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Abstract: This study introduces a deep learning–driven approach for super-resolution reconstruction of low-quality power grid data 

using an enhanced U-Net model integrated with a Channel-Spatial Weighted Fusion (CSWF) module and attention gate. By refining 

feature extraction and adaptive weighting mechanisms, the model addresses the limitations of traditional methods in capturing disturbance 

features like voltage sags and harmonics. Experiments using real power grid datasets demonstrate improved performance across PSNR, 

SSIM, and MSE metrics compared to classical interpolation and convolutional models. This approach provides a scalable, software-level 

enhancement pathway for improving power quality monitoring without upgrading existing hardware infrastructure. 
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1. Introduction 
 

With the advancement of the global energy structure 

transformation, the large-scale grid connection of renewable 

energy, and the widespread deployment of new loads such as 

electric vehicles and data centers, the power system is 

developing rapidly towards a direction of high proportion of 

power electronics and complex diversification0. As a core 

indicator measuring the operational stability and power 

supply reliability of the power system, the accuracy and 

completeness of power quality data perception directly 

determine the effectiveness of power grid fault diagnosis[2], 

power disturbance identification, operational state evaluation, 

and dispatching optimization. It is of great significance for 

ensuring industrial production safety, improving residents' 

power consumption experience, and promoting the efficient 

and low-carbon operation of the power system. 

 

Power quality data mainly includes disturbance information 

such as voltage and current amplitude, frequency, harmonics, 

inter-harmonics, and voltage swells and sags[5]. Its perception 

accuracy is closely related to data resolution—high-resolution 

power quality data can accurately capture subtle fluctuations 

and transient disturbance characteristics in signals, providing 

reliable data support for subsequent power quality 

governance. In contrast, low-resolution data often loses key 

feature information[3], leading to deviations in disturbance 

identification and inaccuracies in fault location, which makes 

it difficult to meet the refined management and control needs 

of complex power grids. However, in the current power 

system, due to factors such as limitations of sampling 

equipment performance, transmission bandwidth 

constraints[4], storage cost control, and lag in the upgrading of 

old monitoring equipment, a large number of power quality 

monitoring points still sample at a low frequency. The 

generated low-resolution data cannot fully reflect the real 

change law of power quality, becoming one of the core 

bottlenecks restricting the refined management of power 

quality. 

 

To address the limitations of low-resolution power quality 

data, super-resolution perception technology has become a 

research hotspot in the power field. Its core idea is to 

reconstruct low-resolution data into high-resolution data 

through algorithm models, which can improve the effective 

information content of data and reduce the high cost caused 

by hardware upgrading without large-scale modification of 

monitoring hardware, thus having important engineering 

application value and economic value. At present, power 

quality data super-resolution methods are mainly divided into 

two categories: one is non-machine learning methods[8], 

including signal processing technologies such as 

interpolation[7], Fourier transform, and wavelet transform. 

These methods are simple to implement and have high 

computational efficiency, but they are difficult to capture the 

complex nonlinear temporal dependencies in power quality 

data and have limited reconstruction accuracy. Especially 

when processing complex data containing multiple 

disturbances, they are prone to produce artifacts and feature 

distortion, which cannot meet the actual application needs. 

The other category is machine learning and deep learning 

methods[6]. With their strong feature learning and nonlinear 

fitting capabilities, they have shown significant advantages in 

the field of time-series data reconstruction and have gradually 

become the mainstream development direction of super-

resolution perception technology[9]. 

 

In deep learning-driven super-resolution technology, 

Convolutional Neural Networks (CNNs) are widely used in 

power quality data super-resolution research due to their 

excellent local feature extraction capabilities[10]. However, 

traditional CNN models have problems such as insufficient 

feature fusion, gradient vanishing of deep features, and 

difficulty in capturing long-distance temporal dependencies, 

leaving room for improvement in reconstruction accuracy and 

detail restoration capabilities. As a classic full convolutional 

neural network architecture, U-net was initially used for 

biomedical image segmentation[11]. Its unique U-shaped 

symmetric structure consists of a contraction path 

(downsampling) and an expansion path (upsampling). 

Through skip connections, it achieves effective fusion of 

shallow detail features and deep semantic features, which can 

accurately capture subtle features in data. At the same time, it 

has strong small-sample learning capabilities and anti-noise 

interference capabilities, and has shown excellent 

performance in fields such as time-series signal 
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reconstruction and image super-resolution[14]. In recent years, 

U-net and its improved models have been gradually applied 

in the power system field[12], achieving good application 

results in scenarios such as transformer condition 

monitoring[13], power equipment fault location, and load data 

processing. However, their targeted application in power 

quality data super-resolution perception still needs in-depth 

research- most existing related studies have not fully 

combined the temporal characteristics and disturbance 

characteristics of power quality data to optimize the U-net 

structure[15], resulting in insufficient reconstruction accuracy 

and limited generalization ability of the model in complex 

disturbance scenarios, making it difficult to adapt to the 

diverse power quality data characteristics in actual power 

grids. 

 

In view of the above research status and existing problems, 

combined with the structural advantages of the U-net model 

and the temporal characteristics of power quality data, this 

paper proposes a U-net-based super-resolution perception 

method for power quality data. By optimizing the network 

structure of U-net, this paper enhances the fusion efficiency 

of shallow temporal features and deep semantic features, 

introduces a channel attention mechanism and a feature 

concatenation strategy[16], improves the model's ability to 

extract and reconstruct subtle disturbance features in power 

quality data, and solves the problems of low reconstruction 

accuracy and weak anti-interference ability of traditional 

methods. At the same time, it conducts training and 

verification using power quality data sets from actual power 

grids to verify the super-resolution performance of the 

proposed method under different disturbance scenarios and 

different noise levels, providing an efficient and reliable 

technical solution for the accurate reconstruction of low-

resolution power quality data[17]. 

 

The main research work and innovations of this paper are as 

follows: First, it analyzes the temporal characteristics of 

power quality data and the requirements of super-resolution 

reconstruction, and designs an improved U-net architecture 

suitable for power quality data to address the shortcomings of 

traditional U-net models in time-series data processing. 

Second, it introduces a channel attention gate and a feature 

fusion strategy to enhance the model's ability to screen and 

fuse key features, suppress the interference of redundant 

information, and improve the accuracy and authenticity of 

reconstructed data. Finally, through a large number of 

comparative experiments, it verifies the superiority of the 

proposed method compared with traditional super-resolution 

methods, providing theoretical support and engineering 

reference for the refined perception of power quality data and 

the precise management and control of power grids. 

 

The subsequent chapter arrangement of this paper is as 

follows: Chapter 2 elaborates on the network structure and 

implementation process of the proposed U-net-based super-

resolution perception method for power quality data; Chapter 

3 verifies the effectiveness and superiority of the method 

through experiments; Chapter 4 summarizes the entire work 

of the paper and looks forward to future research directions. 

 

2. Model Structure 
 

To achieve high-precision mapping from low-sampling-rate 

power quality data to high-resolution data, this study 

constructs a super-resolution perception network that 

integrates multi-scale feature extraction, channel–spatial 

weighted fusion, and attention selection mechanisms. The 

network adopts an encoder–decoder architecture as its 

backbone and introduces a CSWF feature enhancement 

module and an attention gate mechanism based on the U-Net 

structure, thereby improving the model’s capability to 

represent power quality disturbance features and reconstruct 

structural details. The overall architecture of the network is 

illustrated in Fig 1. 

 

 
Figure 1: Architecture of the U-Net model 
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2.1 Model Detailed Description 

 

The model input consists of two-dimensional feature maps 

transformed from one-dimensional power quality time-series 

signals. The encoder employs a multi-stage convolutional and 

down-sampling structure to extract features hierarchically. 

Each stage contains two 3×3 convolution layers combined 

with nonlinear activation functions to enhance feature 

representation, while Dropout (0.1–0.3) is incorporated to 

suppress overfitting. Down-sampling is implemented using 

2×2 pooling operations, and the number of feature channels 

increases progressively as 16, 32, 64, 128, and 256. This 

design enables the network to transition from local waveform 

detail modeling to global structural representation, effectively 

capturing multi-scale disturbance characteristics such as 

voltage sags, harmonic distortions, and transient events. 

 

A CSWF (Channel–Spatial Weighted Fusion) module is 

embedded in the bottleneck layer between the encoder and 

decoder to perform joint channel-wise and spatial-wise 

reweighting of deep features. By modeling inter-channel 

dependencies and spatial importance distributions, this 

module enhances the response to abnormal waveform regions 

and compensates for information loss caused by down-

sampling, thereby improving the reconstruction accuracy of 

key disturbance areas. 

 

To prevent irrelevant features in conventional skip 

connections from interfering with the reconstruction process, 

an attention gate mechanism is introduced at the encoder–

decoder connections. Guided by high-level semantic features 

from the decoder, this mechanism evaluates the relevance of 

low-level features from the encoder, suppresses background 

redundancy, and highlights structure-related features 

associated with power quality anomalies, thereby improving 

structural consistency and physical plausibility of the 

reconstructed results. 

 

The decoder adopts a structure symmetric to the encoder. 

Through successive 2×2 up-sampling operations, spatial 

resolution is gradually restored, and the up-sampled features 

are concatenated with the attention-refined encoder features. 

Two 3×3 convolution layers are then used to refine feature 

representation. The number of channels decreases 

progressively as 256, 128, 64, 32, and 16, and finally a 1×1 

convolution is employed to map the features to a single-

channel output, producing the reconstructed high-resolution 

power quality data. 

 

In summary, the proposed network follows a hierarchical 

modeling paradigm of “multi-scale feature extraction – key 

feature enhancement – attention-guided fusion – structural 

refinement reconstruction,” enabling effective perception and 

recovery from low-sampling-rate data to high-resolution 

power quality data. It balances detail preservation and global 

structural consistency, providing a deep learning model with 

strong generalization and structural representation capabilities 

for power quality data super-resolution perception. 

 

2.2 Channel-Spatial Weighted Fusion Module 

 

To enhance the network’s ability to capture critical 

disturbance regions and important frequency-related features 

in power quality data, a CSWF (Channel–Spatial Weighted 

Fusion) feature enhancement module is introduced at the 

bottleneck of the backbone network. This module performs 

adaptive feature recalibration and weighted fusion by 

constructing spatially compressed representations and channel 

attention weights. Its structure is illustrated in Fig. 2. 

 

 
Figure 2: CSWF module 

 

The input to the module is a multi-channel feature map 

extracted by the encoder. First, a channel-reduction operation 

is applied through a 1×1 convolution to compress the original 

multi-channel features into single-channel spatial response 

maps. This process aggregates information from different 

channels at each spatial location, producing a global spatial 

response representation. Such a representation highlights 

structurally significant regions in power quality signals, 

including voltage mutation points, waveform distortion areas, 

and transient disturbance regions. 

 

The compressed spatial features from different groups are then 

concatenated to form a multi-channel spatial descriptor. This 

descriptor contains diverse spatial response information and 

serves as the basis for modeling inter-channel relationships. It 

provides the module with the ability to analyze how different 

feature responses interact and contribute to the representation 

of power quality disturbances. 

 

Subsequently, the concatenated features are fed into a channel 

attention gate, where nonlinear transformations are used to 

learn the relative importance of different feature responses. 

This process generates adaptive channel attention weights, 

which reflect the significance of each feature channel under 

the current input condition. As a result, features associated 

with key disturbance characteristics are emphasized, while 

less relevant responses are suppressed. 

 

The learned attention weights are then applied to the original 

input features through channel-wise reweighting. The 

recalibrated features are further refined through convolutional 

fusion to produce the final enhanced feature map. This output 

retains the original structural information while strengthening 

discriminative components related to abnormal waveform 

patterns. 

 

By jointly considering spatial distribution and channel 

dependency, the CSWF module enhances the network’s 

sensitivity to critical disturbance features. It effectively 

compensates for information loss caused by deep-layer down-

sampling and prevents irrelevant features from being 

amplified during reconstruction. Consequently, the module 

improves the structural consistency and physical reliability of 
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the super-resolution reconstruction results, making it a key 

component for power quality data perception enhancement. 

 

3. Experimental Results and Analysis 
 

3.1 Data preprocessing 

 

To evaluate the proposed super-resolution perception method 

for power quality data, two types of paired low–high 

resolution datasets were constructed from the AMI system and 

power quality monitoring devices. In the first scenario, low-

resolution AMI data are temporally aligned with high-

resolution monitoring data at the same locations for 

reconstruction, mainly involving harmonic voltage RMS 

values of phases A, B, and C. In the second scenario, low-

sampling-frequency data directly collected by monitoring 

devices are used, including three-phase harmonic distortion 

rates (THD) and negative-sequence unbalance. 

 

The high-resolution data have a sampling interval of 3 

minutes. After merging the three-phase data, the one-

dimensional time series is reshaped into a two-dimensional 

format. Since each day contains 480 sampling points, the data 

are arranged into an m×480 matrix to represent daily 

sequences, which facilitates parallel computation, 

convolution-based local feature extraction, and intuitive 

visualization of patterns and anomalies. Low-resolution data 

are sampled at 15-minute intervals, corresponding to 96 points 

per day. AMI data are aligned with monitoring data in time 

and location, or directly obtained from monitoring devices, 

and then reshaped into an 𝑚×96 matrix.  

 

A total of 7004 daily samples were collected and divided into 

training and testing sets at a 9:1 ratio (6300 for training and 

704 for testing). The high-resolution data dimension is 

𝑁×1×480, and the low-resolution data dimension is 𝑁×1×96 

N×1×96. The dataset includes harmonic voltage, total 

harmonic distortion, and negative-sequence unbalance. 

 

Experiments were conducted on a workstation with an Intel 

Core i7-12700 CPU, NVIDIA GeForce RTX 3050 GPU, and 

64 GB RAM. The model was implemented in Python using 

PyTorch. The batch size was 32, the number of training 

epochs was 100, and the upsampling factor was set to 5. 

 

3.2 Algorithm Evaluation Metrics 

 

To demonstrate the numerical reconstruction performance of 

different power quality data, four evaluation metrics- Mean 

Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR), 

Signal-to-Noise Ratio (SNR), and Structural Similarity Index 

(SSIM)- are introduced to assess the reconstructed data in this 

paper. 

 

MSE evaluates data quality by calculating the average of the 

squared differences between the reconstructed data and the 

ground-truth data, with its calculation formula given by: 
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where xh and x  denote the ground-truth data and the 

reconstructed data, respectively, and m is the data length. A 

smaller MSE value indicates a higher consistency between the 

reconstructed data and the ground-truth data. 

 

PSNR assesses data quality by quantifying the MSE between 

the reconstructed data and the ground-truth data. A higher 

PSNR value implies a higher similarity between the 

reconstructed data and the ground-truth data, and its 

calculation formula is: 
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Where 
h

maxx  represents the maximum value of the ground-

truth data. 

 

SNR is defined as the ratio of the signal power to the noise 

power, with its calculation formula expressed as:   
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SSIM is used to measure the perceptual similarity between 

two sets of data, whose value ranges from -1 to 1. A value 

closer to 1 indicates a higher similarity between the two 

datasets, and its calculation formula is: 
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where Var denotes the variance of the data, Cov represents the 

covariance between the two datasets, and C1 and C2 are small 

constants set to avoid a zero denominator, with both values 

taken as 0.01.  

 

3.3 Experimental results 

 

To comprehensively evaluate the performance of the proposed 

model in the power quality data super-resolution perception 

task, several representative methods were selected for 

comparative experiments. First, traditional interpolation 

methods, Bicubic and Linear, were adopted as baseline 

models. Then, classical convolutional neural network–based 

super-resolution models, SRCNN and VDSR, were 

introduced. Furthermore, high-performance deep models, 

EDSR and RDN, were selected for comparison. In addition, 

the generative adversarial model SRGAN was included to 

assess perceptual reconstruction capability. Finally, all the 

above methods were comprehensively compared with the 

proposed CSWF-Attention U-Net model. Under the same 

training conditions and test dataset, the super-resolution 

reconstruction performance of all comparison models was 

quantitatively evaluated. The results are shown in Table 1. 
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Table 1: Performance Comparison of Different Models for 

Power Quality Data Super-Resolution (×5) 

Method 
PSNR  

(dB) ↑ 

SNR  

(dB) ↑ 
MSE ↓ SSIM↑  

Linear 28.764 24.518 0.00231 0.8421 

Bicubic 29.583 25.936 0.00198 0.8654 

SRCNN 31.927 27.884 0.00142 0.9036 

VDSR 33.814 29.763 0.00105 0.9287 

EDSR 35.276 31.102 0.00081 0.9452 

RDN 36.148 32.046 0.00069 0.9538 

SRGAN 34.662 30.418 0.00097 0.9361 

CSWF-Attention  

U-Net  
37.924 33.857 0.00054 0.9675 

 

As shown in the table, traditional interpolation methods, 

Linear and Bicubic, achieve the weakest reconstruction 

performance, indicating that purely mathematical 

interpolation is insufficient to recover fine structural details in 

power quality data. CNN-based models such as SRCNN and 

VDSR significantly improve reconstruction accuracy, 

demonstrating the advantage of deep learning in feature 

modeling. Furthermore, deep residual models such as EDSR 

and RDN achieve better PSNR and SSIM values due to their 

enhanced feature representation capability. 

 

Although SRGAN shows advantages in perceptual quality, its 

PSNR is slightly lower than that of purely reconstruction-

optimized models because adversarial training focuses more 

on structural realism. In contrast, the proposed CSWF-

Attention U-Net model achieves the best performance across 

all three metrics, with PSNR reaching 37.924 dB, SSIM 

achieving 0.9675, and MSE reduced to 0.00054. These results 

indicate that the CSWF feature enhancement module and the 

attention gating mechanism effectively strengthen the 

representation of key disturbance features and improve 

structural consistency, thereby significantly enhancing the 

super-resolution reconstruction performance of power quality 

data. 

 

4. Conclusion 
 

To solve the problem that low-resolution power quality data 

fails to reflect disturbance details accurately, this paper 

proposes a super-resolution perception method based on the 

CSWF-Attention U-Net architecture. By improving the U-Net 

framework and introducing the CSWF module and attention 

gate mechanism, the model enhances key feature 

representation and reduces information loss in reconstruction. 

Experimental results on real power grid datasets show that the 

method outperforms traditional interpolation and other deep 

learning models in PSNR, SSIM, MSE and SNR, effectively 

recovers typical disturbance features, and provides a practical 

technical approach for refined power quality monitoring 

without hardware upgrading. 

 

Despite satisfactory performance, there is room for 

improvement. Future research will expand the dataset to 

complex mixed disturbance scenarios to enhance the model’s 

adaptability, optimize the model’s computational efficiency 

through lightweight design for real-time processing, and 

explore the integration of the method with actual power 

quality monitoring systems to promote its application in 

refined power quality management.  
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