
International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 9, September 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Observability-as-a-Service: Architecting and

Evaluating Scalable Monitoring Platforms for

Cloud-Native Enterprises

Priyanka Kulkarni

Abstract: The complexity of cloud-native systems has transformed monitoring from a reactive afterthought into a foundational

discipline that determines enterprise reliability and resilience. While individual tools such as Prometheus, Grafana, and Datadog have

enabled distributed monitoring, enterprises still face challenges around scalability, compliance, and cost-effectiveness. This article

proposes the concept of Observability-as-a-Service (OaaS) a platform-oriented approach to delivering monitoring and observability

capabilities as a service, decoupled from individual system silos. We introduce a layered reference architecture for OaaS, demonstrate its

applicability through a case study in a large-scale hybrid cloud enterprise, and benchmark its performance against traditional

observability stacks. Results highlight measurable improvements in throughput, latency, and governance coverage, making OaaS a

viable path forward for enterprises struggling with telemetry sprawl.

Keywords: Observability, Cloud-Native Systems, Monitoring, Observability-as-a-Service, Platform Engineering, Multi-Tenant

Architecture, Compliance

1. Introduction

Cloud-native adoption has accelerated in enterprises across

domains such as finance, and retail. With the rise of

microservices, container orchestration systems like

Kubernetes, and service meshes, system complexity has

grown exponentially. Traditional monitoring approaches,

which relied on static dashboards and metric scraping, have

become insufficient. Observability emerged as a broader

paradigm encompassing logs, metrics, traces, and events to

provide deep system insights.

Figure 1: Evolution of system insight paradigms: from

traditional Monitoring, to modern Observability, and toward

Observability-as-a-Service (OaaS).

2. Related Work

Application Performance Monitoring (APM) tools such as

Datadog, New Relic, and AppDynamics provide partial

observability through proprietary ecosystems. Open-source

tools like Prometheus, Grafana, Jaeger, and OpenTelemetry

offer modular capabilities but lack unified orchestration.

Table 1: Comparison of existing monitoring/observability

platforms in terms of scalability, cost, governance, and AI

support.
Platform Scalability Cost Governance AI Support

Datadog High High Medium Yes

New Relic Medium High Low Yes

Prometheus Medium Low Low No

Grafana Medium Low Low No

Elastic High Medium Medium Partial

3. Proposed OaaS Reference Architecture

We propose OaaS as a service-oriented observability

platform, structured into five layers: Data Ingestion,

Processing & Enrichment, Storage, Visualization & Insights,

and Security & Governance.

a) Data Ingestion: Collects and normalizes telemetry data

from diverse sources using open standards and scalable

pipelines.

b) Processing & Enrichment: Transforms raw data with

aggregation, correlation, and ML-based anomaly

detection for contextual insights.

c) Storage: Provides tiered, query-optimized storage

balancing performance, cost efficiency, and long-term

retention.

d) Visualization & Insights: Delivers dashboards,

analytics, and predictive insights for real-time

observability and decision support.

e) Security & Governance: Ensures data privacy,

compliance, and lifecycle management through

encryption, access control, and auditability.

Equation (1). Formal definition of OaaS tuple: OaaS = (S, P,

T, V, G). Where S = Telemetry Sources, P = Processing

Functions, T = Storage Topology, V =

Visualization/Insights, G = Governance Policies.

Figure 2: Proposed OaaS Reference Architecture showing

layered components: Data Ingestion, Processing &

Paper ID: SE25919191451 DOI: https://dx.doi.org/10.70729/SE25919191451 41 of 43

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 9, September 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

Enrichment, Storage, Visualization & Insights, and Security

& Governance.

4. Case Study – Enterprise Adoption

We applied the OaaS architecture in a financial enterprise

with 500+ microservices deployed across AWS and on-

premise clusters. The enterprise faced challenges in ensuring

compliance, scaling observability for ~5TB/day telemetry

data, and reducing mean time to recovery (MTTR).

Table 2: Case study parameters for enterprise OaaS

deployment, including services count, telemetry volume,

SLA targets, and latency budget
Metric Value

Services Count 500+

Telemetry Volume/ Day 5 TB

SLA Targets 99.9%

Latency Budget < 50 ms

Figure 3: Enterprise case study deployment pipeline

demonstrating OaaS integration with microservices clusters,

telemetry agents, governance policies, and dashboards.

5. Evaluation – Benchmarks

We conducted benchmark experiments on a simulated

Kubernetes cluster (200 nodes, 10K pods) with synthetic

telemetry generation. Results showed OaaS outperforming

baseline Prometheus+ELK setup.

To ensure replicability, the evaluation was conducted in a

controlled experimental setup. We deployed the OaaS

platform on a Kubernetes cluster consisting of 200 worker

nodes and 10 control-plane nodes, emulating a large-scale

enterprise environment. Each node was equipped with 16

vCPUs, 64 GB RAM, and 1 TB of SSD storage, provisioned

across a hybrid multi-cloud setup (AWS + on-premise

OpenStack). Synthetic telemetry data was generated using a

custom workload generator capable of producing up to 5

TB/day of mixed logs, metrics, and distributed traces.

Workload patterns included microservice API calls, database

queries, and streaming telemetry from IoT devices, ensuring

a realistic distribution of traffic.

Benchmark metrics included: (i) latency of query responses

across ingestion and visualization layers, (ii) throughput

measured as events per second successfully processed, (iii)

governance compliance coverage validated through

automated policy checks, and (iv) cost efficiency expressed

as normalized compute/storage utilization per GB of

telemetry data. Each experiment was repeated three times,

and mean values are reported. Statistical deviations

remained within ±5%, indicating stable and reproducible

results.

This detailed methodology ensures that the benchmarks are

transparent, reproducible, and comparable to future studies.

Table 3: Benchmark results of baseline vs OaaS

implementation: latency, throughput, cost efficiency, and

governance coverage
Metric Baseline OaaS

Latency (ms) 45 30

Throughput (K events/sec) 200 280

Cost Efficiency 1.0x 1.22x

Governance Coverage 60% 96%

Figure 4: Benchmark results comparing baseline

observability stack versus OaaS, highlighting latency

reduction and throughput gains

6. Comparative Analysis

To contextualize results, we compared OaaS with traditional

observability approaches.

Table 4: Comparative analysis contrasting traditional

observability approaches with OaaS in terms of scalability,

governance, vendor lock-in, and AI readiness
Dimension Traditional OaaS

Scalability Medium High

Governance Weak Strong

Vendor Lock- in High Low

AI Readiness Low High

7. Conclusion & Future Work

This paper introduced Observability-as-a-Service as a new

paradigm for scalable monitoring in cloud-native

enterprises. Future work will explore integration of machine

learning for anomaly detection, decentralized OaaS models

for edge computing, and interoperability standards.

Figure 5: Future research roadmap of OaaS: short-term

platform unification, mid-term AI-driven observability, and

long-term federated edge deployment

Paper ID: SE25919191451 DOI: https://dx.doi.org/10.70729/SE25919191451 42 of 43

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

International Journal of Scientific Engineering and Research (IJSER)
ISSN (Online): 2347-3878

SJIF (2024): 6.623

Volume 13 Issue 9, September 2025

www.ijser.in
Licensed Under Creative Commons Attribution CC BY

References

[1] OpenTelemetry, “Documentation,” OpenTelemetry

Project. Available: https://opentelemetry.io/docs/.

Accessed: Sept. 19, 2025.

[2] R. Ewaschuk, “Monitoring Distributed Systems,” in

Site Reliability Engineering (Online Ed.), Google SRE

Book. Available: https://sre.google/sre-

book/monitoring-distributed-systems/. Accessed: Sept.

19, 2025.

[3] New Relic, “2024 Observability Forecast Report.”

Available:

https://newrelic.com/resources/report/observability-

forecast/2024/state-of-observability. Accessed: Sept.

19, 2025.

[4] AWS, “Reliability Pillar – AWS Well-Architected

Framework.” Available:

https://docs.aws.amazon.com/wellarchitected/latest/reli

ability-pillar/. Accessed: Sept. 19, 2025.

[5] AWS, “AWS Well-Architected Framework (2024-06-

27).” Available:

https://docs.aws.amazon.com/wellarchitected/.

Accessed: Sept. 19, 2025.

[6] OpenTelemetry, “Collector — Introduction.”

Available: https://opentelemetry.io/docs/collector/.

Accessed: Sept. 19, 2025.

[7] OpenTelemetry, “What is OpenTelemetry?” Available:

https://opentelemetry.io/docs/what-is-opentelemetry/.

Accessed: Sept. 19, 2025.

[8] OpenTelemetry, “Demo.” Available:

https://opentelemetry.io/docs/demo/. Accessed: Sept.

19, 2025.

[9] Prometheus Authors, “Overview,” Prometheus Docs.

Available:

https://prometheus.io/docs/introduction/overview/.

Accessed: Sept. 19, 2025.

[10] Prometheus Authors, “Getting Started,” Prometheus

Docs. Available:

https://prometheus.io/docs/prometheus/latest/getting_st

arted/. Accessed: Sept. 19, 2025.

[11] Jaeger Authors, “Architecture,” Jaeger Tracing v1.44

Docs. Available:

https://www.jaegertracing.io/docs/1.44/architecture/.

Accessed: Sept. 19, 2025.

[12] Grafana, “Loki — Overview,” Loki Docs. Available:

https://grafana.com/docs/loki/latest/get-

started/overview/. Accessed: Sept. 19, 2025.

[13] Grafana, “Loki — Architecture,” Loki Docs.

Available: https://grafana.com/docs/loki/latest/get-

started/architecture/. Accessed: Sept. 19, 2025.

[14] CNCF, “TAG Observability,” CNCF TAG

Observability. Available: https://tag-

observability.cncf.io/. Accessed: Sept. 19, 2025.

[15] CNCF, “TAG Observability (GitHub).” Available:

https://github.com/cncf/tag-observability. Accessed:

Sept. 19, 2025.

Paper ID: SE25919191451 DOI: https://dx.doi.org/10.70729/SE25919191451 43 of 43

https://d.docs.live.net/d6a8c8057f9144eb/Documents/www.ijser.in
http://creativecommons.org/licenses/by/4.0/

