Driver Failures 

 

Gate driver faults affect the ability of the control signals to 

properly switch the inverter transistors. These failures may 

cause unintended turn-on or turn-off events, leading to 

erratic switching patterns. The resulting waveforms often 

exhibit asymmetric or unpredictable behavior, making 

detection through conventional threshold-based methods 

difficult. 

 

3.4 Shoot-Through Faults  

 

A shoot-through condition takes place when both switches 

one at the high side and the other at the low side of the same 

inverter leg are mistakenly activated together, leading to a 

short circuit across the DC bus. This creates a direct short 

across the DC link, resulting in extremely high current and 

potential destruction of the switching devices. Shoot-through 

events are typically caused by logic errors, timing 

mismatches, or component failures in the gate driver 

circuits. 

 

4. System Overview 
 

The proposed system is a solar-powered three-phase 

inverter-based drive system designed to operate an induction 

motor. It consists of four major components: 

• Photovoltaic (PV) Panel 

• DC-DC Boost Converter 

• Voltage Source Inverter (VSI)  

• Three-Phase Induction Motor. 

 

These are integrated in a MATLAB/Simulink environment 

to simulate the electrical behaviour under normal and faulty 

conditions. A Convolutional Neural Network (CNN) is 

employed to examine the electrical output signals and 

identify any faults present in the inverter section.  

 

4.1 Photovoltaic (PV) Panel  

 

The photovoltaic (PV) panel functions as the main source of 

energy by transforming sunlight into direct current (DC) 

power via the photovoltaic effect. The electrical output of 

the panel is influenced by several factors, including solar 

irradiance, ambient temperature, and the type of cell 

material used, such as monocrystalline or polycrystalline 

silicon. Under standard test conditions—specifically 1000 

W/m² of irradiance and a temperature of 25°C—the panel 

typically produces an unregulated DC voltage close to 180 

volts. 

 

Since sunlight intensity fluctuates throughout the day, the 

panel’s output is inconsistent and must be regulated. To 

maintain optimal efficiency, a Maximum Power Point 

Tracking (MPPT) algorithm is implemented, ensuring the 

panel operates at its most efficient power output. 

 

4.2 DC-DC Boost Converter 

 

A boost converter is used to elevate the fluctuating DC 

voltage from the PV panel to a higher and more stable level 
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suitable for inverter operation. The converter operates in 

continuous conduction mode (CCM), using a high-frequency 

switching MOSFET (typically 10–20 kHz) to store energy in 

an inductor and then release it through a diode to the output. 

 

The boost converter’s output voltage. 

                  

Where: 

• Vin = Input voltage from PV 

• D = Duty cycle of PWM signal. 

 

This voltage is regulated to around 600V, forming the DC 

link to feed the inverter. Proper inductor and capacitor sizing 

ensures minimal voltage ripple and high efficiency. 

 

 
Figure 2: Boost Converter 

 

4.3 Voltage Source Inverter (VSI) 

 

The Voltage Source Inverter (VSI) transforms the stepped-

up DC voltage into a balanced three-phase AC supply, 

making it suitable for driving electric motors. It is built 

using six IGBT switches configured in a three-leg bridge 

structure. To generate waveforms that closely resemble pure 

sine waves, the inverter employs Pulse Width Modulation 

(PWM) methods such as Sinusoidal PWM or Space Vector 

PWM (SVPWM). 

 

The inverter stage is critical for system performance and is 

vulnerable to faults such as: 

• Open-Circuit Faults: One or more switches fail to turn 

ON. 

• Short-Circuit Faults: Switches remain permanently ON. 

• Shoot-through: Both switches in the same leg conduct 

simultaneously. 

 

These faults introduce distortion in the output current and 

voltage waveforms, affecting motor torque and speed. Such 

waveforms are captured and analysed using the CNN-based 

fault classifier. 

 
Figure 3: Three-phase inverter using IGBT switches to 

convert DC to AC power 

 

4.4 Three-Phase Induction Motor 

 

The three-phase AC output from the VSI is supplied to the 

motor, which functions according to the principle of 

electromagnetic induction. The stator creates a rotating 

magnetic field that induces current in the rotor, resulting in 

torque production. In this study, the motor is modeled in 

MATLAB using typical equivalent circuit parameters, 

allowing for the analysis of its dynamic response under both 

normal operating conditions and simulated faults. 

 

Induction motors are robust but sensitive to power quality 

disturbances caused by inverter faults. These faults cause 

unbalanced currents, loss of torque, increased vibration, and 

heating. 

 

4.5 Fault Injection and Signal Monitoring 

 

To evaluate the performance of the proposed fault detection 

method, controlled faults are introduced in the inverter stage 

through logic blocks in Simulink. The three fault categories 

are, 

• Normal Condition 

• Open-Circuit Fault 

• Short-Circuit Fault 

 

Voltage and current signals from the inverter output and the 

DC link are recorded. These waveforms are pre-processed 

and formatted into 2D input arrays for the CNN. 

 
Figure 4: Fault Injection Module 

 

4.6 CNN-Based Fault Detection System 

 

The CNN model is trained using labeled datasets 

representing the three classes (normal, open, short faults). 

Each signal sample contains characteristic waveform 

patterns unique to the fault type. The CNN architecture 

includes: 

• Input layer for signal frames 

• Convolution and pooling layers for feature extraction 

• Activation layers (ReLU, Leaky ReLU) 

• Fully connected layer and softmax output for 

classification. 

 

The trained CNN achieves 100% accuracy in simulation, 

demonstrating robust fault classification capability. 

 

5. Result and Discussion 
 

This part presents a detailed examination of the simulation 

outcomes and assesses how effectively the proposed fault 

detection system, based on a Convolutional Neural Network 

(CNN), performs. The study was conducted in 

MATLAB/Simulink to simulate various fault scenarios and 

assess the classifier’s accuracy. 
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5.1 Simulation Setup 

 

The solar-powered inverter system was modelled using a PV 

array, DC-DC boost converter, three-phase VSI, and a 

squirrel cage induction motor. The PV panel delivers a 

variable DC output of approximately 180 V under standard 

conditions (1000 W/m², 25°C). A boost converter steps up 

this voltage to 600 V, supplying a three-phase VSI. The 

inverter uses six IGBT switches with PWM control to 

produce AC output, which drives the induction motor. 

Controlled faults were introduced in the inverter using 

logical gating. Three operational modes were simulated, 

• Healthy condition 

• Open-circuit fault (e.g., S1 fails to conduct) 

• Short-circuit fault (e.g., S1 remains continuously ON) 

 
Figure 5: Simulation setup of a three-phase VSI inverter 

system 

 

5.2 Output Waveform Analysis 

 

The output waveform analysis was conducted to observe the 

effect of various fault conditions in the inverter stage. The 

system was simulated under three distinct operating 

conditions: normal operation, open-circuit fault, and short-

circuit fault. The resulting voltage and current signals were 

evaluated in the time domain to identify unique features that 

could aid in accurately classifying each fault type. 

 

5.2.1  Solar Panel Output 

The solar panel model was set up according to standard 

testing parameters, using an irradiance level of 1000 W/m² 

and an ambient temperature of 25°C. The output voltage 

waveform of the PV array exhibited an initial transient 

before stabilizing at approximately 180 V DC. The 

waveform showed a minor ripple component due to 

environmental variations and internal switching dynamics of 

the Maximum Power Point Tracking (MPPT) algorithm. The 

steady-state voltage confirmed effective power harvesting 

from the solar panel under uniform irradiance conditions. 

The dynamic response of the solar panel output indicated the 

need for regulated DC voltage to ensure stable inverter 

operation, which justified the use of a boost converter. 

 

 
Figure 6: Output waveform of Solar Panel 

 

5.2.2 Boost Converter Output 

The DC-DC boost converter effectively increased the PV 

panel’s output voltage from 180 V to a stable and regulated 

600 V DC, confirming successful voltage step-up 

performance. Initially, the waveform showed a sharp rise 

due to inductor charging, followed by settling into a stable 

output with minimal ripple. The high-frequency switching of 

the converter introduced slight ripples, but the output 

remained within the designed tolerance limits due to proper 

capacitor sizing and PWM control. 

 

This regulated and elevated DC voltage served as the input 

to the voltage source inverter (VSI), ensuring sufficient 

headroom for AC synthesis. The effectiveness of the MPPT 

control and PWM regulation was confirmed through the 

smooth and consistent output waveform of the boost 

converter. 

 
Figure 7: Boost converter output voltage waveform 

 

5.2.3 Healthy Condition 

Under normal operation, the inverter produced balanced 

three-phase AC output with sinusoidal-like waveforms. The 

line-to-line voltages exhibited symmetrical patterns with a 

consistent amplitude and 120° phase displacement, ensuring 

stable operation of the induction motor. No distortions or 

anomalies were present in the waveforms. 

 

 
 

Figure 8: Output waveform of Three Phase VSI under 

healthy condition 

 

5.2.4  Open-Circuit Fault 

An open-circuit fault, introduced by disabling one of the 

inverter switches, resulted in a discontinuity in the 

corresponding phase current. This led to unbalanced voltage 
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waveforms with missing pulses in the affected phase. The 

motor experienced torque ripple and degraded performance. 

Such discontinuities formed a distinct signature in the 

current and voltage signals. 

 

 
Figure 9: Output waveform of Three Phase VSI under open 

circuit fault 

 

5.2.5 Short-Circuit Fault 

During a short-circuit fault, one of the switches remained 

continuously ON, leading to a direct short across the DC 

link. The resulting waveforms showed a sudden drop in 

output voltage and a significant rise in phase current. The 

imbalance and distortion in the waveforms were severe, 

indicating the urgency of protection action. These abnormal 

signatures were effectively captured for CNN classification. 

 
Figure 10: Output waveform of Three Phase VSI under 

short circuit fault 

 

5.3  CNN training and Result   

 

The core of the proposed inverter fault detection system is a 

Convolutional Neural Network (CNN) trained on inverter 

output signal data under various operating conditions. The 

CNN was developed and trained in MATLAB using time-

domain voltage and current waveforms obtained from the 

simulated model. 

 

1) Dataset Preparation 

The dataset consisted of labeled signal segments 

corresponding to three operating conditions: 

• Normal operation 

• Open-circuit fault 

• Short-circuit fault 

 

Each sample contained 1D waveform data captured from 

line-to-line voltages and phase currents at the inverter 

output. The dataset was scaled appropriately and then split 

into three parts: 70% for training, 15% for validation, and 

15% for testing. 

 

 

2) Training Performance 

During training, the CNN demonstrated rapid convergence. 

The training and validation losses decreased steadily, while 

the accuracy increased and stabilized without overfitting. 

• Training Accuracy: 100% 

• Validation Accuracy: 100% 

• Final loss: < 0.01 (both training and validation) 

 

The training curve indicated that the model effectively 

learned to distinguish between normal, open, and short-

circuit conditions using features derived from waveform 

patterns. 

 

 
Figure 11: Output waveform of CNN model training 

 

5.4 Confusion Matrix and Evaluation 

 

A confusion matrix was used to assess how well the model 

performed on the test dataset. It correctly classified all test 

samples, yielding zero misclassifications: 

 

 
Figure 12: Output waveform of Confusion matrix 

 

Table 1: Confusion matrix 
Actual / 

Predicted 

Normal 

Circuit 

Open 

Circuit 

Short 

Circuit 

Normal Circuit 54 0 0 

Open Circuit 0 100 0 

Short Circuit 0 0 100 

 

6. Conclusion 
 

This study introduces a deep learning-based method for 

detecting faults in a solar-powered three-phase voltage 

source inverter (VSI) that supplies an induction motor. The 
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proposed approach leverages Convolutional Neural 

Networks (CNN) to identify both open-circuit and short-

circuit faults within the inverter. The complete system was 

modeled and simulated in MATLAB/Simulink, integrating 

realistic components such as a photovoltaic (PV) array, a 

DC-DC boost converter, a VSI using IGBT switches, and a 

dynamic three-phase squirrel cage induction motor load. 

 

The simulation outcomes confirmed the reliability and 

accuracy of the proposed method. When subjected to various 

fault scenarios—such as open-circuit and short-circuit 

conditions—the inverter's output displayed distinctive 

waveform abnormalities, including imbalanced phase 

voltages, missing current segments, and significant 

harmonic distortions. These unique waveform traits were 

pre-processed and used to train a CNN model capable of 

automatically identifying the inverter’s operating condition. 

The CNN architecture included several convolutional and 

pooling layers, ending with a fully connected classification 

layer. It was trained using labeled signal data from three 

operational states: normal, open-circuit fault, and short-

circuit fault. The model achieved perfect classification 

accuracy (100%) on both training and validation sets. A 

confusion matrix analysis revealed no misclassifications, 

highlighting the model’s strength in extracting features 

directly from time-domain data without manual feature 

engineering. 

 

Incorporating CNNs into fault detection systems presents 

multiple benefits compared to traditional diagnostic 

methods, such as higher speed, greater automation, and 

improved adaptability: 

• Automated classification reduces the need for human 

intervention. 

• High-speed detection enables real-time monitoring and 

protection. 

• Cost-effective deployment as it eliminates extra 

hardware sensors. 

• Scalability for more complex inverter topologies or 

additional fault types. 
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