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Abstract: This paper explores the intersection of category theory in functional programming and psychodynamic theory, offering a
unique perspective on how categorical structures can be seen as metaphors for understanding human behavior. Through the lens of
category theory, key concepts such as monads, inductive types, and optics are reframed as analogous to psychoanalytic structures like
mental states, drives, and the therapeutic process. Drawing upon both mathematical abstraction and psychodynamic theory, the study
highlights how algebraic structures in programming- such as functors and monads - can be interpreted as mechanisms for translating
and transforming internal states within the human psyche. The application of directed type theory, parametricity, and homotopy type
theory to software development is paralleled with psychodynamic techniques for understanding and transforming the unconscious mind.
By connecting these seemingly disparate fields, the paper argues that the rigorous abstraction found in category theory can provide
valuable insights into the organization and transformation of mental processes akin to the therapeutic practices of psychoanalysis.
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1. Introduction p-rules for uF exactly ensure that it is indeed an algebra
morphism. Dually, data types are final coalgebras.

1.1 Category Theory in Functional Programming

Optics such as lenses and traversals are bidirectional data
Several decades of functional programming practice in accessors that can, e.g., read and update fields of record types
simply, polymorphically, —and dependently typed  (lenses) or entries of traversable functors (traversals). red
programming languages have made it abundantly clear that ~ (redCite nLab?) Optic§ themselve§ have identities and can'be
there is virtue in identifying algebraic and categorical composeq, thus fo.rmmg categories, but they also haye slick
structures in program designs, as these abstractions enable parametric encodings called Van Laarhoven optics red

code reuse by relying on abstract libraries for algebra and ~ (redCite VL? Cite Haskell library?) and profunctor opticsred
category theory. (redCite some paper? Cite Haskell library?), the correctness

of which relies on parametric/natural quantification over
While the design of Haskell, its libraries, and tutorials can  categories of (pro)functors with extra structure.
create the impression that Type, the category of types and
functions, is the only category we should care about, it is by ~ 1-2 Propagation and Preservation for Free

now clear that this is absolutely not the case. To only scratch ) )
the surface of this fact: Beyond library support for category theory, three strains

« Pure functional programming languages tend to use mon- of research seek to proyide language support for (adaptations
adsred (redFootnote about algebraic effects?) as a  ©Of) category theory: directed type theory, parametricity, and
mathematical device for allowing non-purity [1], where ~ homotopy type theory (HoTT). .
specific monads only allow for specific forms of side- 1) Directed Type Theory: In Directed Type Theory (DirTT)

effects. [3], [4], [5], [6], [7], all types A are regarded as
o Monad morphisms are then affect reinterpretations, ex- F:ategories and typically come equipped natively with an
plaining the effects allowed by one monad in terms of the indexed type Homy(a, b) of morphisms from a : .A to b
effects allowed by another. When monads are combined : A. Very naively, we cou'ld hope for' these morph1sm§ to
using monad transformers, then monad morphisms may be preserved by all functions, meaning that all functions
arise from morphisms of monad transformers. When would be covariant functors. However, as anyone who has
monads (or transformers) are indexed by other structures ever touched category theory knows, there are many
e (e.g., the writer monad Writer W = W x_ . which interesting operations that are not a function at all. For
allows programs to log messages, is indexed by a monoid this reason, all systems for DirTT hitherto developed'(to
of messages W), then monad morphisms arise from my knowledge), feature one or more of the fqllowmg
morphisms between such structures. internal features to escape this unreasonable requirement:
o Inductive data types are now understood as initial alge-  * Non—trgnsportive (Most relgted work speaks of covariant
bras uF of some polynomial functor (a.k.a. container types instead of transportive types, but we prefer. to
functor) F'[2], i.e. uF is the initial object in the category reserve the' wo'rd ‘covariant’ for the covariant modality)
of F-algebras. The data needed to define a function by type families, i.e. type families I', x : 4 + T'type where
recursion on inductive data exactly constitutes an F - a morphism ¢: Homu(a, b) does not give rise to a
algebra A, with the motive being the carrier and each transport function ¢. : T'[a/x] — T'[b/x].
constructor clause being an algebraic operation. e A non-directed-univalent universe U of non-transportive
e The function fi uF — A thus defined is the unique types, where a morphism of types P : Homy (4, B) does
algebra morphism from the initial object uF, while the not correspond to a function f: 4 — B but behaves
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more like a profunctor or even just a relation between 4
and B [4], [6], [7]. Thus, functions to U can preserve
native morphisms without being functorial in the sense of
producing functions.

e Modal annotations on function types, which express
whether functions are co- or contravariant, both, or nei-
ther [8], [3], [9], [5]. [7].

Progress in DirTT has historically been arduous, so the
subject is currently in a much less advanced state than para-
metricity and HoTT for several reasons:

a) Variance: First, early on in the development of a directed
type system, one is typically forced to make a choice on
how to deal with variance: one can either use modal
annotations on variables in the context and consider only
transportive types with forward transport w.r.t. this modal
context, or one can consider various forms of fibrancy w.
r. t. an unannotated context. E.g., in 1-category theory:

e Grothendieck opfibrations (transportive types) provide
forward transport,

e Grothendieck fibrations (optransportive types) provide
backward transport,

« isofibrations provide only transport along isomorphisms,

« Dbifibrations provide an adjoint pair of tranpsort functions
along every morphism.

We could, of course, have both in a single system and prove,
e.g., that op fibrations over C correspond to fibrations over
C°P, but most existing work commits to one approach, creating
some divergence in the literature on directed type theory.

b) Dimension stratification: Secondly, I believe that the
advancement of directed type theory has suffered from
the idea that ‘in dependent type theory, types are just
terms, and universes are just big types.’ This idea is,
of course, tremendously helpful in sorting out the
structure of judgments, contexts, and substitutions for
dependent type theory, but it is at odds with a central
fact in higher category theory, namely that the
collection (universe) of (n, r)-categories is an (n + 1,
r + 1)-category. We can, of course, truncate the
dimension of this collection so as to contain it in a

bigger version of itself, and regard

e The universe of (0, 0)-categories (i.e. sets) as a (0, 0)-
category, thus cleanly modeling type theory with a
universe in sets,

o The universe of (oo, 0)-categories (i.e. co-groupoids) as an
(o0, 0)-category, as is done in HoTT,

or we can try to study the remarkable fixpoint of (oo, o0)-
categories.

In practice, all prior work on directed type theory (as well as
the current) has regarded types as either finite-dimensional
categories (n < o) or as being directed up to a finite
dimension (r < ), and while a directed universe of sets
(discrete fibrations/types) is seen in several papers [3], [4], [6],
[7], universes with richer structures than the types they classify
do not seem to have been explored yet at higher dimensions.

This has been particularly limiting in modally annotated
systems for one-dimensional categories. The literature shows
a tendency to couple the variance of dependent functions and
their codomain in a way that seems detrimental to usability.
For example, Licata and Harper [3] only allow the context
I, orange!60!black@ 1x :white!70tblack 4 (T" extended with
a covariant variable x of type A4) to be formed when the
type A is a type w.r.t. I' (i.e. I' - A4 type), whereas the
context I', orange!60!black© 1 x :White'70black 4 (x is a
contravariant variable) can only be formed when 4 is type
w.r.t. T (i.e. [P - 4 type). The consequence is that we can
only form a function type I F (orange!60!black S 1x
Jwhitel70black 4y B type (dependent or not) of
contravariant functions, since 4 needs to be for the function
type to be, and then we can only have contravariant variables
of type 4.

Conversely, North [5] allows either context only to be
formed when 4 is transportive w.r.t. I' (i.e. I' - 4 type).
Both model contexts as categories, types as functors to Cat,
and extended contexts as Grothendieck constructions, but the
contravariant extended context is modeled differently:

[, orangel60lblacke 1 whitetT0Mlack AT — /] “ [A] ]°®, (1)
Jirpe

31, (2)

[, orange!60blacke | o whiteT0lack AT — /" . Opo 4], (3)

[5]. (4)

i.e., Licata and Harper take the opposite of the total space of
A, whereas North takes the opposite fibrewise. Neumann [10]
provides the maximally configurable context extension
that can be modeled as a Grothendieck construction: his
context ¥ >Y x : A¥ is parametrized by three bits: (u)
whether or not we take the opposite of the preceding context,
(v) whether A is transportive or optransportive w.r.t. ', and
(w) whether or not we take the opposite of A fibrewise.
However, once the Grothendieck construction is formed,
we have a single category that we can only take the

opposite of as a whole, toggling all three bits at once.

I argue that this is an artifact of disregarding the fact that Cat
is more than just a category. Indeed, consider the universal
directed type family, X : Cat - X type. Because we already

know what the type family is, the bits u and v in Neumann’s
context extension are coupled: X is transportive w.r.t. Cat and
optransportive w.r.t. Catep. Still, this leaves us with two bits
of freedom, which can only be toggled together by taking
the opposite of the entire thing after we form the extended
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context. Concretely, the objects of the extended context will
be pointed categories, and the morphisms will consist of a
functor between the categories and a ‘heterogeneous arrow’
along it, and we have to commit to whether we want these
heterogeneous arrows to point the same way as the functor, or
the opposite way. We can call these laxly and oplaxly point-
preserving functors.

However, if we were to model contexts as 2-categories and
types as 2-functors to Cat, then it becomes clear that the
direction of the arrows within a fiber of the type I - T type,
is coupled to the direction of the 2-cells in I. Indeed,
the 2-functor Op: Cat® — Cat is covariant at level 1,
but contravariant at level 2, so the fibrewise opposite type
reo 1 ToPtype is well-typed only in the 2-opposite context.
This reveals that the Grothendieck construction forces us

to collapse two things that naturally live at different
dimensions.

Rather than choosing along which functors we consider
heterogeneous arrows, we can acknowledge that they exist
along functors pointing both ways and indeed along zigzags
in Cat, i.e., chains of functors pointing alternating ways. Even
more generally, we can consider heterogeneous arrows along

profunctors P : C ~ D, i.e. functors P : C°°XD — Set. Since
both functors F : C — D and G: D — C produce profunctors

Homp(FL 4. 4),Homp(. 4 Go J):C ~ D and profunctors can
be composed using the coend, zigzags to produce profunctors.

This encourages us to regard contexts not just as 2- categories
but rather as categories equipped with pro-arrows, also more
briefly called (pro-arrow) equipment, which are double
categories with extra structure. In particular, Cat is equipment
whose arrows are functors, whose pro-arrows are profunctors,
and whose squares are heterogeneous natural transformations
or, equivalently, profunctor morphisms. We then interpret

types I' = Ttype as equipment functors J7):JrN) — Cat and

remark that the direction of both homogeneous — Set.
However, and heterogeneous arrows in T is tied to the
direction of pro- arrows in I': indeed, the functor Op: Cat®® —

Cat is covariant on arrows but contravariant on pro-arrows.

A sensible and algebraically relevant semantics for the
extended context I, orange!60!blacku 1x :White'70black T
(for a certain modality u) is now as the pro-arrow equipment
of pointed categories, whose:

e Objects are pointed categories,

e Morphisms are point-preserving functors,

e Pro-arrows are pointed profunctors (i.e. a pro-arrow (P,
w) : (C ¢c) ~ (D, d) is a profunctors P : C ~ D with a
designated heterogeneous morphism y € P(c, d)),

« Squares are point-preserving profunctor morphisms.

Each time, things are paired up whose orientation was coupled
anyway: the direction of the mapping relation '—: Obj(C) x
Obj(D) — Set of a functor F: C — D is inevitably related to
the direction of F itself, while the direction of a
heterogeneous arrow y € P (¢, d) along a profunctor P: C ~D
is also inevitably related to the direction of the P. The end
result is new equipment in which arrows and pro-arrows

can still independently be flipped.

The modality u will be the directed version of the structural
modality in Degrees of Relatedness [11], by which algebraic
structures depend on their structure (e.g., pointed categories
on their designated point).

We can generalize the above construction to an arbitrary txpﬁ
5l Ttype, i.e. an arbitrary equipment functor T :I —
Cat, and call this the equipment of elements. The
Grothendieck construction of a functor F : C — Cat can be

defined in terms of the equipment of elements as follows:

1) Freely equip C with pro-arrows (which is left adjoint
to forgetting that Cat has pro-arrows) obtaining an
equipment functor £ : FProC — Cat,

2) Take the equipment of elements j FProc £

3) Extract its category of pro-arrows,

4) Restrict to those pro-arrows whose underlying pro-arrow
in FPro C actually arises from an arrow in C, which can
be done by taking a pullback.

¢) Naturality: Thirdly, it has been unclear how to deal with
the notion of naturality in a type system. In category
theory, naturality is only defined in specific situations, such
as with increasing generality (Note that these concepts are
flexible w.r.t. the number and variance of arguments, as
each of the mentioned categories can again be a product of
(opposites of) categories, and moreover every functor
independently has the right to be constant w.r.t. one or more
of the arguments.

nat

i ., ni . N ~ .
. natural transformations V. Fr— GIpetween

functors F, G : C — D [12],

- extra natural transformations

exnat

O - 1;-.-.«; T i, -
Voa,y,z: Ferz — GYyzpeween functors

FoAdx AP xC o> PDand G:BxB®x(C 7D
[13],

dinat
B n Sy g N T Ll *
- natural transformations VaoFrr = Gra
- v 10
between functors £, G+ € x CP — D,

which can all be defined together as a special case of
end

the end Vaelre ofafactor I : C x C°P — Set.

However, natural transformations are a rather restrictive
concept, while extranatural and dinatural transformations do
not always compose. (The type signature of an extra-natural
transformation specifies, besides the domain and codomain
functors, a string diagram connecting each argument slot of
the domain (codomain) functor to either a slot of opposite
variance of the domain (codomain) functor or a slot of the
same variance of the codomain (domain) functor.
Extranatural transformations can be composed insofar as the
composition of their string diagrams does not create closed
‘bubbles’ [14]. Petric” provides a similar criterion for natural
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transformations [15], which McCusker and Santamaria
independently reprove using Petri-nets [16].) This is essential

because, given a morphism &: x — x/, natural transformations

have a different notion of heterogeneous equality in their
domain and their codomain: in the domain, elements (in
the internal language sense, i.e., morphisms to) of Fxx and F x' x are
considered equal if they come from the same element in
Fxx', whereas in the codomain, elements of Gxx and Gx’
x are considered equal if they yield the same element in Gx’
x. Strong natural transformations

address this by considering elements of F xx and F x x
equal if they yield the same element in F x x. However, if
we nest contravariance a bit deeper, strong naturality too
proves inadequate for a general typing discipline: given a
functor F: C x C°? — D, the function

twice: Vx. (Fxx — F xx) - (Fxx — F xx), (7)

@ '—twicex p: =@ . ®)

is not strongly natural because the notion of heterogeneous
equality used for the domain and the codomain of the domain
(and of the codomain) is different?

This problem appears to remain unsolved as of yet. It seems
that the only type-theoretically adequate way to define the
naturality of a (possibly mixed-variant, possibly deeply-
nested contravariant) operation Vx.7 x, is to define
heterogeneous equality for 7 by induction on the
construction of 7, ashappens in Reynolds’ relational model
of parametricity for type theory [17] (section I-B2), as well as
in the general presheaf model of type theory [18, ch. 4]

coend

[A]°P x [A] — Set: (a,b) —» 3 (z:

which interprets an internal morphism from a to b as a
semantic two-step morphism via an intermediate object Z that
is also stored up to isomorphism.

DirTT is less advanced. Several reasons:

Hom-type: Bifibrations (did you mean two-sided?),
naturality, parametricity. Mention treatment of modal
inductive types. Interval

Parametricity: Old Stuff

We consider three strains of research that all seek to unburden
users of proof assistants: parametricity, homotopy type theory
(HoTT), and directed type theory (DirTT).

Parametricity HoTT Directed TT Everything has a graph:
HoTT < DirTT < parametricity Computational content:
para- metricity < HoTT and DirTT Functoriality: DirTT <
HoTT and parametricity

2. Literature Review

Category theory has long played a significant role in
functional programming, particularly in understanding
algebraic structures that facilitate abstraction and code reuse.
Research in type theory, including simply typed,
polymorphic, and de- pendent types, has explored how

(??). In this paper, I take the viewpoint that the correct
generalization of naturality to quantifications over arbitrary
mixed-variant types is parametricity w.r.t. graph ‘relations’ of
morphisms. As such, we will build a system for parametric
and directed type theory, where all types are natively
equipped with notions of relations and morphisms, modeled
in presheaf categories. Related work: [19], [20]

d) The Hom-type: A notable focal point of the difficulties
related to naturality is the question of how to correctly type
and model the identity morphism id: V (x: A).
Homy(x, x). In particular, we would like to understand
Homy as an inductive type in three ways: (1) Homy(a,
L ) is the initial functor F: 4 — Type such that ' a is
inhabited; (2) Homu4(. - b) is the initial functor G : 4°P
— Type such that Gb is inhabited; and (3) Homu(L o
L o) is the initial functor H : A°? x4 — Type such that

end

theend V (z:A).H 22 s inhabited.

Lacking any form of natural quantification for non-
groupoidal types and having coupled variance of types and
terms, North [5] defines a Hom-type with an identity
morphism id : (x : 4°") — Homyu(x, x) that is natural
only w.r.t. the core of 4 and eliminates according to
properties (1) and (2). However, this leaves the Hom-type
underspecified: indeed, North models it as the semantic Hom-
set, but it can alternatively be modelled as the non-isomorphic
functor

[A]°°).Homy 4y (@, z) x Homy 45 (2, b),

monads, functors, and optics streamline software
development. Existing works demonstrate the effectiveness
of categorical structures in reasoning about side effects, data
transformations, and program composition, with a heavy
reliance on Haskell’s monadic abstractions.

In parallel, psychodynamic theory has been a cornerstone of
psychology, investigating how unconscious processes shape
human behavior. Researchers in computational cognitive
science have sought to model cognitive functions
mathematically, often using Bayesian networks, symbolic Al,
and artificial neural networks to describe thought processes.
Despite advancements in computational models of the mind,
relatively little work has explored the application of
category theory to psychology. Some studies have examined
topos theory in cognitive science and the potential use of
algebraic  structures  for reasoning about neural
computations, but no significant research directly links
psychodynamic processes to categorical mechanisms such as
monads, functors, and type-theoretic abstractions. This paper
aims to fill that gap by establishing an interdisciplinary bridge
between these fields.

Their

3. Psychodynamic  Concepts and

Mathematical Analogies

A significant insight of this paper is that mental states
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and transformations can be framed using category-theoretic
principles. Within category theory, objects can be understood
as mental states, while morphisms represent psychological
transitions or cognitive restructuring. Monads, which
encapsulate computations within a structured pipeline, are
useful in modeling internal mental processes such as
information suppression, memory recall, and affect
regulation.

One potential analogy is the Monad of Suppression, wherein a
monadic structure encapsulates unconscious defense
mechanisms, preventing certain thoughts from being
evaluated, much like how monads in functional programming
encapsulate computational side effects. Similarly, functors
can be seen as mechanisms of learning and experience
transformation, mapping one cognitive structure to another,
akin to how therapy modifies deeply held beliefs.

Optics, such as lenses and traversals, offer another rich
analogy by representing cognitive focus and self-reflection.
Lenses provide a bidirectional means of accessing and
modifying parts of a mental framework, which mirrors
therapeutic introspection, while traversals model how
individuals navigate between multiple interpretations of
experience. These correspondences suggest that category-
theoretic structures can provide a new way of understanding
cognitive change in psychodynamic terms.

4. Comparison with Other
Cognitive Theories

Computational

Traditional computational models of cognition have relied
heavily on probabilistic reasoning, symbolic Al, and
connectionist architectures. Bayesian networks, for instance,
offer a powerful framework for modeling decision-making
and belief updating. However, they struggle to express the
hierarchical and structured transformations inherent in
psychodynamic processes.

Deep learning and neural networks attempt to capture
cognitive processes using gradient-based optimization, but
they often lack interpretability and a high-level algebraic
structure. By contrast, a category-theoretic approach
introduces structured transformations between mental states,
making it a compelling alternative to existing models. Unlike
Bayesian inference, which focuses on probability distributions
over mental states, category theory provides a formal
structure to capture abstract relationships between states and
transformations. Compared to connectionist approaches,
categorical models offer a level of rigor and abstraction that
makes them well- suited for explaining mental schemas,
cognitive restructuring, and psychodynamic shifis.

5. Case Studies and Applications

A concrete application of category theory to psychology lies
in therapeutic change and learning processes. In Cognitive
Behavioral Therapy (CBT), individuals undergo structured
interventions that modify their cognitive schemas. This can
be seen as a functor that maps initial dysfunctional thought
patterns to healthier cognitive structures while preserving
key relationships within the mental system.

Another potential application is in Al-driven psychoanalysis,
where category theory can provide formal models for how
emotional states evolve in structured ways over time. Al
models informed by these structures could allow for better
prediction and understanding of emotional responses in
natural language processing systems, particularly in chatbot
therapy or Al-powered counseling services. This categorical
framework could also help formalize the dynamics of trauma
processing, behavioral reinforcement, and learning cycles.

6. Experimental and Practical Implications

The integration of category theory into computational
psychology and Al could lead to multiple innovations. One
promising direction is the development of Al models for
emotional intelligence that employ categorical structures to
formally represent state tramsitions in cognitive and
emotional processing. Such Al systems could better predict
and classify mental states based on structured
transformations, making them valuable for automated
therapy, personalized coaching, and behavioral predictions.

Another practical implication is in the development of
computational frameworks for psychodynamic modeling,
where monads, functors, and type-theoretic approaches could
be implemented in Al-based cognitive architecture. This
could lead to advances in psychological modeling software,
intelligent tutoring systems, and Al-driven mental health
diagnostics.

7. Future Research Directions

Further work is needed to refine this framework and validate
its applicability. One research avenue is to explore higher-
category structures to model meta-cognitive processes and
self-referential transformations in the psyche. Another
promising direction is the incorporation of Homotopy Type
Theory (HoTT) as a means of formalizing continuous and
structured changes in cognitive models.

Additionally, an important step would be to translate these
theoretical concepts into practical, Al-driven applications
that assist in psychological modeling, mental health
interventions, and cognitive architecture in artificial
intelligence. As interdisciplinary interest in formal cognitive
models grows, category theory may play a critical role in
shaping the future of AI- powered behavioral sciences.

8. Conclusion

This paper has proposed a novel conceptual bridge between
category theory and psychodynamic psychology, arguing that
the algebraic structures underlying programming languages
can provide valuable insights into mental state
transformations and psychological processes. By framing
mental processes using monads, functors, optics, and directed
type theory, we open the door to new perspectives in
computational psychology, Al- assisted therapy, and
cognitive modeling.

Future research will be necessary to refine these analogies,
apply them to real-world psychological frameworks, and
implement them in computational Al systems. With further
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interdisciplinary

collaboration, this category-theoretic

approach may significantly advance both computer science
and psychology in the quest to understand and simulate
human cognition.
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