
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 1 Issue 1, September 2013

Efficient Fault Detection Majority Logic Correction
with in Memory with Difference-Set Codes

N. V. P. Naidu Babu 1, P. M. Francis2, B. Prasad Kumar3

1M.Tech, GITAS College, Bibbili, A. P, India

2Department of ECE, Head of Department, Assistant Professor, GITAS, College, Bobbili, A. P, India

3Department of ECE, Assistant Professor, GITAS, College, Bobbili, A. P, India

Abstract: Now a-days on soc applications the major problem is with the on chip memory to be faster and we require without any error
correction and disrupt the altering digital circuit are becoming the major concern for memory application. This paper presents an error-
detection method for difference-set cyclic codes with majority logic decoding. To correct a large no of correction Majority logic
decodable codes are suitable for memory applications. However, they require a large decoding time that impacts memory performance.
The proposed fault-detection method significantly reduces memory access time when there is no error in the data read. The technique
uses the majority logic decoder itself to detect failures, which makes the area overhead minimal and keeps the extra power consumption
low.

Keywords: Block codes, difference-set, error correction codes (ECCs), low-density parity check (LDPC), majority logic, memory.

1. Introduction

The impact of technology scaling smaller dimensions, higher
integration densities, and lower operating voltages has come
to a lev el th at reliab ility o f memories is pu t in to jeopardy,
not only in e xtreme radiation environments like spacec raft
and avi onics electronics , but also at normal terrestrial
environments [1] , [2]. Es pecially, SRAM memory failure
rates are incre asing si gnificantly, th erefore p osing a ma jor
reliability co ncern for m any ap plications. Some co mmonly
used mitigation techniques are:

 Triple Modular Redundancy (TMR);
 Error Correction Codes (ECCs).

TMR i s a s pecial case o f t he von Ne umann m ethod [3]
consisting of th ree versions of the design in parallel, with a
majority vot er sel ecting t he cor rect o utput. As t he m ethod
suggests, the complexity overhead would be three times plus
the complexity of the majority voter and thus increasing the
power con sumption. Fo r m emories, it tu rned ou t th at ECC
codes are th e best way t o mitig ate memory so ft erro rs [2].
For terrestrial rad iation env ironments wh ere th ere is a lo w
soft error rate (SER) , codes like single error correction and
double error detection (SEC–DED), are a good solution, due
to their low encoding and decoding complexity. However, as
a co nsequence o f aug menting in tegration den sities, th ere is
an increase in the number of soft errors, which produces the
need for h igher erro r co rrection cap abilities [4], [5]. Th e
usual m ulti error co rrection codes, such as Reed– Solomon
(RS) or B ose C haudhuri Hoc quenghem (B CH) a re not
suitable fo r this task . Th e reason fo r t his is th at th ey u se
more sophisticated dec oding algorit hms, like com plex
algebraic (e. g., fl oating point o perations or l ogarithms)
decoders t hat can decode i n fi xed t ime, and simple grap h
decoders, t hat u se iterati ve algorith ms (e.g ., belief
propagation). B oth are ve ry com plex and inc rease

computational costs [6]. A mong t he EC C codes t hat m eet
the requ irements o f higher error co rrection cap ability a nd
low dec oding com plexity, cyclic bl ock code s ha ve b een
identified as good candidates, due to their property of being
majority l ogic (M L) dec odable [7] , [8]. A sub group o f t he
low-density pa rity check (L DPC) c odes, which bel ongs t o
the family of the ML decoda ble codes, has been researched
in [9]–[11]. In this paper, we will focus on one specific type
of LDPC codes, n amely th e d ifference-set cyclic co des
(DSCCs), which is wid ely u sed in th e Jap anese tele-tex t
system o r FM multiplex b roadcasting syste ms [1 2]–[14].
The m ain reaso n for using ML d ecoding is th at it is v ery
simple to implement and thus it is very practical and has low
complexity. The drawback of M L decoding i s t hat, for a
coded word of -bits, it takes cycles in the decoding process,
posing a big impact on system performance [6]. One way of
coping with this p roblem is t o implement parallel en coders
and decoders. This solution would enormously increase the
complexity and, t herefore, the power consumption. As most
of th e m emory read ing accesses will h ave n o erro rs, th e
decoder is most of the time working for no reason. This has
motivated the use of a fault detector module [11] that checks
if t he co deword c ontains a n er ror a nd t hen t riggers t he
correction m echanism accordingl y. In this case, only the
faulty code words need correction, and therefore the average
read m emory access is speeded up, at the expe nse of a n
increase in hardware cost and power consumption. A similar
proposal has been presented i n [15] fo r t he case of flash
memories. The si mplest way to im plement a fau lt detector
for an ECC i s by cal culating t he sy ndrome, but t his
generally im plies ad ding a nother very c omplex fu nctional
unit. This paper explores the idea of using the ML d ecoder
circuitry as a fau lt d etector so t hat rea d operati ons are
accelerated wi th al most no additional hardwa re cost. The
results sh ow that th e pro perties o f DSCC-LDPC en able
efficient fa ult det ection. T he rem ainder of t his pa per i s
organized as fol lows. Sect ion I I gi ves an o verview of

Paper ID: 01130912 45 of 49

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 1 Issue 1, September 2013

existing ML decoding so lutions; Section III presen ts the
novel M L det ector/decoder (MLDD) using di fference-set
cyclic codes; Sect ion I V di scusses th e results ob tained for
the diffe rent versio ns in res pect to effective ness,
performance, and a rea a nd po wer c onsumption. Fi nally,
Section V di scusses conclusions and gives an outlook onto
future work.

Figure 1: Memory system schematic with MLD

2. Existent Majority Logic Decoding (MLD)

Solutions

MLD is based on a number of parity check equations which
are orthogonal to each othe r, so that, at each iteration, eac h
codeword bit only participates in one parity check equation,
except th e very first bit wh ich co ntributes to all eq uations.
For t his reason , th e m ajority resu lt o f t hese p arity ch eck
equations decide t he c orrectness of t he cu rrent bit un der
decoding. M LD wa s fi rst m entioned i n [7] for t he R eed–
Müller codes. Then, it was ex tended and generalized in [8]
for al l t ypes of sy stematic l inear block co des t hat can b e
totally orthogonalized on each codeword bit.

A generic schematic of a m emory system is depicted in Fig.
1 for th e usage of an ML d ecoder. Initially, the data words
are encode d and the n store d in the memory. W hen the
memory is read , t he co deword is th en fed through th e ML
decoder before sent to the ou tput for further processing. In
this decoding pr ocess, the d ata word is corrected from all
bit-flips that it might have suffered while being stored in the
memory. There are two ways for implementing this type of
decoder. T he first one is called the Type-IML decoder,
which determines, upo n XOR co mbinations of th e
syndrome, which bi ts need to be corrected [6]. T he second
one is the Type-II ML decoder that calculates directly out of
the cod eword b its th e in formation of correctne ss of the
current bit u nder decoding [6]. B oth a re quite si milar but
when it comes to implementation, the Type-II uses less area,
as it does not calculate the syndrome as an intermediate step.
Therefore, this paper focuses only on this one.

2.1 Plain ML Decoder

As described bef ore, t he ML dec oder is a si mple and
powerful dec oder, capa ble o f cor recting multiple random
bit-flips depending on the number of parity check equations.
It consists of four parts: 1) a cyclic shift register; 2) an XOR
matrix; 3) a majority gate; and 4) an XOR for correcting the
codeword bit u nder decod ing, as illu strated in Fig. 2. Th e
input sig nal is in itially sto red in to th e cyclic sh ift reg ister
and sh ifted through all th e taps. The in termediate values in
each tap are then used { ᴮj} to calcu late t he resu lts o f th e

check sum equations from the XOR matrix. In t he N cycle,
the res ult has reache d the final tap, producing the output
signal Y (which is the decoded version of input x).As stated
before, x input might correspond to wrong data corrupted by
a so ft er ror. To handle t his si tuation, t he dec oder would
behave as fo llows. After th e in itial step , in wh ich the
codeword is lo aded in to t he cyclic sh ift reg ister, the
decoding start s by calculati ng t he pa rity check e quations
hardwired in t he XOR m atrix. Th e resu lting su ms { ᴮj} are
then fo rwarded to th e m ajority g ate for ev aluating its
correctness. If the number of 1’s re ceived in is greater than
the number of 0’s that would mean that the current bit under
decoding is wrong and a sign al to c orrect it would be
triggered. Ot herwise, the b it under dec oding would b e
correct and no extra operations would be needed on it.In the
next step, t he co ntent of t he re gisters a re rot ated a nd t he
above procedure is rep eated until all N codeword b its have
been p rocessed. Fi nally, t he pari ty chec k sums sho uld be
zero if the c odeword has been correctly decode d. Furt her
details on how this algorithm works can be found in [6]. The
whole algorithm is depicted in Fig. 3.The previous algorithm
needs as m any cycles as the number of bits in th e i nput
signal, which is al so t he number of t aps of, N , i n t he
decoder. Thi s i s a bi g im pact on t he per formance of t he
system, depending on the size of the code. For example, for
a codeword of 73 bi ts, t he decoding would t ake 73 cy cles,
which would be excessive for most applications.

2.2 Plain MLD with Syndrome Fault Detector (SFD)

In order t o i mprove t he decoder pe rformance, al ternative
designs m ay be u sed. One p ossibility is to ad d a fault
detector by ca lculating t he s yndrome, so t hat o nly faul ty
codewords a re dec oded [11]. Si nce m ost of t he co dewords
will be error-free, no further correction will b e needed, and
therefore p erformance will not b e affected . Althou gh th e
implementation of an SFD reduces the a verage latency of
the decoding proces s, it also adds complexity to the design
(see Fig. 4). T he SFD is an XOR matrix that calculates the
syndrome based on the parity check matrix. Each parity bit
results in a syndrome equation. Therefore, the complexity of
the syndrome calculator increases with the size of the code.
A fau lty co deword is d etected wh en at least o ne of th e
syndrome b its is “1 .” Th is trig gers th e MLD to start th e
decoding, as explained before. O n t he o ther ha nd, i f t he
codeword is error-free, it is fo rwarded directly to the output,
thus sa ving the correction cycles. In this way, the
performance is i mproved in ex change of an add itional
module i n t he m emory sy stem: a matrix of X OR gates t o
resolve the parity check matrix, where each check bit results
into a synd rome eq uation. This fin ally resu lts in a quit e
complex m odule, with a large am ount of a dditional
hardware and power consumption in the system.

3. Proposed Ml Detector/Decoder

This section presents a modified version of the ML decoder
that improves the designs presented before. Starting from the
original desi gn o f t he M L decoder i ntroduced i n [8], t he
proposed M L det ector/decoder (M LDD) has been
implemented using the difference-set cyclic codes (DSCCs)

Paper ID: 01130912 46 of 49

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 1 Issue 1, September 2013

[16]–[19]. This code i s part of t he LDPC codes, and, based
on their attributes, they have the following properties:

 Ability to correct large number of errors;
 Sparse enc oding, decoding an d c hecking ci rcuits

synthesizable into simple hardware;
 Modular enc oder an d dec oder bl ocks t hat al low a n

efficient hardware implementation;
 Systematic c ode stru cture fo r clean p artition of

information and code bits in the memory

Figure 2: Momory system schemties for ML decoder with

SFD

An important th ing about the DSCC is th at its syste matical
distribution al lows t he M L dec oder t o pe rform err or
detection in a sim ple way, using parity check sum s (see [6]
for m ore d etails). H owever, w hen multiple erro rs
accumulate in a single wo rd, this mechanism may
misbehave, as explained in the fo llowing. In th e simplest
error situ ation, when t here is a bit-fli p in a codeword, the
corresponding p arity ch eck sum will b e “1 ,” as shown in
Fig. 5(a). Th is f igure show s a bit-flip affectin g b it 42 of a
codeword N= 73 with length and the related check sum that
produces a “1.” Howe ver, i n the cas e of Fig. 5(b), the
codeword is affected by two b it-flips in b it 4 2 and b it 25 ,
which participate in the same parity check equation. So, the
check sum is zero as t he parity does not change. Finally, in
Fig. 5(c), the re are three bit-flips which a gain are detected
by the c heck sum (with a “ 1”). As a co nclusion of t hese
examples, an y num ber o f od d bitflips can be directly
detected, producing a “ 1” i n the c orresponding ᴮj . Th e
problem is in those cases with

Figure 3: single check equation of a N = ML73 decoder a)

one bit flip b) two bit flip c) three bit flip
An ev en numbers o f bit-flips, where t he parity ch eck
equation would not detect the error. In this situation, the use

of a si mple error detector based on parity check sums does
not seem feasible, since it can not h andle “false n egatives”
(wrong d ata that is n ot d etected). Howev er, th e altern ative
would be to derive al l data to the decoding process (i.e., to
decode eve ry single word that is rea d in order to c heck its
correctness), as explained in previous sections, with a l arge
performance over head. Si nce perf ormance is im portant f or
most applications, we h ave chosen an intermediate solution,
which provides a good reliability with a small delay penalty
for scenarios where up to five bit-flips may be expected (the
impact o f situ ations with mo re th an fiv e bit-flips will b e
analyzed in Section IV-A). This proposal is one of the main
contributions of this paper, and it is based on the following
hypothesis: Gi ven a word read from a memory protected
with DSCC co des, an d affected b y up to five bit-flips, all
errors can be detected in only three decoding cycles. This is
a huge improvement over t he simpler case, whe re decoding
cycles are needed to gua rantee that errors are detected. The
proof of th is h ypothesis is v ery co mplex fro m the
mathematical point of view. Therefore, two alternatives have
been used in order to prove it, which are given here.

• Through simulation, in which exhaustive experiments have
been conducte d, t o effective ly v erify th at th e hypothesis
applies (see Section IV).

Figure 4: Proposed MLDD schematic 1) control unit 2) tri
state buffer

• Through a simplified mathematical proof for the particular
case of two bit -flips affecting a single word (see Appendix).
For simplicity, and since it is convenient to first describe the
chosen design, let us assum e that the hypothesis is true and
that only three cycles are needed to detect all errors affecting
up to fi ve b its (th is will b e co nfirmed in Sectio n IV). In
general, the decoding algorithm is still the same as the one in
the plain ML decoder version. The difference is that, instead
of decoding all codew ord bi ts by p rocessing t he ML
decoding d uring cy cles, t he pr oposed method st ops
intermediately in the third cycle, as illustrated in Fig. 6.

Paper ID: 01130912 47 of 49

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 1 Issue 1, September 2013

Figure 5: flowchart of MLDD algorithm

tristate buffers. The output tristate buffers are always in high
impedance unless the control unit sends the finish signal so
that the current values of the shift register are forwarded to
the output. The control schematic is illustrated in Fig. 8. The
control unit manages the detection process. It uses a counter
that counts up to three, wh ich d istinguishes the first three
iterations of the ML d ecoding. In these first three iterations,
the con trol unit ev aluates th e b y co mbining th em with th e
OR1 fun ction. Th is v alue is fed in to a th ree-stage sh ift
register, wh ich h olds th e resu lts of the last three cycles. In
the third cycle , the OR 2 gat e evaluates the conte nt of t he
detection register. When the result is “0,” the FSM sends out
the finish signal indicating that the processed word is error-
free. In the other case, if the result is “1,” t he ML dec oding
process run s u ntil th e e nd. Th is clearly p rovides a
performance improvement respect to the traditional method.
Most of the words would only take three cycles (five, if we
consider the other two for input/output) and only those with
errors (which should be a m inority) would need to perform
the wh ole d ecoding process. M ore i nformation ab out
performance details will b e p rovided in t he n ext sectio ns.
The one in Figure 1, add ing the control logic in the MLDD
module.

Figure 6: the proposed MLDD memory design

4. Results

The e xperimental res ults to m easure t he effe ctiveness,
performance an d area of the proposed tech nique will b e
presented.

4.1 Effectiveness

Here, th e hypothesis t hat any erro r pattern affecting up to
five bits in a word can be detected in just three cycles of t he
decoding process will b e v erified. Additionally, th e
detection of errors affecti ng a la rger number of bits is also
briefly di scussed. As st ated i n p revious sections, a n odd
number of errors will no t pose any problem to a trad itional
parity check detecto r, bu t an even nu mber will. Th erefore,
this is th e scen ario th at h as b een stud ied. Sev eral word
widths ha ve been c onsidered i n order to per form the
experiments. The details ar e sh own i n T able I, w here, fo r
each size , the num ber of data and pa rity bits are stated.
Given a size , all co mbinations of two and four bit-flips on a
word have be en cal culated, i n order t o study al l of t he
possible cases. The num ber of combinations can be see n in
Table I f or di fferent val ues of wi th do uble and q uadruple
errors.

Table 1: Data word length
N Data bits Parity bits
73 48 35

273 191 82
1057 833 244

As expected, increasing the code leng th im plies an
exponential gr owth of the num ber of combinations, and
therefore, of th e co mputational ti me. An i mportant final
comment is th at the area ov erhead of the MLDD actuall y
decreases with respect to the plain MLD version . For large
values of, both areas are practically the same. The reason for
this is th at th e error detector in t he MLDD has been
designed t o be i ndependent of t he si ze c ode. The o pposite
situation o ccurs, with th e SFD techn ique, wh ich u ses
syndrome calcul ation t o perform error det ection: i ts
complexity grows quickly when the code size increases. One
of the problems to make the MLDD module independent of

Paper ID: 01130912 48 of 49

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 1 Issue 1, September 2013

has been the mapping of the in termediate delay line values
to the output signals. The reason is that this module behaves
in t wo di fferent way s depe nding i f t he pr ocessed w ord i s
erroneous or correct. If it is corr ect, its output is driven after
the third cycle, what m eans th at the word has been shifted
three positions in the line register.

Figure 7: the error identification of data

Figure 8: Describe the adjustment of the error and data

retrieve

If it is wrong, the word has to be fully decoded, what implies
being sh ifted positions. So, both scen arios en d up with the
output values at different positions of the shift register. Then
some kind of multiplexing logic would be needed to reorder
the b its b efore mapping th em to th e o utput. Ho wever, th e
area of this logic would grow with linearly. In order to avoid
this, it has been decided to make three extra shift movements
in the case of a wrong word, in o rder to align its b its with
those of a correct word . After this, the o utput b its are
coherent in al l situ ations, no t n eeding m ultiplexing l ogic.
The penalty for th is solution is three extra cycles to decode
words with errors, which usually has a n egligible impact on
performance

5. Conclusion

In this paper, a fault-detection mechanism, MLDD, has been
presented bas ed o n M L decoding using t he DSCCs.
Exhaustive si mulation test results show th at th e p roposed
technique is able to detect any pattern of up to five bit-flips
in the first t hree cycles of the dec oding pr ocess. This
improves the performance of th e design with respect t o the
traditional M LD a pproach. On t he other hand, t he M LDD
error d etector module has b een desi gned i n a way t hat i s
independent of the code size.

References

[1] C. W. Slayman, “Cac he a nd memory error detection,

correction, a nd reduction t echniques for t errestrial
servers and workstations,” IEEE Trans. Device Mater.
Reliabil., vol. 5, no. 3, pp. 397–404, Sep. 2005.

[2] R. C. Bau mann, “Rad iation-induced s oft errors in
advanced sem iconductor t echnologies,” IEEE Trans.
Device Mater. Reliabil., v ol. 5, no . 3 , p p. 301–316,
Sep. 2005.

[3] J. von Neumann, “Probabilistic logics and synthesis of
reliable or ganisms from unreliable co mponents,”
Automata Studies, pp. 43–98, 1956.

[4] M. A. Bajura et al., “Models and algorithmic limits for
an EC C-based ap proach t o har dening sub -100-nm
SRAMs,” IEEE Trans. Nucl. Sci.,vol. 54, no. 4, pp.
935–945, Aug. 2007.

[5] R. Naseer and J. Draper, “DEC ECC design to improve
memory reliab ility in su b-100 nm technologies,” in
Proc. IEEE ICECS, 2008, pp.586–589.

[6] S. Lin and D. J. Costello, Error Control Coding, 2nd
ed. Englewood Cliffs, NJ: Prentice-Hall, 2004.

[7] S. Reed, “A class of m ultiple-error-correcting code s
and the decoding scheme,” IRE Trans. Inf. Theory, vol.
IT-4, pp. 38–49, 1954.

[8] J. L. Massey , Threshold Decoding. Cam bridge, MA:
MIT Press, 1963.

[9] S. Ghosh and P. D. Lincoln, “Low-density parity check
codes for error correction i n nanoscale memory,” SRI
Comput. Sci. Lab. Tech. Rep. CSL-0703, 2007.

[10] B. Vasi c a nd S. K . C hilappagari, “A n information
theoretical fra mework for analysis and design of
nanoscale f ault-tolerant m emories based on l ow-
density pari ty-check c odes,” IEEE Trans. Circuits
Syst.I, Reg. Papers, v ol. 54, no. 11 , p p. 2 438–2446,
Nov. 2007.

[11] H. Naeimi and A. DeHon, “ Fault secure e ncoder and
decoder for Nano Memory applications,” IEEE Trans.
Very Large Scale Integr.(VLSI) Syst., vol. 17, no. 4, pp.
473–486, Apr. 2009.

Paper ID: 01130912 49 of 49

