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Abstract: This study introduces a deep learning—driven approach for super-resolution reconstruction of low-quality power grid data
using an enhanced U-Net model integrated with a Channel-Spatial Weighted Fusion (CSWF) module and attention gate. By refining
feature extraction and adaptive weighting mechanisms, the model addresses the limitations of traditional methods in capturing disturbance
features like voltage sags and harmonics. Experiments using real power grid datasets demonstrate improved performance across PSNR,
SSIM, and MSE metrics compared to classical interpolation and convolutional models. This approach provides a scalable, software-level
enhancement pathway for improving power quality monitoring without upgrading existing hardware infrastructure.
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1. Introduction

With the advancement of the global energy structure
transformation, the large-scale grid connection of renewable
energy, and the widespread deployment of new loads such as
electric vehicles and data centers, the power system is
developing rapidly towards a direction of high proportion of
power electronics and complex diversification’. As a core
indicator measuring the operational stability and power
supply reliability of the power system, the accuracy and
completeness of power quality data perception directly
determine the effectiveness of power grid fault diagnosis?],
power disturbance identification, operational state evaluation,
and dispatching optimization. It is of great significance for
ensuring industrial production safety, improving residents'
power consumption experience, and promoting the efficient
and low-carbon operation of the power system.

Power quality data mainly includes disturbance information
such as voltage and current amplitude, frequency, harmonics,
inter-harmonics, and voltage swells and sags!®!. Its perception
accuracy is closely related to data resolution—high-resolution
power quality data can accurately capture subtle fluctuations
and transient disturbance characteristics in signals, providing
reliable data support for subsequent power quality
governance. In contrast, low-resolution data often loses key
feature informationl], leading to deviations in disturbance
identification and inaccuracies in fault location, which makes
it difficult to meet the refined management and control needs
of complex power grids. However, in the current power
system, due to factors such as limitations of sampling
equipment performance, transmission bandwidth
constraints!¥, storage cost control, and lag in the upgrading of
old monitoring equipment, a large number of power quality
monitoring points still sample at a low frequency. The
generated low-resolution data cannot fully reflect the real
change law of power quality, becoming one of the core
bottlenecks restricting the refined management of power
quality.

To address the limitations of low-resolution power quality
data, super-resolution perception technology has become a
research hotspot in the power field. Its core idea is to

reconstruct low-resolution data into high-resolution data
through algorithm models, which can improve the effective
information content of data and reduce the high cost caused
by hardware upgrading without large-scale modification of
monitoring hardware, thus having important engineering
application value and economic value. At present, power
quality data super-resolution methods are mainly divided into
two categories: one is non-machine learning methods!®,
including signal processing technologies such as
interpolation'”), Fourier transform, and wavelet transform.
These methods are simple to implement and have high
computational efficiency, but they are difficult to capture the
complex nonlinear temporal dependencies in power quality
data and have limited reconstruction accuracy. Especially
when processing complex data containing multiple
disturbances, they are prone to produce artifacts and feature
distortion, which cannot meet the actual application needs.
The other category is machine learning and deep learning
methods[6]. With their strong feature learning and nonlinear
fitting capabilities, they have shown significant advantages in
the field of time-series data reconstruction and have gradually
become the mainstream development direction of super-
resolution perception technology!.

In deep learning-driven super-resolution technology,
Convolutional Neural Networks (CNNs) are widely used in
power quality data super-resolution research due to their
excellent local feature extraction capabilities!'’. However,
traditional CNN models have problems such as insufficient
feature fusion, gradient vanishing of deep features, and
difficulty in capturing long-distance temporal dependencies,
leaving room for improvement in reconstruction accuracy and
detail restoration capabilities. As a classic full convolutional
neural network architecture, U-net was initially used for
biomedical image segmentation!'!l. Its unique U-shaped
symmetric structure consists of a contraction path
(downsampling) and an expansion path (upsampling).
Through skip connections, it achieves effective fusion of
shallow detail features and deep semantic features, which can
accurately capture subtle features in data. At the same time, it
has strong small-sample learning capabilities and anti-noise
interference capabilities, and has shown excellent
performance in fields such as time-series signal
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reconstruction and image super-resolution!'#.. In recent years,
U-net and its improved models have been gradually applied
in the power system field!'?, achieving good application
results in scenarios such as transformer condition
monitoring!'*!, power equipment fault location, and load data
processing. However, their targeted application in power
quality data super-resolution perception still needs in-depth
research- most existing related studies have not fully
combined the temporal characteristics and disturbance
characteristics of power quality data to optimize the U-net
structure!'), resulting in insufficient reconstruction accuracy
and limited generalization ability of the model in complex
disturbance scenarios, making it difficult to adapt to the
diverse power quality data characteristics in actual power
grids.

In view of the above research status and existing problems,
combined with the structural advantages of the U-net model
and the temporal characteristics of power quality data, this
paper proposes a U-net-based super-resolution perception
method for power quality data. By optimizing the network
structure of U-net, this paper enhances the fusion efficiency
of shallow temporal features and deep semantic features,
introduces a channel attention mechanism and a feature
concatenation strategy!'®l, improves the model's ability to
extract and reconstruct subtle disturbance features in power
quality data, and solves the problems of low reconstruction
accuracy and weak anti-interference ability of traditional
methods. At the same time, it conducts training and
verification using power quality data sets from actual power
grids to verify the super-resolution performance of the
proposed method under different disturbance scenarios and
different noise levels, providing an efficient and reliable
technical solution for the accurate reconstruction of low-
resolution power quality datal!7].

The main research work and innovations of this paper are as
follows: First, it analyzes the temporal characteristics of

power quality data and the requirements of super-resolution
reconstruction, and designs an improved U-net architecture
suitable for power quality data to address the shortcomings of
traditional U-net models in time-series data processing.
Second, it introduces a channel attention gate and a feature
fusion strategy to enhance the model's ability to screen and
fuse key features, suppress the interference of redundant
information, and improve the accuracy and authenticity of
reconstructed data. Finally, through a large number of
comparative experiments, it verifies the superiority of the
proposed method compared with traditional super-resolution
methods, providing theoretical support and engineering
reference for the refined perception of power quality data and
the precise management and control of power grids.

The subsequent chapter arrangement of this paper is as
follows: Chapter 2 elaborates on the network structure and
implementation process of the proposed U-net-based super-
resolution perception method for power quality data; Chapter
3 verifies the effectiveness and superiority of the method
through experiments; Chapter 4 summarizes the entire work
of the paper and looks forward to future research directions.

2. Model Structure

To achieve high-precision mapping from low-sampling-rate
power quality data to high-resolution data, this study
constructs a super-resolution perception network that
integrates multi-scale feature extraction, channel-spatial
weighted fusion, and attention selection mechanisms. The
network adopts an encoder—decoder architecture as its
backbone and introduces a CSWF feature enhancement
module and an attention gate mechanism based on the U-Net
structure, thereby improving the model’s capability to
represent power quality disturbance features and reconstruct
structural details. The overall architecture of the network is
illustrated in Fig 1.
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Figure 1: Architecture of the U-Net model
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2.1 Model Detailed Description

The model input consists of two-dimensional feature maps
transformed from one-dimensional power quality time-series
signals. The encoder employs a multi-stage convolutional and
down-sampling structure to extract features hierarchically.
Each stage contains two 3x3 convolution layers combined
with nonlinear activation functions to enhance feature
representation, while Dropout (0.1-0.3) is incorporated to
suppress overfitting. Down-sampling is implemented using
2x2 pooling operations, and the number of feature channels
increases progressively as 16, 32, 64, 128, and 256. This
design enables the network to transition from local waveform
detail modeling to global structural representation, effectively
capturing multi-scale disturbance characteristics such as
voltage sags, harmonic distortions, and transient events.

A CSWF (Channel-Spatial Weighted Fusion) module is
embedded in the bottleneck layer between the encoder and
decoder to perform joint channel-wise and spatial-wise
reweighting of deep features. By modeling inter-channel
dependencies and spatial importance distributions, this
module enhances the response to abnormal waveform regions
and compensates for information loss caused by down-
sampling, thereby improving the reconstruction accuracy of
key disturbance areas.

To prevent irrelevant features in conventional skip
connections from interfering with the reconstruction process,
an attention gate mechanism is introduced at the encoder—
decoder connections. Guided by high-level semantic features
from the decoder, this mechanism evaluates the relevance of
low-level features from the encoder, suppresses background
redundancy, and highlights structure-related features
associated with power quality anomalies, thereby improving
structural consistency and physical plausibility of the
reconstructed results.

The decoder adopts a structure symmetric to the encoder.
Through successive 2x2 up-sampling operations, spatial
resolution is gradually restored, and the up-sampled features
are concatenated with the attention-refined encoder features.
Two 3x3 convolution layers are then used to refine feature
representation. The number of channels decreases
progressively as 256, 128, 64, 32, and 16, and finally a 1x1
convolution is employed to map the features to a single-
channel output, producing the reconstructed high-resolution
power quality data.

In summary, the proposed network follows a hierarchical
modeling paradigm of “multi-scale feature extraction — key
feature enhancement — attention-guided fusion — structural
refinement reconstruction,” enabling effective perception and
recovery from low-sampling-rate data to high-resolution
power quality data. It balances detail preservation and global
structural consistency, providing a deep learning model with
strong generalization and structural representation capabilities
for power quality data super-resolution perception.

2.2 Channel-Spatial Weighted Fusion Module

To enhance the network’s ability to capture critical
disturbance regions and important frequency-related features

in power quality data, a CSWF (Channel-Spatial Weighted
Fusion) feature enhancement module is introduced at the
bottleneck of the backbone network. This module performs
adaptive feature recalibration and weighted fusion by
constructing spatially compressed representations and channel
attention weights. Its structure is illustrated in Fig. 2.
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Figure 2: CSWF module

The input to the module is a multi-channel feature map
extracted by the encoder. First, a channel-reduction operation
is applied through a 1x1 convolution to compress the original
multi-channel features into single-channel spatial response
maps. This process aggregates information from different
channels at each spatial location, producing a global spatial
response representation. Such a representation highlights
structurally significant regions in power quality signals,
including voltage mutation points, waveform distortion areas,
and transient disturbance regions.

The compressed spatial features from different groups are then
concatenated to form a multi-channel spatial descriptor. This
descriptor contains diverse spatial response information and
serves as the basis for modeling inter-channel relationships. It
provides the module with the ability to analyze how different
feature responses interact and contribute to the representation
of power quality disturbances.

Subsequently, the concatenated features are fed into a channel
attention gate, where nonlinear transformations are used to
learn the relative importance of different feature responses.
This process generates adaptive channel attention weights,
which reflect the significance of each feature channel under
the current input condition. As a result, features associated
with key disturbance characteristics are emphasized, while
less relevant responses are suppressed.

The learned attention weights are then applied to the original
input features through channel-wise reweighting. The
recalibrated features are further refined through convolutional
fusion to produce the final enhanced feature map. This output
retains the original structural information while strengthening
discriminative components related to abnormal waveform
patterns.

By jointly considering spatial distribution and channel
dependency, the CSWF module enhances the network’s
sensitivity to critical disturbance features. It effectively
compensates for information loss caused by deep-layer down-
sampling and prevents irrelevant features from being
amplified during reconstruction. Consequently, the module
improves the structural consistency and physical reliability of
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the super-resolution reconstruction results, making it a key
component for power quality data perception enhancement.

3. Experimental Results and Analysis
3.1 Data preprocessing

To evaluate the proposed super-resolution perception method
for power quality data, two types of paired low-high
resolution datasets were constructed from the AMI system and
power quality monitoring devices. In the first scenario, low-
resolution AMI data are temporally aligned with high-
resolution monitoring data at the same locations for
reconstruction, mainly involving harmonic voltage RMS
values of phases A, B, and C. In the second scenario, low-
sampling-frequency data directly collected by monitoring
devices are used, including three-phase harmonic distortion
rates (THD) and negative-sequence unbalance.

The high-resolution data have a sampling interval of 3
minutes. After merging the three-phase data, the one-
dimensional time series is reshaped into a two-dimensional
format. Since each day contains 480 sampling points, the data
are arranged into an mx480 matrix to represent daily
sequences, which facilitates parallel computation,
convolution-based local feature extraction, and intuitive
visualization of patterns and anomalies. Low-resolution data
are sampled at 15-minute intervals, corresponding to 96 points
per day. AMI data are aligned with monitoring data in time
and location, or directly obtained from monitoring devices,
and then reshaped into an mx96 matrix.

A total of 7004 daily samples were collected and divided into
training and testing sets at a 9:1 ratio (6300 for training and
704 for testing). The high-resolution data dimension is
Nx1x480, and the low-resolution data dimension is Nx1x96
Nx1x96. The dataset includes harmonic voltage, total
harmonic distortion, and negative-sequence unbalance.

Experiments were conducted on a workstation with an Intel
Core i7-12700 CPU, NVIDIA GeForce RTX 3050 GPU, and
64 GB RAM. The model was implemented in Python using
PyTorch. The batch size was 32, the number of training
epochs was 100, and the upsampling factor was set to 5.

3.2 Algorithm Evaluation Metrics

To demonstrate the numerical reconstruction performance of
different power quality data, four evaluation metrics- Mean
Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR),
Signal-to-Noise Ratio (SNR), and Structural Similarity Index
(SSIM)- are introduced to assess the reconstructed data in this

paper.

MSE evaluates data quality by calculating the average of the
squared differences between the reconstructed data and the
ground-truth data, with its calculation formula given by:

MSE:lZ(xh —-5)? (1)
m

where x" and X denote the ground-truth data and the

reconstructed data, respectively, and m is the data length. A

smaller MSE value indicates a higher consistency between the
reconstructed data and the ground-truth data.

PSNR assesses data quality by quantifying the MSE between
the reconstructed data and the ground-truth data. A higher
PSNR value implies a higher similarity between the
reconstructed data and the ground-truth data, and its
calculation formula is:

(xh )2
PSNR (dB)=10x o e 2
( ) gz( MSE (2)
Where x,]:mx represents the maximum value of the ground-
truth data.

SNR is defined as the ratio of the signal power to the noise
power, with its calculation formula expressed as:

2)

SNR (dB)=10x| —*—— ®)

(-3

SSIM is used to measure the perceptual similarity between
two sets of data, whose value ranges from -1 to 1. A value
closer to 1 indicates a higher similarity between the two
datasets, and its calculation formula is:

Cov(x",X)+C,

B *)
\ Var(x") * Var(x) + C,

where Var denotes the variance of the data, Cov represents the
covariance between the two datasets, and C1 and C2 are small
constants set to avoid a zero denominator, with both values
taken as 0.01.

SSIM =

3.3 Experimental results

To comprehensively evaluate the performance of the proposed
model in the power quality data super-resolution perception
task, several representative methods were selected for
comparative experiments. First, traditional interpolation
methods, Bicubic and Linear, were adopted as baseline
models. Then, classical convolutional neural network—based
super-resolution models, SRCNN and VDSR, were
introduced. Furthermore, high-performance deep models,
EDSR and RDN, were selected for comparison. In addition,
the generative adversarial model SRGAN was included to
assess perceptual reconstruction capability. Finally, all the
above methods were comprehensively compared with the
proposed CSWF-Attention U-Net model. Under the same
training conditions and test dataset, the super-resolution
reconstruction performance of all comparison models was
quantitatively evaluated. The results are shown in Table 1.
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Table 1: Performance Comparison of Different Models for
Power Quality Data Super-Resolution (x5)

PSNR | SNR
Method by | pyy | MSEL | st
Lincar 28.764 | 24518 | 0.00231 | 0.8421
Bicubic 20.583 | 25.936 | 0.00198 | 0.8654
SRCNN 31.927 | 27.8%4 | 0.00142 | 0.9036
VDSR 33814 | 29.763 | 0.00105 | 0.9287
EDSR 35276 | 31.102 | 0.00081 | 0.9452

RDN 36.148 | 32.046 | 0.00069 | 0.9538
SRGAN 34.662 | 30418 | 0.00097 | 0.9361

CSWF-Attention | ;9,4 | 33857 | 0.00054 | 0.9675

U-Net

As shown in the table, traditional interpolation methods,
Linear and Bicubic, achieve the weakest reconstruction
performance, indicating that purely mathematical
interpolation is insufficient to recover fine structural details in
power quality data. CNN-based models such as SRCNN and
VDSR  significantly improve reconstruction accuracy,
demonstrating the advantage of deep learning in feature
modeling. Furthermore, deep residual models such as EDSR
and RDN achieve better PSNR and SSIM values due to their
enhanced feature representation capability.

Although SRGAN shows advantages in perceptual quality, its
PSNR is slightly lower than that of purely reconstruction-
optimized models because adversarial training focuses more
on structural realism. In contrast, the proposed CSWEF-
Attention U-Net model achieves the best performance across
all three metrics, with PSNR reaching 37.924 dB, SSIM
achieving 0.9675, and MSE reduced to 0.00054. These results
indicate that the CSWF feature enhancement module and the
attention gating mechanism effectively strengthen the
representation of key disturbance features and improve
structural consistency, thereby significantly enhancing the
super-resolution reconstruction performance of power quality
data.

4. Conclusion

To solve the problem that low-resolution power quality data
fails to reflect disturbance details accurately, this paper
proposes a super-resolution perception method based on the
CSWEF-Attention U-Net architecture. By improving the U-Net
framework and introducing the CSWF module and attention
gate mechanism, the model enhances key feature
representation and reduces information loss in reconstruction.
Experimental results on real power grid datasets show that the
method outperforms traditional interpolation and other deep
learning models in PSNR, SSIM, MSE and SNR, effectively
recovers typical disturbance features, and provides a practical
technical approach for refined power quality monitoring
without hardware upgrading.

Despite satisfactory performance, there is room for
improvement. Future research will expand the dataset to
complex mixed disturbance scenarios to enhance the model’s
adaptability, optimize the model’s computational efficiency
through lightweight design for real-time processing, and
explore the integration of the method with actual power
quality monitoring systems to promote its application in
refined power quality management.
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