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Abstract: In this paper, we describe a new novel algorithm for design of low power an hardware efficient error compensation circuit by 
using the dual group minor input correction vector to lower input correction vector compensation error. The on chip soc applications 
increases the capacity of data transfer that can be utilizing the symmetric property of the minor input correction vector, and complex 
hardware of the error compensation circuit can be lowered. The error compensation circuit mainly from the “outer” partial products, 
the hardware complexity only increases slightly as the multiplier input bits increase. By the utilization of LSB techniques In the 
proposed 16 X 16 bits fixed-width multiplier, the truncation error can be lowered by 87% as compared with the direct-truncated 
multiplier and the transistor count can be reduced by 47% as compared with the full-length multiplier. With the help of fixed-width 
multiplier performs not only with lower compensation error but also with lower hardware complexity, especially as multiplier input bits 
increase. 
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1. Introduction 
 
In many high-speed digital signal processing (DSP) and 
multimedia applications, the multiplier plays a very 
important role because it dominates the chip power 
consumption and operation speed. In DSP applications, in 
order to avoid infinite growth of multiplication bit width, we 
usually have to reduce the number of multiplication 
products. Cutting off n-bit less significant bit (LSB) output 
can construct a fixed-width multiplier with n-bit input and n-
bit output. However, truncating the LSB part leads to a large 
number of truncation errors. Many truncation error 
compensation techniques [1]–[10] have been presented to 
design an error compensation circuit with less truncation 
error and less hardware overhead. The compensation 
methods can be divided into two categories: compensation 
with constant correction value [1]–[3] and compensation 
with variable correction value [4]–[10]. The circuit 
complexity to compensate with constant corrected value can 
be simpler than that of variable correction value; however, 
the variable correction approaches usually can be more 
precise. In the approaches with variable correction value, 
literature [4] proposed an input-dependent method by using 
probability, statistics, and linear regression analysis to find 
the approximate compensation value. The error 
compensation circuit is constructed by the partial product 
terms with the most-significant weight in the least-
significant segment. The compensation value is dependent 
on the input number and thus has less truncation error. In 
[5], the error compensation algorithm made use of binominal 
distribution instead of uniform distribution used in [4] to 
model the probability of occurrence of multiplier inputs. 

This modification can bring a more precise error 
compensation result. Moreover, the compensation vector in 
[5] can directly inject into the fixed-width multiplier as 
compensation, which does not need extra compensation 
logic gates. Therefore, the fixed-width multiplier area can be 
smaller than [4]. In [6], a two-dimensional conditional 
estimation method was proposed to compensate truncated 
error based on both the dependency among the partial 
product terms and multiplication inputs. The error 
compensation in [6] can be more precise; however, the 
hardware is too complex. In [7], [8], multiple-input error 
compensation vector designs were proposed to further 
enhance the error compensation precision. Unlike [4] or [5] 
to set the same weight for each partial product terms in the 
input correction vector, they applied different weights to 
each input correction vector element. In [8], “inner” partial 
products were designed to have a higher weight with respect 
to “outer” partial products. To take into account different 
weights of input correction (IC) partial products, the IC 
vector was divided into two disjoined sets with dual addition 
trees to compute the error compensation value. In this way, 
the compensation value can be more approximated to the 
expected results. Hence it performed better results in terms 
of error compensation. Recently, the design in [8] was 
further extended in [9] and [10]. In [9], a parallel 
configurable error-compensation circuit was proposed to 
perform nearly the same error compensation precision as [8], 
but with lower computation delay. In [10], a variable 
correction to include the partial products of LSB part was 
proposed to trade-off between hardware complexity and 
error compensation precision. Nowadays [8]–[10] are the 
state-of-the-art fixed-width multiplier designs that can 
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perform lower error with efficient hardware. In this paper, 
we consider the impact of truncated products with the 
second most significant bits on the error compensation, 
which is similar to [10] but with lower hardware complexity. 
We propose a new error compensation circuit by using the 
dual group minor input correction (MIC) vector to further 
lower IC vector compensation error in [8]. By utilizing the 
symmetric property of MIC, fan-in can be reduced to half 
and hardware in up-MIC and down-MIC can be shared. 
Therefore, the hardware complexity of error compensation 
circuit can be lowered. Moreover, the hardware complexity 
just increases slightly as the multiplier input bits increase 
because we on struct the proposed error compensation 
circuit mainly by the “outer” partial products. As compared 
with the state-of-the-art design in [8]–[10], the proposed 
fixed-width multiplier not only performs with lower 
compensation error but also with lower hardware 
complexity, especially as multiplier input bits increase. 
 
2. Proposed Error Compensation Circuit 

Design by Using the Dual-Group Minor 
Input  

 
2.1 Correction Vector 
 
Baugh-Wooley array multiplier with two unsigned P-bit 
inputs of and Y, which are shown as 
 

 
 
The multiplication result Pi is the summation of partial 
products of Xi,yj which is shown as 
 

 
The full-length: bit unsigned Baugh-Wooley partial product 
array can be divided into three subsets of most significant 
part (MSP), IC vector and less significant part (LSP) as 
shown in Fig. 1. To evaluate the accuracy of a fixed-width 
multiplier, we can exploit the difference between the n-bit 
fixed-width multiplier output and the P-bit full-length 
multiplier output, which is expressed as E =P-Pi 
 
where P is the output of the complete multiplier, and Pt is 
the output of the fixed-width multiplier. Pt can be expressed 
as 

 

 
 
Figure 1 n..-bit Baugh–Wooley multiplier partial product 
array consists of MSP, IC, and LSP, in which MIC is the 
partial product vector with the most significant bits of LSP. 
Where f(Ic) is the error compensation function. In [8], the 
error compensation function f(ic) is approximated as the sum 
of input correction vector with corresponding weight. To 
realize, f(IC) the error compensation vector is divided into 
two disjoined sets and uses two addition trees to compute the 
error compensation. The error compensation algorithm in [8] 
is developed as 
 
3. Proposed Error Compensation Method 
 
Literature [8] and [10] are the state-of-the-art designs that 
can perform the most precise error compensation with 
efficient hardware among the previous published fixed-
width multipliers. However, there are still some 
compensation errors |Ε| > 2 n-1 existing in [8]. The 
compensation errors can be divided into two categories: the 
first type is caused by insufficient error compensation, in 
which output Pt is smaller than ideal value p In this case |E| 
= p – pt >0 On the other hand, the second type is due to over 
error compensation, in which output is larger than ideal 
value. In this case, E =P-Pt, 0 to consider both 
approximation error and circuit complexity, we mainly aim 
at dealing with the case of  
 

Table 1: average value of sum of the ic and lsp partial 
products 

Row Ic Savg 
1 1,0,0,0,0,0,0,0,0 0.944 
2 0,1,0,0,0,0,0,0,0 0.999 
3 0,0,1,0,0,0,0,0, 1.025 
4 0,0,0,1,0,0,0,0 1.035 
5 0,0,0,0,0,1,0,0,0 1.035 
6 0,0,0,0,0,0,1,0,0 1.025 
7 0,0,0,0,0,0,0,1,0 0.999 
8 0,0,0,0,0,0,0,0,1 0.944 

 
|E| > 2 n-1 in this paper. The weight of IC compensation 
circuit is 2n We cannot correct all the cases of effectively if 
we only apply the partial product terms in IC to construct the 
error compensation function. Therefore, in this paper we 
adopt IC together with MIC, where MIC is the partial 
product vector with the most significant bits of LSP, to 
amend the error compensation value of F(ic) In this way, the 
cases of can be reduced effectively. In [8], IC compensation 
circuit is constructed by dual IC compensation trees, which 
are the “inner” partial products with higher compensation 
weight and the “outer” partial products with lower 
compensation weight. According to the relation of IC and 
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savg(IC) in Table I, we can find out that the average 
compensation errors in the outer part and inner part are 
nearly the same, where the average compensation error is 
0.0285 in the outer part and it is 0.0300 in the inner part. 
Here Savg(IC) the average value of sum of the IC and LSP 
partial products. However, the number of partial product 
items with higher weight will increase with the number of 
bits, while the number of partial product items with lower 
weight is fixed. Therefore, we only analyze the error 
compensation tree with lower weight to find out the cases of 
|E|>2n-1 Then we combine IC with MIC to adjust the 
function of to make the compensation error ower than 2n-1 
In this way, the error compensation circuit can be relatively 
simple and the compensation error can be lowered more 
efficiently. To find out a precise error correction vector, we 
analyze the sum of total errors in the cases |E| > 2n-1 and |E| 
< 2n-1 under various β values in accordance with the 
compensation algorithm in (5). In order to achieve an 
efficient error correction, we only amend the error 
compensation function F(IC) under the cases that the total 
error summation value of |E| > 2n-1 and |E| < 2n-1 it can be 
observed that some under-compensated errors occur when β 
= 2 and β = 4 a result, we combine IC with MIC to correct 
the under-compensated situations under the cases of β =2 
and β = 4 As for the case of β = 1 there exists some over 
compensation errors. However, the total error summation 
value of |E| <2n-1 is the above the same with that of |E| > 
2n-1 We combine IC with MIC to correct the over 
compensation situations under the case of β =1 and Sch ≠ 0 
instead of the case β =1 only since in such case the error 
summation value of |E| > 2n-1 is much lower. Here Sch is 
the summation of IC that with higher weight, which can be 
written as the lower unit with the second most significant 
bits of truncated partial products, is adopted as minor input 
correction (MIC) vector to reduce the compensation error, 
which is defined as  

 
Figure 2: MIC is divided into up-MIC, medium term, and 

down-MIC. 
 
Its illustration is shown in the Fig 1. There is a systematic 
relation between IC and Savg (IC) as illustrated In table 1 
that is Savg = (1,0,0,0,0,0) = Savg (0,0,0,0,0,0,1), Savg 
(0,0,1,0,0,0,0) = Savg (0,0,0,0,0,1,0,0) = Savg (0,0,0,10,0,0) 
= Savg (0,0,0, 0, 10 ,0,0,0) Similarly, this symmetric relation 
exists between MIC and savg (IC ) Therefore, we divide the 
MIC vector into two groups in order to save hardware cost. 

We set the middle item, X(n-2) /2Y(n-2)/2 of MIC as the 
dividing line. The upper MIC is defined as up-MIC 
 

 
Figure 3: Proposed low- error and area efficient fixed width 

multiplier 
 

In the under compensation case β =2 and β = 4 we inject one 
more compensation cassy Cn to modify the error correction 
vector [8] from β-1 and β =2 to β -1 respectively, when both 
of Sup-MIC and S down-MIC ≠ 0 . On the other hand in the 
case of the over compensation as β=1 and Sch ≠0 all, E<2n-
1 Proposed Error Compensation Circuit Design The error 
compensation circuit we proposed is modified from the dual-
tree design [8]. To further reduce the compensation errors. 
 
4. Experiment Result Comparisons 
 
In this section, we compare the proposed fixed-width 
multiplier with other literature designs [4]–[10] to analyze 
their approximation error and hardware complexity, 
respectively. All performance comparisons are evaluated 
from 8-, 12-, to 16-bit. To analyze the compensation error, 
we inject all possible input patterns into the fixed-width 
multiplier. Then we compare the truncated output with their 
corresponding full-length multiplier output. By exploiting 
the difference between the n-bit fixed-width multiplier 
output and the -bit full-length multiplier output, we can 
obtain each error term. For truncation error comparison, we 
define the index of mean square error In general, to achieve 
lower compensation error needs more complex 
compensation algorithm and more complicated circuit 
hardware. In this paper, we combine IC with MIC to adjust 
the function of to lower the compensation error. We also 
analyze the error compensation tree only with lower weight 
to find out the cases in our proposed design. Therefore, 
circuit complexity in the most error compensation circuit is 
fixed, which will not increase along with input bit number. 
As a result, the error compensation circuit can be relatively 
simple, especially as the input bit number increases. As 
illustrated in Fig. 7, the slope of transistor count increasing 
as the fixed-width multiplier input number increases is 
gentler in our proposed design. Though in our proposed 
design we must spend more transistor count in the 8-bit 
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fixed-width multiplier, we spend less transistor count in the 
cases of input bit number are larger than eight. The 
superiority in area-efficiency in our design is more obvious 
as input number increases. Finally, we implement the 
proposed 16-bit low-error, area-efficient fixed-width 
multiplier in TSMC 0.18-m process as illustrated in Fig. 8. 
The silicon chip area of the proposed fixed-width multiplier 
circuit is 109.8 m by 106.8 m. As compared with [8], the 
critical paths in both our design and [8] are located in the 
path of In both designs the circuit delay are nearly the same 
under various timing constraints, which all are faster than 
the conventional ripple designs. The circuit layout area and 
power consumption in the proposed design is slightly lower 
than that of [8] since lower transistor count and less wire 
connection in the error compensation circuit even though our 
design is more irregular. 
 
5. Conclusion 
 
In this paper, a low-error and area-efficient fixed-width 
multiplier by using the dual group minor input correction 
vector is presented. The fixed-width multiplier performs not 
only with lower compensation error but also with lower 
hardware complexity, especially as multiplier input bits 
increase. The proposed 16-bit fixed-width multiplier circuit 
describes the multilayer with the help of Verilog xilix12.1i 
the design is working perfectly and the proposed method is 
working well. 
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