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Abstract: This paper explores the intersection of category theory in functional programming and psychodynamic theory, offering a 

unique perspective on how categorical structures can be seen as metaphors for understanding human behavior. Through the lens of 

category theory, key concepts such as monads, inductive types, and optics are reframed as analogous to psychoanalytic structures like 

mental states, drives, and the therapeutic process. Drawing upon both mathematical abstraction and psychodynamic theory, the study 

highlights how algebraic structures in programming- such as functors and monads - can be interpreted as mechanisms for translating 

and transforming internal states within the human psyche. The application of directed type theory, parametricity, and homotopy type 

theory to software development is paralleled with psychodynamic techniques for understanding and transforming the unconscious mind. 

By connecting these seemingly disparate fields, the paper argues that the rigorous abstraction found in category theory can provide 

valuable insights into the organization and transformation of mental processes akin to the therapeutic practices of psychoanalysis. 
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1. Introduction 
 

1.1 Category Theory in Functional Programming 

 

Several decades of functional programming practice in 

simply, polymorphically, and dependently typed 

programming languages have made it abundantly clear that 

there is virtue in identifying algebraic and categorical 

structures in program designs, as these abstractions enable 

code reuse by relying on abstract libraries for algebra and 

category theory. 

 

While the design of Haskell, its libraries, and tutorials can 

create the impression that Type, the category of types and 

functions, is the only category we should care about, it is by 

now clear that this is absolutely not the case. To only scratch 

the surface of this fact: 

• Pure functional programming languages tend to use mon-

adsred (redFootnote about algebraic effects?) as a 

mathematical device for allowing non-purity [1], where 

specific monads only allow for specific forms of side-

effects. 

• Monad morphisms are then affect reinterpretations, ex- 

plaining the effects allowed by one monad in terms of the 

effects allowed by another. When monads are combined 

using monad transformers, then monad morphisms may 

arise from morphisms of monad transformers. When 

monads (or transformers) are indexed by other structures 

• (e.g., the writer monad Writer W = W × ⌞⌟, which 

allows programs to log messages, is indexed by a monoid 

of messages W), then monad morphisms arise from 

morphisms between such structures. 

• Inductive data types are now understood as initial alge- 

bras µF of some polynomial functor (a.k.a. container 

functor) F [2], i.e. µF is the initial object in the category 

of F -algebras. The data needed to define a function by 

recursion on inductive data exactly constitutes an F -

algebra A, with the motive being the carrier and each 

constructor clause being an algebraic operation. 

• The function f: µF → A thus defined is the unique 

algebra morphism from the initial object µF, while the 

β-rules for µF exactly ensure that it is indeed an algebra 

morphism. Dually, data types are final coalgebras. 

 

Optics such as lenses and traversals are bidirectional data 

accessors that can, e.g., read and update fields of record types 

(lenses) or entries of traversable functors (traversals). red 

(redCite nLab?) Optics themselves have identities and can be 

composed, thus forming categories, but they also have slick 

parametric encodings called Van Laarhoven optics red 

(redCite VL? Cite Haskell library?) and profunctor opticsred 

(redCite some paper? Cite Haskell library?), the correctness 

of which relies on parametric/natural quantification over 

categories of (pro)functors with extra structure. 

 

1.2 Propagation and Preservation for Free 

 

Beyond library support for category theory, three strains 

of research seek to provide language support for (adaptations 

of) category theory: directed type theory, parametricity, and 

homotopy type theory (HoTT). 

1) Directed Type Theory: In Directed Type Theory (DirTT) 

[3], [4], [5], [6], [7], all types A are regarded as 

categories and typically come equipped natively with an 

indexed type HomA(a, b) of morphisms from a : A to b 

: A. Very naively, we could hope for these morphisms to 

be preserved by all functions, meaning that all functions 

would be covariant functors. However, as anyone who has 

ever touched category theory knows, there are many 

interesting operations that are not a function at all. For 

this reason, all systems for DirTT hitherto developed (to 

my knowledge), feature one or more of the following 

internal features to escape this unreasonable requirement: 

• Non-transportive (Most related work speaks of covariant 

types instead of transportive types, but we prefer to 

reserve the word ‘covariant’ for the covariant modality) 

type families, i.e. type families Γ, x : A ⊢ T type where 

a morphism φ: HomA(a, b) does not give rise to a 

transport function φ∗ : T [a/x] → T [b/x]. 

• A non-directed-univalent universe U of non-transportive 

types, where a morphism of types P : HomU (A, B) does 

not correspond to a function f : A → B but behaves 
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more like a profunctor or even just a relation between A 

and B [4], [6], [7]. Thus, functions to U can preserve 

native morphisms without being functorial in the sense of 

producing functions. 

• Modal annotations on function types, which express 

whether functions are co- or contravariant, both, or nei- 

ther [8], [3], [9], [5], [7]. 

 

Progress in DirTT has historically been arduous, so the 

subject is currently in a much less advanced state than para- 

metricity and HoTT for several reasons: 

a) Variance: First, early on in the development of a directed 

type system, one is typically forced to make a choice on 

how to deal with variance: one can either use modal 

annotations on variables in the context and consider only 

transportive types with forward transport w.r.t. this modal 

context, or one can consider various forms of fibrancy w. 

r. t. an unannotated context. E.g., in 1-category theory: 

• Grothendieck opfibrations (transportive types) provide 

forward transport, 

• Grothendieck fibrations (optransportive types) provide 

backward transport,  

• isofibrations provide only transport along isomorphisms, 

• bifibrations provide an adjoint pair of tranpsort functions 

along every morphism. 

 

We could, of course, have both in a single system and prove, 

e.g., that op fibrations over C correspond to fibrations over 

Cop, but most existing work commits to one approach, creating 

some divergence in the literature on directed type theory. 

 

b) Dimension stratification: Secondly, I believe that the 

advancement of directed type theory has suffered from 

the idea that ‘in dependent type theory, types are just 

terms, and universes are just big types.’ This idea is, 

of course, tremendously helpful in sorting out the 

structure of judgments, contexts, and substitutions for 

dependent type theory, but it is at odds with a central 

fact in higher category theory, namely that the 

collection (universe) of (n, r)-categories is an (n + 1, 

r + 1)-category. We can, of course, truncate the 

dimension of this collection so as to contain it in a 

bigger version of itself, and regard 

• The universe of (0, 0)-categories (i.e. sets) as a (0, 0)- 

category, thus cleanly modeling type theory with a 

universe in sets, 

• The universe of (∞, 0)-categories (i.e. ∞-groupoids) as an 

(∞, 0)-category, as is done in HoTT, 

 

or we can try to study the remarkable fixpoint of (∞, ∞)- 

categories. 

 

In practice, all prior work on directed type theory (as well as 

the current) has regarded types as either finite-dimensional 

categories (n < ∞) or as being directed up to a finite 

dimension (r < ∞), and while a directed universe of sets 

(discrete fibrations/types) is seen in several papers [3], [4], [6], 

[7], universes with richer structures than the types they classify 

do not seem to have been explored yet at higher dimensions.  

 

This has been particularly limiting in modally annotated 

systems for one-dimensional categories. The literature shows 

a tendency to couple the variance of dependent functions and 

their codomain in a way that seems detrimental to usability. 

For example, Licata and Harper [3] only allow the context 

Γ, orange!60!black⊕ ı x :white!70!black A (Γ extended with 

a covariant variable x of type A) to be formed when the 

type A is a type w.r.t. Γ (i.e. Γ ⊢ A type), whereas the 

context Γ, orange!60!black⊖ ı x :white!70!black A (x is a 

contravariant variable) can only be formed when A is type 

w.r.t. Γ (i.e. Γop ⊢ A type). The consequence is that we can 

only form a function type Γ ⊢ (orange!60!black ⊖ ı x 

:white!70!black A) → B type (dependent or not) of 

contravariant functions, since A needs to be for the function 

type to be, and then we can only have contravariant variables 

of type A. 

 

Conversely, North [5] allows either context only to be 

formed when A is transportive w.r.t. Γ (i.e. Γ ⊢ A type). 

Both model contexts as categories, types as functors to Cat, 

and extended contexts as Grothendieck constructions, but the 

contravariant extended context is modeled differently: 

 

 
 

i.e., Licata and Harper take the opposite of the total space of 

A, whereas North takes the opposite fibrewise. Neumann [10] 

provides the maximally configurable context extension 

that can be modeled as a Grothendieck construction: his 

context Γu ▷v x : Aw is parametrized by three bits: (u) 

whether or not we take the opposite of the preceding context, 

(v) whether A is transportive or optransportive w.r.t. Γu, and 

(w) whether or not we take the opposite of A fibrewise. 

However, once the Grothendieck construction is formed, 

we have a single category that we can only take the 

opposite of as a whole, toggling all three bits at once. 

 

I argue that this is an artifact of disregarding the fact that Cat 
is more than just a category. Indeed, consider the universal 

directed type family, X : Cat ⊢ X type. Because we already 

know what the type family is, the bits u and v in Neumann’s 

context extension are coupled: X is transportive w.r.t. Cat and 

optransportive w.r.t. Catop. Still, this leaves us with two bits 

of freedom, which can only be toggled together by taking 

the opposite of the entire thing after we form the extended 
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context. Concretely, the objects of the extended context will 

be pointed categories, and the morphisms will consist of a 

functor between the categories and a ‘heterogeneous arrow’ 

along it, and we have to commit to whether we want these 

heterogeneous arrows to point the same way as the functor, or 

the opposite way. We can call these laxly and oplaxly point- 

preserving functors. 

 

However, if we were to model contexts as 2-categories and 

types as 2-functors to Cat, then it becomes clear that the 

direction of the arrows within a fiber of the type Γ ⊢ T type, 

is coupled to the direction of the 2-cells in Γ. Indeed, 

the 2-functor Op: Catco → Cat is covariant at level 1, 

but contravariant at level 2, so the fibrewise opposite type 

Γco ⊢ T op type is well-typed only in the 2-opposite context. 

This reveals that the Grothendieck construction forces us 

to collapse two things that naturally live at different 

dimensions.  

 

Rather than choosing along which functors we consider 

heterogeneous arrows, we can acknowledge that they exist 

along functors pointing both ways and indeed along zigzags 

in Cat, i.e., chains of functors pointing alternating ways. Even 

more generally, we can consider heterogeneous arrows along 

profunctors P : C ~ D, i.e. functors P : Cop×D → Set. Since 

both functors F : C → D and G : D → C produce profunctors 

HomD(F ⌞⌟, ⌞⌟), HomD(⌞⌟, G⌞⌟) : C ~ D and profunctors can 

be composed using the coend, zigzags to produce profunctors. 

 

This encourages us to regard contexts not just as 2- categories 

but rather as categories equipped with pro-arrows, also more 

briefly called (pro-arrow) equipment, which are double 

categories with extra structure. In particular, Cat is equipment 

whose arrows are functors, whose pro-arrows are profunctors, 

and whose squares are heterogeneous natural transformations 

or, equivalently, profunctor morphisms. We  then interpret 

types Γ ⊢ T type as equipment functors JT ): JΓ) → Cat and 

remark that the direction of both homogeneous → Set. 

However, and heterogeneous arrows in T is tied to the 

direction of pro- arrows in Γ: indeed, the functor Op: Catco → 

Cat is covariant on arrows but contravariant on pro-arrows. 

 

A sensible and algebraically relevant semantics for the 

extended context Γ, orange!60!blackµ ı x :white!70!black T 

(for a certain modality µ) is now as the pro-arrow equipment 

of pointed categories, whose: 

• Objects are pointed categories, 

• Morphisms are point-preserving functors, 

• Pro-arrows are pointed profunctors (i.e. a pro-arrow (P, 

ψ) : (C, c) ~ (D, d) is a profunctors P : C ~ D with a 

designated heterogeneous morphism ψ ∈ P(c, d)), 

• Squares are point-preserving profunctor morphisms. 

 

Each time, things are paired up whose orientation was coupled 

anyway: the direction of the mapping relation '→: Obj(C) × 

Obj(D) → Set of a functor F: C → D is inevitably related to 

the direction of F itself, while the direction of a 

heterogeneous arrow ψ ∈ P (c, d) along a profunctor P: C ~ D 

is also inevitably related to the direction of the P. The end 

result is new equipment in which arrows and pro-arrows 

can still independently be flipped. 

 

The modality µ will be the directed version of the structural 

modality in Degrees of Relatedness [11], by which algebraic 

structures depend on their structure (e.g., pointed categories 

on their designated point). 

 

We can generalize the above construction to an arbitrary type 

Γ ⊢ T type, i.e. an arbitrary equipment functor T  : Γ → 

Cat, and call this the equipment of elements. The 

Grothendieck construction of a functor F : C → Cat can be 

defined in terms of the equipment of elements as follows: 

1) Freely equip C with pro-arrows (which is left adjoint 

to forgetting that Cat has pro-arrows) obtaining an 

equipment functor  

2) Take the equipment of elements  

3) Extract its category of pro-arrows, 

4) Restrict to those pro-arrows whose underlying pro-arrow 

in FPro C actually arises from an arrow in C, which can 

be done by taking a pullback. 

 

c) Naturality: Thirdly, it has been unclear how to deal with 

the notion of naturality in a type system. In category 

theory, naturality is only defined in specific situations, such 

as with increasing generality (Note that these concepts are 

flexible w.r.t. the number and variance of arguments, as 

each of the mentioned categories can again be a product of 

(opposites of) categories, and moreover every functor 

independently has the right to be constant w.r.t. one or more 

of the arguments. 

 

• natural transformations between 

functors F, G : C → D [12], 
 

• extra natural transformations 

between functors  

 

[13], 
 

• natural transformations  

between functors  

 

which can all be defined together as a special case of 

the end of a factor . 

 

However, natural transformations are a rather restrictive 

concept, while extranatural and dinatural transformations do 

not always compose. (The type signature of an extra-natural 

transformation specifies, besides the domain and codomain 

functors, a string diagram connecting each argument slot of 

the domain (codomain) functor to either a slot of opposite 

variance of the domain (codomain) functor or a slot of the 

same variance of the codomain (domain) functor. 

Extranatural transformations can be composed insofar as the 

composition of their string diagrams does not create closed 

‘bubbles’ [14]. Petric´ provides a similar criterion for natural 
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transformations [15], which McCusker and Santamaria 

independently reprove using Petri-nets [16].) This is essential 

because, given a morphism ξ : x → x′, natural transformations 

have a different notion of heterogeneous equality in their 

domain and their codomain: in the domain, elements (in 

the internal language sense, i.e., morphisms to) of F xx and F x′ x′ are 

considered equal if they come from the same element in 

F xx′, whereas in the codomain, elements of Gxx and Gx ′ 
x′ are considered equal if they yield the same element in Gx′ 
x. Strong natural transformations 

 

address this by considering elements of F xx and F x′ x′ 

equal if they yield the same element in F x′ x. However, if 

we nest contravariance a bit deeper, strong naturality too 

proves inadequate for a general typing discipline: given a 

functor F: C × Cop → D, the function 

twice: ∀x. (F xx → F xx) → (F xx → F xx), (7) 

φ '→ twicex  φ: = φ ◦ φ. (8) 

 

is not strongly natural because the notion of heterogeneous 

equality used for the domain and the codomain of the domain 

(and of the codomain) is different? 

 

This problem appears to remain unsolved as of yet. It seems 

that the only type-theoretically adequate way to define the 

naturality of a (possibly mixed-variant, possibly deeply-

nested contravariant) operation ∀x.T x, is to define 

heterogeneous equality for T by induction on the 

construction of T, as happens in Reynolds’ relational model 

of parametricity for type theory [17] (section I-B2), as well as 

in the general presheaf model of type theory [18, ch. 4] 

(??). In this paper, I take the viewpoint that the correct 

generalization of naturality to quantifications over arbitrary 

mixed-variant types is parametricity w.r.t. graph ‘relations’ of 

morphisms. As such, we will build a system for parametric 

and directed type theory, where all types are natively 

equipped with notions of relations and morphisms, modeled 

in presheaf categories. Related work: [19], [20] 

 

d) The Hom-type: A notable focal point of the difficulties 

related to naturality is the question of how to correctly type 

and model the identity morphism id: ∀ (x: A). 

HomA(x, x). In particular, we would like to understand 

HomA as an inductive type in three ways: (1) HomA(a, 

⌞⌟) is the initial functor F: A → Type such that F a is 

inhabited; (2) HomA(⌞⌟, b) is the initial functor G : Aop 

→ Type such that Gb is inhabited; and (3) HomA(⌞⌟, 

⌞⌟) is the initial functor H : Aop × A → Type such that 

the end is inhabited. 

 

Lacking any form of natural quantification for non- 

groupoidal types and having coupled variance of types and 

terms, North [5] defines a Hom-type with an identity 

morphism id : (x : Acore) → HomA(x, x) that is natural 

only w.r.t. the core of A and eliminates according to 

properties (1) and (2). However, this leaves the Hom-type 

underspecified: indeed, North models it as the semantic Hom-

set, but it can alternatively be modelled as the non-isomorphic 

functor  

 

 

 
 

which interprets an internal morphism from a to b as a 

semantic two-step morphism via an intermediate object Z that 

is also stored up to isomorphism.  

 
DirTT is less advanced. Several reasons: 

 

Hom-type: Bifibrations (did you mean two-sided?), 

naturality, parametricity. Mention treatment of modal 

inductive types. Interval 

 

Parametricity: Old Stuff 

We consider three strains of research that all seek to unburden 

users of proof assistants: parametricity, homotopy type theory 

(HoTT), and directed type theory (DirTT). 

 

Parametricity HoTT Directed TT Everything has a graph: 

HoTT < DirTT < parametricity Computational content: 

para- metricity < HoTT and DirTT Functoriality: DirTT < 
HoTT and parametricity 

 

2. Literature Review 
 

Category theory has long played a significant role in 

functional programming, particularly in understanding 

algebraic structures that facilitate abstraction and code reuse. 

Research in type theory, including simply typed, 

polymorphic, and de- pendent types, has explored how 

monads, functors, and optics streamline software 

development. Existing works demonstrate the effectiveness 

of categorical structures in reasoning about side effects, data 

transformations, and program composition, with a heavy 

reliance on Haskell’s monadic abstractions. 

 

In parallel, psychodynamic theory has been a cornerstone of 

psychology, investigating how unconscious processes shape 

human behavior. Researchers in computational cognitive 

science have sought to model cognitive functions 

mathematically, often using Bayesian networks, symbolic AI, 

and artificial neural networks to describe thought processes. 

Despite advancements in computational models of the mind, 

relatively little work has explored the application of 

category theory to psychology. Some studies have examined 

topos theory in cognitive science and the potential use of 

algebraic structures for reasoning about neural 

computations, but no significant research directly links 

psychodynamic processes to categorical mechanisms such as 

monads, functors, and type-theoretic abstractions. This paper 

aims to fill that gap by establishing an interdisciplinary bridge 

between these fields. 

 

3. Psychodynamic Concepts and Their 

Mathematical Analogies 
 

A significant insight of this paper is that mental states 
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and transformations can be framed using category-theoretic 

principles. Within category theory, objects can be understood 

as mental states, while morphisms represent psychological 

transitions or cognitive restructuring. Monads, which 

encapsulate computations within a structured pipeline, are 

useful in modeling internal mental processes such as 

information suppression, memory recall, and affect 

regulation. 

 

One potential analogy is the Monad of Suppression, wherein a 

monadic structure encapsulates unconscious defense 

mechanisms, preventing certain thoughts from being 

evaluated, much like how monads in functional programming 

encapsulate computational side effects. Similarly, functors 

can be seen as mechanisms of learning and experience 

transformation, mapping one cognitive structure to another, 

akin to how therapy modifies deeply held beliefs. 

 

Optics, such as lenses and traversals, offer another rich 

analogy by representing cognitive focus and self-reflection. 

Lenses provide a bidirectional means of accessing and 

modifying parts of a mental framework, which mirrors 

therapeutic introspection, while traversals model how 

individuals navigate between multiple interpretations of 

experience. These correspondences suggest that category-

theoretic structures can provide a new way of understanding 

cognitive change in psychodynamic terms. 

 

4. Comparison with Other Computational 

Cognitive Theories 
 

Traditional computational models of cognition have relied 

heavily on probabilistic reasoning, symbolic AI, and 

connectionist architectures. Bayesian networks, for instance, 

offer a powerful framework for modeling decision-making 

and belief updating. However, they struggle to express the 

hierarchical and structured transformations inherent in 

psychodynamic processes. 

 

Deep learning and neural networks attempt to capture 

cognitive processes using gradient-based optimization, but 

they often lack interpretability and a high-level algebraic 

structure. By contrast, a category-theoretic approach 

introduces structured transformations between mental states, 

making it a compelling alternative to existing models. Unlike 

Bayesian inference, which focuses on probability distributions 

over mental states, category theory provides a formal 

structure to capture abstract relationships between states and 

transformations. Compared to connectionist approaches, 

categorical models offer a level of rigor and abstraction that 

makes them well- suited for explaining mental schemas, 

cognitive restructuring, and psychodynamic shifts. 

 

5. Case Studies and Applications 
 

A concrete application of category theory to psychology lies 

in therapeutic change and learning processes. In Cognitive 

Behavioral Therapy (CBT), individuals undergo structured 

interventions that modify their cognitive schemas. This can 

be seen as a functor that maps initial dysfunctional thought 

patterns to healthier cognitive structures while preserving 

key relationships within the mental system. 

 

Another potential application is in AI-driven psychoanalysis, 

where category theory can provide formal models for how 

emotional states evolve in structured ways over time. AI 

models informed by these structures could allow for better 

prediction and understanding of emotional responses in 

natural language processing systems, particularly in chatbot 

therapy or AI-powered counseling services. This categorical 

framework could also help formalize the dynamics of trauma 

processing, behavioral reinforcement, and learning cycles. 

 

6. Experimental and Practical Implications 
 

The integration of category theory into computational 

psychology and AI could lead to multiple innovations. One 

promising direction is the development of AI models for 

emotional intelligence that employ categorical structures to 

formally represent state transitions in cognitive and 

emotional processing. Such AI systems could better predict 

and classify mental states based on structured 

transformations, making them valuable for automated 

therapy, personalized coaching, and behavioral predictions. 

 

Another practical implication is in the development of 

computational frameworks for psychodynamic modeling, 

where monads, functors, and type-theoretic approaches could 

be implemented in AI-based cognitive architecture. This 

could lead to advances in psychological modeling software, 

intelligent tutoring systems, and AI-driven mental health 

diagnostics. 

 

7. Future Research Directions 
 

Further work is needed to refine this framework and validate 

its applicability. One research avenue is to explore higher- 

category structures to model meta-cognitive processes and 

self-referential transformations in the psyche. Another 

promising direction is the incorporation of Homotopy Type 

Theory (HoTT) as a means of formalizing continuous and 

structured changes in cognitive models. 

 

Additionally, an important step would be to translate these 

theoretical concepts into practical, AI-driven applications 

that assist in psychological modeling, mental health 

interventions, and cognitive architecture in artificial 

intelligence. As interdisciplinary interest in formal cognitive 

models grows, category theory may play a critical role in 

shaping the future of AI- powered behavioral sciences. 

 

8. Conclusion 
 

This paper has proposed a novel conceptual bridge between 

category theory and psychodynamic psychology, arguing that 

the algebraic structures underlying programming languages 

can provide valuable insights into mental state 

transformations and psychological processes. By framing 

mental processes using monads, functors, optics, and directed 

type theory, we open the door to new perspectives in 

computational psychology, AI- assisted therapy, and 

cognitive modeling. 

 

Future research will be necessary to refine these analogies, 

apply them to real-world psychological frameworks, and 

implement them in computational AI systems. With further 
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interdisciplinary collaboration, this category-theoretic 

approach may significantly advance both computer science 

and psychology in the quest to understand and simulate 

human cognition. 
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