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Abstract: Now a-days on soc applications the major problem is with the on chip memory to be faster and we require without any error 
correction and disrupt the altering digital circuit are becoming the major concern for memory application. This paper presents an error-
detection method for difference-set cyclic codes with majority logic decoding. To correct a large no of correction Majority logic 
decodable codes are suitable for memory applications. However, they require a large decoding time that impacts memory performance. 
The proposed fault-detection method significantly reduces memory access time when there is no error in the data read. The technique 
uses the majority logic decoder itself to detect failures, which makes the area overhead minimal and keeps the extra power consumption 
low. 
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1. Introduction 
 
The impact of technology scaling smaller dimensions, higher 
integration densities, and lower operating voltages has come 
to a lev el th at reliab ility o f memories is pu t in to jeopardy, 
not only in e xtreme radiation environments like spacec raft 
and avi onics electronics , but also at normal terrestrial 
environments [1] , [2]. Es pecially, SRAM  memory failure 
rates are incre asing si gnificantly, th erefore p osing a  ma jor 
reliability co ncern for m any ap plications. Some co mmonly 
used mitigation techniques are:  
 
 Triple Modular Redundancy (TMR); 
 Error Correction Codes (ECCs). 
 
TMR i s a s pecial case o f t he von Ne umann m ethod [3] 
consisting of th ree versions of the design in parallel, with a 
majority vot er sel ecting t he cor rect o utput. As t he m ethod 
suggests, the complexity overhead would be three times plus 
the complexity of the majority voter and thus increasing the 
power con sumption. Fo r m emories, it tu rned ou t th at ECC 
codes are th e best way t o mitig ate memory so ft erro rs [2 ]. 
For terrestrial rad iation env ironments wh ere th ere is a lo w 
soft error rate (SER) , codes like single error correction and 
double error detection (SEC–DED), are a good solution, due 
to their low encoding and decoding complexity. However, as 
a co nsequence o f aug menting in tegration den sities, th ere is 
an increase in the number of soft errors, which produces the 
need for h igher erro r co rrection cap abilities [4 ], [5 ]. Th e 
usual m ulti error co rrection codes, such as Reed– Solomon 
(RS) or B ose C haudhuri Hoc quenghem (B CH) a re not  
suitable fo r this task . Th e reason  fo r t his is th at th ey u se 
more sophisticated dec oding algorit hms, like com plex 
algebraic (e. g., fl oating point o perations or  l ogarithms) 
decoders t hat can decode i n fi xed t ime, and simple grap h 
decoders, t hat u se iterati ve algorith ms (e.g ., belief 
propagation). B oth are  ve ry com plex and inc rease 

computational costs [ 6]. A mong t he EC C codes t hat m eet 
the requ irements o f higher error co rrection cap ability a nd 
low dec oding com plexity, cyclic bl ock code s ha ve b een 
identified as good candidates, due to their property of being 
majority l ogic (M L) dec odable [7] , [8]. A sub group o f t he 
low-density pa rity check (L DPC) c odes, which bel ongs t o 
the family of the ML decoda ble codes, has been researched 
in [9]–[11]. In this paper, we will focus on one specific type 
of LDPC codes, n amely th e d ifference-set cyclic  co des 
(DSCCs), which is wid ely u sed in  th e Jap anese tele-tex t 
system o r FM multiplex b roadcasting syste ms [1 2]–[14]. 
The m ain reaso n for using  ML d ecoding is th at it is v ery 
simple to implement and thus it is very practical and has low 
complexity. The drawback of M L decoding i s t hat, for a 
coded word of -bits, it takes cycles in the decoding process, 
posing a big impact on system performance [6]. One way of 
coping with this p roblem is t o implement parallel en coders 
and decoders. This solution would enormously increase the 
complexity and, t herefore, the power consumption. As most 
of th e m emory read ing accesses will h ave n o erro rs, th e 
decoder is most of the time working for no reason. This has 
motivated the use of a fault detector module [11] that checks 
if t he co deword c ontains a n er ror a nd t hen t riggers t he 
correction m echanism accordingl y. In this  case, only the  
faulty code words need correction, and therefore the average 
read m emory access is speeded up, at the expe nse of a n 
increase in hardware cost and power consumption. A similar 
proposal has been presented i n [ 15] fo r t he case of flash 
memories. The si mplest way to  im plement a fau lt detector 
for an ECC i s by  cal culating t he sy ndrome, but  t his 
generally im plies ad ding a nother very c omplex fu nctional 
unit. This paper explores the idea of using the ML d ecoder 
circuitry as a fau lt d etector so t hat rea d operati ons are 
accelerated wi th al most no additional hardwa re cost. The 
results sh ow that th e pro perties o f DSCC-LDPC en able 
efficient fa ult det ection. T he rem ainder of t his pa per i s 
organized as fol lows. Sect ion I I gi ves an o verview of 
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existing ML decoding so lutions; Section III presen ts the 
novel M L det ector/decoder (MLDD) using di fference-set 
cyclic codes; Sect ion I V di scusses th e results ob tained for 
the diffe rent versio ns in res pect to effective ness, 
performance, and a rea a nd po wer c onsumption. Fi nally, 
Section V di scusses conclusions and gives an outlook onto 
future work. 
 

 
Figure 1: Memory system schematic with MLD 

 
2. Existent Majority Logic Decoding (MLD) 

Solutions 
 
MLD is based on a number of parity check equations which 
are orthogonal to each othe r, so that, at each iteration, eac h 
codeword bit only participates in one parity check equation, 
except th e very first bit wh ich co ntributes to  all eq uations. 
For t his reason , th e m ajority resu lt o f t hese p arity ch eck 
equations decide t he c orrectness of t he cu rrent bit un der 
decoding. M LD wa s fi rst m entioned i n [ 7] for t he R eed–
Müller codes. Then, it was ex tended and generalized in [8] 
for al l t ypes of sy stematic l inear block co des t hat can b e 
totally orthogonalized on each codeword bit.  
 
A generic schematic of a m emory system is depicted in Fig. 
1 for th e usage of an ML d ecoder. Initially, the data words 
are encode d and the n store d in the memory. W hen the 
memory is read , t he co deword is th en fed  through th e ML 
decoder before sent to the ou tput for further processing. In 
this decoding pr ocess, the d ata word is corrected from  all 
bit-flips that it might have suffered while being stored in the 
memory. There are two  ways for implementing this type of 
decoder. T he first one is called the Type-IML decoder, 
which determines, upo n XOR co mbinations of th e 
syndrome, which bi ts need to be corrected [6]. T he second 
one is the Type-II ML decoder that calculates directly out of 
the cod eword b its th e in formation of correctne ss of the  
current bit u nder decoding [6]. B oth a re quite si milar but  
when it comes to implementation, the Type-II uses less area, 
as it does not calculate the syndrome as an intermediate step. 
Therefore, this paper focuses only on this one.  
 
2.1 Plain ML Decoder 
 
As described bef ore, t he ML dec oder is a si mple and  
powerful dec oder, capa ble o f cor recting multiple random  
bit-flips depending on the number of parity check equations. 
It consists of four parts: 1) a cyclic shift register; 2) an XOR 
matrix; 3) a majority gate; and 4) an XOR for correcting the 
codeword bit u nder decod ing, as illu strated in Fig. 2. Th e 
input sig nal is in itially sto red in to th e cyclic sh ift reg ister 
and sh ifted through all th e taps. The in termediate values in  
each tap are then used { ᴮj} to  calcu late t he resu lts o f th e 

check sum equations from the XOR matrix. In t he N cycle, 
the res ult has  reache d the final tap, producing the output 
signal Y (which is the decoded version of input x).As stated 
before, x input might correspond to wrong data corrupted by 
a so ft er ror. To handle t his si tuation, t he dec oder would 
behave as fo llows. After th e in itial step , in  wh ich the 
codeword is lo aded in to t he cyclic sh ift reg ister, the 
decoding start s by calculati ng t he pa rity check e quations 
hardwired in  t he XOR m atrix. Th e resu lting su ms { ᴮj} are 
then fo rwarded to  th e m ajority g ate for ev aluating its  
correctness. If the number of 1’s re ceived in is greater than 
the number of 0’s that would mean that the current bit under 
decoding is wrong and  a sign al to c orrect it would be  
triggered. Ot herwise, the b it under dec oding would b e 
correct and no extra operations would be needed on it.In the 
next step, t he co ntent of t he re gisters a re rot ated a nd t he 
above procedure is rep eated until all N codeword  b its have 
been p rocessed. Fi nally, t he pari ty chec k sums sho uld be 
zero if the c odeword has been  correctly decode d. Furt her 
details on how this algorithm works can be found in [6]. The 
whole algorithm is depicted in Fig. 3.The previous algorithm 
needs as  m any cycles as the number of bits in th e i nput 
signal, which is al so t he number of t aps of, N  , i n t he 
decoder. Thi s i s a bi g im pact on t he per formance of t he 
system, depending on the size of the code. For example, for 
a codeword of  73 bi ts, t he decoding would t ake 73 cy cles, 
which would be excessive for most applications.  
 
2.2 Plain MLD with Syndrome Fault Detector (SFD) 
 
In order t o i mprove t he decoder pe rformance, al ternative 
designs m ay be u sed. One p ossibility is  to  ad d a fault 
detector by ca lculating t he s yndrome, so t hat o nly faul ty 
codewords a re dec oded [ 11]. Si nce m ost of t he co dewords 
will be error-free, no  further correction will b e needed, and 
therefore p erformance will not b e affected . Althou gh th e 
implementation of an  SFD reduces the a verage latency of 
the decoding proces s, it also  adds complexity to  the design 
(see Fig. 4). T he SFD is an XOR matrix that calculates the 
syndrome based on the parity check matrix. Each parity bit  
results in a syndrome equation. Therefore, the complexity of 
the syndrome calculator increases with the size of the code. 
A fau lty co deword is d etected wh en at least o ne of th e 
syndrome b its is “1 .” Th is trig gers th e MLD to  start th e 
decoding, as explained before. O n t he o ther ha nd, i f t he 
codeword is error-free, it is fo rwarded directly to the output, 
thus sa ving the correction cycles. In this way, the  
performance is i mproved in  ex change of an  add itional 
module i n t he m emory sy stem: a matrix of  X OR gates t o 
resolve the parity check matrix, where each check bit results 
into a synd rome eq uation. This fin ally resu lts in  a quit e 
complex m odule, with a large am ount of a dditional 
hardware and power consumption in the system. 
 
3. Proposed Ml Detector/Decoder  
 
This section presents a modified version of the ML decoder 
that improves the designs presented before. Starting from the 
original desi gn o f t he M L decoder i ntroduced i n [ 8], t he 
proposed M L det ector/decoder (M LDD) has been 
implemented using the difference-set cyclic codes (DSCCs) 
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[16]–[19]. This code i s part of t he LDPC codes, and, based 
on their attributes, they have the following properties: 
 
 Ability to correct large number of errors; 
 Sparse enc oding, decoding an d c hecking ci rcuits 

synthesizable into simple hardware; 
 Modular enc oder an d dec oder bl ocks t hat al low a n 

efficient hardware implementation; 
 Systematic c ode stru cture fo r clean p artition of 

information and code bits in the memory 
 

 
Figure 2: Momory system schemties for ML decoder with 

SFD 
 
An important th ing about the DSCC is th at its syste matical 
distribution al lows t he M L dec oder t o pe rform err or 
detection in a sim ple way, using parity check sum s (see [6 ] 
for m ore d etails). H owever, w hen multiple erro rs 
accumulate in a single wo rd, this mechanism may 
misbehave, as  explained in the fo llowing. In th e simplest 
error situ ation, when t here is  a bit-fli p in a  codeword, the 
corresponding p arity ch eck sum will b e “1 ,” as shown in 
Fig. 5( a). Th is f igure show s a bit-flip affectin g b it 42  of a 
codeword N= 73 with length and the related check sum that 
produces a “1.” Howe ver, i n the cas e of Fig. 5(b), the 
codeword is affected  by two b it-flips in  b it 4 2 and  b it 25 , 
which participate in the same parity check equation. So, the 
check sum is zero as t he parity does not change. Finally, in 
Fig. 5(c), the re are three bit-flips which a gain are detected 
by the c heck sum (with a “ 1”). As a co nclusion of  t hese 
examples, an y num ber o f od d bitflips can be directly 
detected, producing a “ 1” i n the c orresponding ᴮj . Th e 
problem is in those cases with  
 

 
Figure 3: single check equation of a N = ML73 decoder a) 

one bit flip b) two bit flip c) three bit flip 
An ev en numbers o f bit-flips, where t he parity ch eck 
equation would not detect the error. In this situation, the use 

of a si mple error detector based on parity check sums does 
not seem  feasible, since it can not h andle “false n egatives” 
(wrong d ata that is n ot d etected). Howev er, th e altern ative 
would be to derive al l data to the decoding process (i.e., to 
decode eve ry single word that is rea d in order to c heck its  
correctness), as explained in previous sections, with a l arge 
performance over head. Si nce perf ormance is im portant f or 
most applications, we h ave chosen an intermediate solution, 
which provides a good reliability with a small delay penalty 
for scenarios where up to five bit-flips may be expected (the 
impact o f situ ations with  mo re th an fiv e bit-flips will b e 
analyzed in Section IV-A). This proposal is one of the main 
contributions of this paper, and it is based on the following 
hypothesis: Gi ven a word read  from  a memory protected 
with DSCC co des, an d affected  b y up to  five bit-flips, all 
errors can be detected in only three decoding cycles. This is 
a huge improvement over t he simpler case, whe re decoding 
cycles are needed to gua rantee that errors are detected. The 
proof of th is h ypothesis is v ery co mplex fro m the 
mathematical point of view. Therefore, two alternatives have 
been used in order to prove it, which are given here.  
 
• Through simulation, in which exhaustive experiments have 
been conducte d, t o effective ly v erify th at th e hypothesis 
applies (see Section IV).  
 

 
 

Figure 4: Proposed MLDD schematic 1) control unit 2) tri 
state buffer 

 
• Through a simplified mathematical proof for the particular 
case of two bit -flips affecting a single word (see Appendix). 
For simplicity, and since it is convenient to first describe the 
chosen design, let us assum e that the hypothesis is true and 
that only three cycles are needed to detect all errors affecting 
up to  fi ve b its (th is will b e co nfirmed in  Sectio n IV). In 
general, the decoding algorithm is still the same as the one in 
the plain ML decoder version. The difference is that, instead 
of decoding all codew ord bi ts by  p rocessing t he ML 
decoding d uring cy cles, t he pr oposed method st ops 
intermediately in the third cycle, as illustrated in Fig. 6.  
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Figure 5: flowchart of MLDD algorithm 

 
tristate buffers. The output tristate buffers are always in high 
impedance unless the control unit sends the finish signal so 
that the current values of the shift register are forwarded to 
the output. The control schematic is illustrated in Fig. 8. The 
control unit manages the detection process. It uses a counter 
that counts up to three, wh ich d istinguishes the first three 
iterations of the ML d ecoding. In these first three iterations, 
the con trol unit ev aluates th e b y co mbining th em with  th e 
OR1 fun ction. Th is v alue is fed  in to a th ree-stage sh ift 
register, wh ich h olds th e resu lts of the last three cycles. In 
the third cycle , the OR 2 gat e evaluates the conte nt of t he 
detection register. When the result is “0,” the FSM sends out 
the finish signal indicating that the processed word is error-
free. In the other case, if the result is “1,” t he ML dec oding 
process run s u ntil th e e nd. Th is clearly p rovides a 
performance improvement respect to the traditional method. 
Most of the words would only take three cycles (five, if we 
consider the other two for input/output) and only those with 
errors (which should be a m inority) would need to perform 
the wh ole d ecoding process. M ore i nformation ab out 
performance details will b e p rovided in  t he n ext sectio ns. 
The one in Figure 1, add ing the control logic in the MLDD 
module.  
 
 
 

 

 
 

Figure 6: the proposed MLDD memory design 
 

4. Results 
 
The e xperimental res ults to m easure t he effe ctiveness, 
performance an d area of the proposed tech nique will b e 
presented.  
 
4.1 Effectiveness 
 
Here, th e hypothesis t hat any erro r pattern affecting  up to 
five bits in a word can be detected in just three cycles of t he 
decoding process will b e v erified. Additionally, th e 
detection of errors affecti ng a la rger number of bits is also 
briefly di scussed. As st ated i n p revious sections, a n odd 
number of errors will no t pose any problem to a trad itional 
parity check detecto r, bu t an even nu mber will. Th erefore, 
this is th e scen ario th at h as b een stud ied. Sev eral word  
widths ha ve been c onsidered i n order to per form the 
experiments. The details ar e sh own i n T able I,  w here, fo r 
each size , the num ber of data and pa rity bits are stated. 
Given a size , all co mbinations of two and four bit-flips on a 
word have be en cal culated, i n order t o study al l of t he 
possible cases. The num ber of combinations can be see n in 
Table I f or di fferent val ues of wi th do uble and q uadruple 
errors.  

Table 1: Data word length 
N Data bits Parity bits 
73 48 35 

273 191 82 
1057 833 244 

 
As expected, increasing the code leng th im plies an 
exponential gr owth of  the num ber of  combinations, and 
therefore, of th e co mputational ti me.  An  i mportant final 
comment is th at the area ov erhead of the MLDD actuall y 
decreases with respect to the plain MLD version . For large 
values of, both areas are practically the same. The reason for 
this is th at th e error detector in  t he MLDD has been 
designed t o be  i ndependent of t he si ze c ode. The o pposite 
situation o ccurs, with  th e SFD techn ique, wh ich u ses 
syndrome calcul ation t o perform error  det ection: i ts 
complexity grows quickly when the code size increases. One 
of the problems to make the MLDD module independent of 
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has been  the mapping of the in termediate delay line values 
to the output signals. The reason is that this module behaves 
in t wo di fferent way s depe nding i f t he pr ocessed w ord i s 
erroneous or correct. If it is corr ect, its output is driven after 
the third cycle, what m eans th at the word has been shifted 
three positions in the line register. 
 

 
Figure 7: the error identification of data 

 

 
Figure 8: Describe the adjustment of the error and data 

retrieve 
 
If it is wrong, the word has to be fully decoded, what implies 
being sh ifted positions. So, both scen arios en d up with  the 
output values at different positions of the shift register. Then 
some kind of multiplexing logic would be needed to reorder 
the b its b efore mapping th em to  th e o utput. Ho wever, th e 
area of this logic would grow with linearly. In order to avoid 
this, it has been decided to make three extra shift movements 
in the case of a wrong word, in  o rder to  align its b its with 
those of a correct word . After this, the o utput b its are 
coherent in  al l situ ations, no t n eeding m ultiplexing l ogic. 
The penalty for th is solution is three extra cycles to  decode 
words with errors, which usually has a n egligible impact on 
performance 
 
5. Conclusion 
 
In this paper, a fault-detection mechanism, MLDD, has been 
presented bas ed o n M L decoding using t he DSCCs. 
Exhaustive si mulation test results show th at th e p roposed 
technique is able to  detect any pattern of up to  five bit-flips 
in the first t hree cycles of the dec oding pr ocess. This 
improves the performance of th e design with respect t o the 
traditional M LD a pproach. On t he other hand, t he M LDD 
error d etector module has b een desi gned i n a way  t hat i s 
independent of the code size.  
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