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Abstract: With the widening gap between processor and memory speeds, memory designers may find cache compression beneficial to 
increase cache capacity and reduce off-chip bandwidth. Computer systems and micro architecture researchers have proposed using 
hardware data compression units within the memory hierarchies of microprocessors in order to improve performance, energy efficiency, 
and functionality. The existing cache compression techniques require larger hardware, works with less speed and throughput and its
compression ratio gets deteriorate if block size becomes small. Furthermore, in this work, we present a lossless compression algorithm
that has been designed for fast on-line data compression, and cache compression in particular. The algorithm has a number of novel
features tailored for this application, including combining pairs of compressed lines into one cache line and allowing parallel
compression of multiple words while using a single dictionary and without degradation in compression ratio. 

Keywords: Cache compression, effective system-wide compression ratio, hardware implementation, pair matching, parallel compression. 

1.Introduction

This paper addresses the increasingly important issue of 
controlling off-chip communication in computer systems in 
order to maintain good performance and energy efficiency. 
Microprocessor speeds have been increasing faster than off-
chip memory latency, raising a “wall” between processor 
and memory. The ongoing move to chip-level 
multiprocessors (CMPs) is further increasing the problem; 
more processors require more accesses to memory, but the 
performance of the processor-memory bus is not keeping 
pace. Techniques that reduce off-chip communication 
without degrading performance have the potential to solve 
this Problem. Cache compression is one such technique; data 
in last-level on-chip caches, e.g., L2 caches, are compressed, 
resulting in larger usable caches. In the past, researchers 
have reported that cache compression can improve the 
performance of uniprocessors by up to 17% for memory-
intensive Commercial workloads [1] and up to 225% for 
memory-intensive scientific workloads [2]. Researchers have 
also found that cache compression and pre fetching 
techniques can improve CMP throughput by 10%–51% [3]. 
However, past work did not demonstrate whether the 
proposed compression/decompression hardware is 
appropriate for cache compression, considering the 
performance, area, and power consumption requirements. 
This analysis is also essential to permit the performance 
impact of using cache compression to be estimated. 

Cache compression presents several challenges. First, 
decompression and compression must be extremely fast: a 
significant increase in cache hit latency will overwhelm the 
advantages of reduced cache miss rate. This requires an 
efficient on-chip decompression hardware implementation 
second; the hardware should occupy little area compared to 
the corresponding decrease in the physical size of the cache, 
and should not substantially increase the total chip power 
consumption. Third, the algorithm should losslessly 

compress small blocks, e.g., 64-byte cache lines, while 
maintaining a good compression ratio (throughout this paper 
we use the term Compression ratio to denote the ratio of the 
compressed data size over the original data size). 
Conventional compression algorithm quality metrics, such as 
block compression ratio, are not appropriate for judging 
quality in this domain. Instead, one must consider the 
effective system-wide compression ratio (defined precisely 
in Section IV.C). This paper will point out a number of other 
relevant quality metrics for cache compression algorithms, 
some of which are new. Finally, cache compression should 
not increase power consumption substantially. The above 
requirements prevent the use of high-overhead compression 
algorithms such as the PPM family of algorithms [4] or 
Burrows-Wheeler transforms [5]. A faster and lower-
overhead technique is required. 

2.Objective

The main objective of this paper is to give a new, better and 
efficient algorithm ( which can be realized on FPGA) to 
compress the data into the cache and decompresses the data 
moving out of the cache which decreases miss rate and 
increases hit rate and reduces latency of off chip memory 
without degrading any performance. The main point under 
consideration is that the performance, area, and power 
consumption, whose overheads are made low enough for 
practical use. The main focus will be on; 

1. Compressing the data into cache and decompressing the 
same while taking out. 
2. Compression and decompression are made extremely fast. 
3. Hard ware is made to occupy lesser area. 
4. Compression should be made lossless with good 
compression ratio. 
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3.Cache Compression Architecture 

In this section, we describe the architecture of a CMP system 
in which the cache compression technique is used. We 
consider private on-chip L2 caches, because in contrast to a 
shared L2 cache, the design styles of private L2 caches 
remain consistent when the number of processor cores 
increases. We also examine how to integrate data prefetching 
techniques into the system. 

Figure 1 gives an overview of a CMP system with n 
processor cores. Each processor has private L1 and L2 
caches. The L2 cache is divided into two regions: an 
uncompressed region (L2 in the figure) and a compressed 
region (L2C in the figure). For each processor, the sizes of 
the uncompressed region and compression region can be 
determined statically or adjusted to the processor’s needs 
dynamically. In extreme cases, the whole L2 cache is 
compressed due to capacity requirements, or uncompressed 
to minimize access latency. We assume a three-level cache 
hierarchy consisting of L1 cache, uncompressed L2 region, 
and compressed L2 region. The L1 cache communicates 
with the uncompressed region of the L2 cache, which in turn 
exchanges data with the compressed region through the 
compressor and decompressor, i.e., an uncompressed line 
can be compressed in the compressor and placed in the 
compressed region, and vice versa. Compressed L2 is 
essentially a virtual layer in the memory hierarchy with 
larger size, but higher access latency, than uncompressed L2. 
Note that no architectural changes are needed to use the 
proposed techniques for a shared L2 cache. The only 
difference is that both regions contain cache lines from 
different processors instead of a single processor, as is the 
case in a private L2 cache. 

Figure 1: System architecture in which cache compression is 
used

4.C-Pack Compression Algorithm 

This section gives an overview of the proposed C-Pack 
compression algorithm. We first briefly describe the 
algorithm and several important features that permit an 
efficient hardware implementation, many of which would be 
contradicted for a software implementation. We also discuss 

the design trade-offs and validate the effectiveness of C-
Pack in compressed-cache architecture. 

A. Design Constraints and Challenges 

We first point out several design constraints and challenges 
particular to the cache compression problem. 

1)Cache compression requires hardware that can decompress 
a word in only a few CPU clock cycles. This rules out 
software implementations and has great influence on 
compression algorithm design. 

2)Cache compression algorithms must be lossless to 
maintain correct microprocessor operation. 

3)The block size for cache compression applications is 
smaller than for other compression applications such as 
file and main memory compression. Therefore, achieving 
a low compression ratio is challenging. 

4)The complexity of managing the locations of cache lines 
after compression influences feasibility. Allowing 
arbitrary, i.e., bit-aligned, locations would complicate 
cache design to the point of infeasibility. A scheme that 
permits a pair of compressed lines to fit within an 
uncompressed line is advantageous. 

B. C-Pack Algorithm Overview 

C-Pack (for Cache Packer) is a lossless compression 
algorithm designed specifically for high-performance 
hardware- based on-chip cache compression. It achieves a 
good compression ratio when used to compress data 
commonly found in microprocessor low-level on-chip 
caches, e.g., L2 caches. Its design was strongly influenced 
by prior work on pattern- based partial dictionary match 
compression. However, this prior work was designed for 
software-based main memory compression and did not 
consider hardware implementation. 

C-Pack achieves compression by two means:  

1)It uses statically decided, compact encodings for 
frequently appearing data words. 

2)It encodes using a dynamically updated dictionary 
allowing adaptation to other frequently appearing words. 
The dictionary supports partial word matching as well as 
full word matching. The patterns and coding schemes used 
by C-Pack are summarized in Table I, which also reports 
the actual frequency of each pattern observed in the cache 
trace data. The ‘Pattern’ column describes frequently 
appearing patterns, where ‘z’ represents a zero byte, ‘m’ 
represents a byte matched against a dictionary entry, and 
‘x’ represents an unmatched byte. In the ‘Output’ column, 
‘B’ represents a byte and ‘b’ represents a bit. The C-Pack 
compression and decompression algorithms are illustrated 
in Fig. 2. We use an input of two words per cycle as an 
example in Fig. 2. However, the algorithm can be easily 
extended to cases with one, or more than two, words per 
cycle. During one iteration, each word is first compared 
with patterns “zzzz” and “zzzx”. If there is a match, the 
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compression output is produced by combining the 
corresponding code and unmatched bytes as indicated in 
Table 1. Otherwise; the compressor compares the word 

with all dictionary entries and finds the one with the most 
matched bytes. 

Figure 3: Compression examples for different input words 

Table 1: Pattern Encoding for C-Pack 

The compression result is then obtained by combining code, 
dictionary entry index, and unmatched bytes, if any. Words 
that fail pattern matching are pushed into the dictionary. 
Figure 2 shows the compression results for several different 
input words. In each output, the code and the dictionary 
index, if any, are enclosed in parentheses. Although we used 
a 4-word dictionary in Figure 2 for illustration, the 
dictionary size is set to 64 B in our implementation. Note 
that the dictionary is updated after each word insertion, 
which is not shown in Figure 2.  

During decompression, the decompressor first reads 
compressed words and extracts the codes for analyzing the  

patterns of each word, which are then compared against the 
codes defined in Table 1. If the code indicates a pattern 
match, the original word is recovered by combining zeroes 
and unmatched bytes, if any. Otherwise, the decompression 
output is given by combining bytes from the input word with 
bytes from dictionary entries, if the code indicates a 
dictionary match. 

The C-Pack algorithm is designed specifically for hardware 
implementation. It takes advantage of simultaneous 
comparison of an input word with multiple potential patterns 
and dictionary entries. This allows rapid execution with good 
compression ratio in a hardware implementation, but may 
not be suitable for a software implementation. Software 
implementations commonly serialize operations. For 
example, matching against multiple patterns can be 
prohibitively expensive for software implementations when 
the number of patterns or dictionary entries is large. C-
Pack’s inherently parallel design allows an efficient 
hardware implementation, in which pattern matching, 
dictionary matching, and processing multiple words are all 
done simultaneously. In addition, we chose various design 
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parameters such as dictionary replacement policy and coding 
scheme to reduce hardware complexity, even if our choices 
slightly degrade the effective system-wide compression 
ratio. 

In the proposed implementation of C-Pack, two words are 
processed in parallel per cycle. Achieving this, while still 
permitting an accurate dictionary match for the second word, 
is challenging. Let us consider compressing two similar 
words that have not been encountered by the compression 
algorithm recently, assuming the dictionary uses first-in first-
out (FIFO) as its replacement policy. The appropriate 
dictionary content when processing the second word 
depends on whether the first word matched a static pattern. If 
so, the first word will not appear in the dictionary. 
Otherwise, it will be in the dictionary, and its presence can 
be used to encode the second word. Therefore, the second 
word should be compared with the first word and all but the 
first dictionary entry in parallel. This improves compression 
ratio compared to the more naïve approach of not checking 
with the first word. Therefore, we can compress two words 
in parallel without compression ratio degradation. 

5.Evaluation

In this section, we present the evaluation of the C-Pack 
hardware. We first present the performance, power 
consumption, and area overheads of the compression or 
decompression hardware when synthesized for integration 
within a microprocessor. Then, we compare the compression 
ratio and performance of C-Pack to other algorithms 
considered for cache compression: MXT [6], X-match [7], 
and FPC [8]. Finally, we describe the implications of our 
findings on the feasibility of using C-Pack based cache 
compression within a microprocessor. 

A. C-Pack Synthesis Results 

We synthesized our design using Synopsys Design Compiler 
with 180 nm, 90 nm, and 65 nm libraries. Table IV presents 
the resulting performance, area, and power consumption at 
maximum internal frequency. “Loc” refers to the compressed 
line locator/arbitrator in a pair-matching compressed cache 
and “worst-case delay” refers to the number of cycles 
required to compress, decompress, or locate a 64 B line in 
the worst case. As indicated in Table IV, the proposed 
hardware design achieves a throughput of 80 Gb/s (64 B x 
1.25 GHz) for compression and 76.8 Gb/s (64 B x 1.20 
GHz) for decompression in a 65 nm technology. Its area and 
power consumption overheads are low enough for practical 
use. The total power consumption of the compressor, 
decompressor, and compressed line arbitrator at 1 GHz is 
48.82 mW (32.63 mW/1.25 GHz + 24.14 mW/1.20 GHz + 
5.20 mW/2.00 GHz) in a 65 nm technology. This is only 7% 
of the total power consumption of a 512 KB cache with a 64 
B block size at 1 GHz in 65 nm technology, derived using 
CACTI 5[9] . 

B. Comparison of Compression Ratio 

We compare C-Pack to several other hardware compression 
designs, namely X-Match, FPC, and MXT, that may be 
considered for cache compression. We exclude other 
compression algorithms because they either lack hardware 
designs or are not suitable for cache compression. Although 
the proposed hardware implementation mainly targets online 
cache compression, it can also be used in other high-
performance lossless data compression applications with few 
or no changes. We tested the compression ratios of different 
algorithms on four cache data traces gathered from a full 
system simulation of various workloads from the Media 
bench [10] and SPEC CPU2000 benchmark suites. The 
block size and the dictionary size are both set to 64 B in all 
test cases. Since we are unable to determine the exact 
compression algorithm used in MXT, we used the LZSS 
Lempel-Ziv compression algorithm to approximate its 
compression ratio [11]. The raw compression ratios and 
effective system-wide compression ratios in a pair-matching 
scheme are summarized in Table V. Each row shows the raw 
compression ratios and effective system-wide compression 
ratios using different compression algorithms for an 
application. As indicated in Table V, raw compression ratio 
varies from algorithm to algorithm, with X-Match being the 
best and MXT is being the worst on average. The poor raw 
compression ratios of MXT are mainly due to its limited 
dictionary size. The same trend is seen for effective system-
wide compression ratios: X-Match has the lowest (best) and 
MXT has the highest (worst) effective system-wide 
compression ratio. Since the raw compression ratios of X-
Match and C-Pack are close to 50%, they achieve better 
effective system-wide compression ratios than MXT and 
FPC. On average, C-Pack’s system-wide compression ratio 
is 2.76% worse than that of X-Match, 6.78% better than that 
of FPC, and 10.3% better than that of MXT.  

C. Comparison of Hardware Performance 

This subsection compares the decompression latency, peak 
frequency, and area of C-Pack hardware to that of MXT, X-
Match, and FPC. Power consumption comparisons are 
excluded because they are not reported for the alternative 
compression algorithms. Decompression latency is defined 
as the time to decompress a 64 B cache line. 

1)Comparing C-Pack with MXT: MXT has been 
implemented in a memory controller chip operating at 133 
MHz using 0.25 m CMOS ASIC technology. The 
decompression rate is 8 B/cycle with 4 decompression 
engines. We scale the frequency up to 511 MHz, i.e., its 
estimated frequency based on constant electrical field 
scaling if implemented in a 65 nm technology. 511 MHz is 
below a modern high-performance processor frequency. 
We assume an on-chip counter/divider is available to 
clock the MXT decompressor. However, decompressing a 
64 B cache line will take 16 processor cycles in a 1 GHz 
processor, twice the time for C-Pack. The area cost of 
MXT is not reported. 
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2)Comparing C-Pack with X-Match: X-Match has been 
implemented using 0.25 m field programmable gate array 
(FPGA) technology. The compression hardware achieved 
a maximum frequency of 50 MHz with a throughput of 
200 MB/s. To the best of our knowledge, the design was 
not synthesized using a flow suitable for microprocessors. 
Therefore, we ported our design for C-Pack for synthesis 
to the same FPGA used for X-Match in order to compare 
the peak frequency and the throughput. Evaluation results 
indicate that our C-Pack implementation is able to achieve 
the same peak frequency as X-Match and a throughput of 
400 MB/s, i.e., twice as high as X-Match’s throughput. 
Note that in practical situations; C-Pack should be 
implemented using an ASIC flow due to performance 
requirement for cache compression.  

3)Comparing C-Pack with FPC: FPC has not been 
implemented on a hardware platform. Therefore, no area 
or peak frequency numbers are reported. To estimate the 
area cost of FPC, we observe that the FPC compressor and 
decompressor are decomposed into multiple pipeline 
stages as described in its tentative hardware design. Each 
of these stages imposes area overhead. For example, 
assuming each 2-to-1 multiplexer takes 5 gates, the fourth 
stage of the FPC decompression pipeline takes 
approximately 290 K gates or 0.31 mm in 65 nm 
technology, more than the total area of our compressor and 
decompressor. Although this work claims that time-
multiplexing two sets of barrel shifters could help reduce 
area cost, our analysis suggest that doing so would 
increase the overall latency of decompressing a cache line 
to 12 cycles, instead of the claimed 5 cycles. In contrast, 
our hardware implementation achieves much better 
compression ratio and a comparable worst-case delay at a 
high clock frequency, at an area cost of 0.043 mm 
compressor and 0.043 mm decompressor in 65 nm 
technology. 

D. Implications on Claims in Prior Cache Compression 
Work

Many prior publications on cache compression assume the 
existence of lossless algorithms supporting a consistent good 
compression ratio on small (e.g., 64-byte) blocks and 
allowing decompression within a few microprocessor clock 

cycles (e.g., 8 ns) with low area and power consumption 
overheads. Some publications assume that existing Lempel-
Ziv compression algorithm based hardware would be 
sufficient to meet these requirements [2]; these assumptions 
are not supported by evidence or analysis. Past work also 
placed too much weight on cache line compression ratio 
instead of effective system-wide compression ratio. As a 
result, compression algorithms producing lower compressed 
line sizes were favored.

However, the hardware overhead of permitting arbitrary 
locations of these compressed lines prevents arbitrary 
placement, resulting in system-wide compression ratios 
much poorer than predicted by line compression ratio. In 
fact, the compression ratio metric of merit for cache 
compression algorithms should be effective system-wide 
compression ratio, not average line compression ratio. 
Alameldeen et al. proposed segmented compression ratio, an 
idea similar to system-wide compression ratio. However, 
segmented compression ratio is only defined for a 
segmentation-based approach with fixed-size segments. 
Effective system-wide compression ratio generalizes this 
idea to handle both fixed size segments (segmentation-based 
schemes) and variable length segments (pair-matching based 
schemes). C-Pack was designed to optimize performance, 
area, and power consumption under a constraint on effective 
system-wide compression ratio. C-Pack meets or exceeds the 
requirements assumed in former micro-architectural research 
on cache compression. It therefore provides a proof of 
concept supporting the system-level conclusions drawn in 
much of this research. Many prior system-wide cache 
compression results hold, provided that they use a 
compression algorithm with characteristics similar to C-
Pack.

6.Experimental Results 

5.1 Simulation Results  

The figures 5.1 and 5.2 shows the compression and 
decompression outputs. The compressed data is 
decompressed successfully with no loss. 
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5.1.1 Compression

Figure 5.1: Showing compressed output for two input words 

5.1.2 Decompression 

Figure 5.2: Showing Decompressed output for two compressed words 

From below tables it is clear that the proposed algorithm has 
good compression ratio 

Table 5.1: Comparison of compression ratios of different 
compression algorithms 

MXT FPC X-
Match C-Pack

Ratio 71.70 68.18 58.64 50% 
No. of Possible 
Input Bits 8bits 16bit 32bits 64bits 

Table 5.2: Comparison of Decompression ration of different 
algorithms

 MXT FPC X-
Match C-Pack

Ratio -- 68.18 58.64 50% 
No. of Possible 
Input Bits -- 16bits 32bits 64bits 

7.Conclusion

By the implementation of the proposed algorithm, it is 
possible to compress and decompress the data in to the cache 
in an efficient way without altering its performance. This 
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method maintains good compression ratio and area overhead 
and thus decreases memory latency and speeds up the 
processor and by making the system to work with high speed 
and thus helpful for mankind. 
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