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Abstract: With the widening gap between processor and memory speeds, memory designers may find cache comprgsion beneﬁqiwo

increase cache capacity and reduce off-chip bandwidth. Computer systems and micro architecture researcher
hardware data compression units within the memory hierarchies of microprocessors in order to improve perforrg
and functionality. The existing cache compression techniques require larger hardware, works with less g and throu
compression ratio gets deteriorate if block size becomes small. Furthermore, in this work, we present a

that has been designed for fast on-line data compression, and cache compression in particular. The ég rithiiphas,

features tailored for this application, including combining pairs o@ mpressed lines into oné Qch
compression of multiple words while using a single dictionary and w@ﬂut degradgmn in compre
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1.Introduction
\\}\
This paper addresses the increasingly im
controlling off-chip communication in cox@uter syst ™n
order to maintain good performance gx\@energy e@@bncy
Microprocessor speeds have been i@@ asing fag an off-
chip memory latency, raising a Wall” bet

and memory. The ongay move &
multiprocessors (CMPs) i her incr
more processors require more access@\

chip-1
g the pr

performance of the processor-me, bus is

pace. Techniques that reducOoff ch1p

without degrading performance have the entxa

this Problem. Cache compression is o mqﬁ'g

in last-level on-chip caches, e.g., L2 ﬁpresse

resulting in larger usable cache

have reported that cache c re 1& 1v1mpr0ve

performance of umproces§g‘§ Qgi/o for me

intensive Commercial v?g Qé(@

memory-intensive 30\% 2]. Researchers Ré¥e
on and pre fetching

oughput by 10%—-51% [3].

Qric

also found that & -ﬁ

techniques can 1@) ve CMP,

However, pa€) work did* @0t demonstrate whether the
proposed  compressi ecompression  hardware s
appropriate  for 9?‘: compression, considering the
performance, ar <a power consumption requirements.
This analysis ¢ lso essential to permit the performance
impact of u\@/tache compression to be estimated.

Cache compression presents several challenges. First,
decompression and compression must be extremely fast: a
significant increase in cache hit latency will overwhelm the
advantages of reduced cache miss rate. This requires an
efficient on-chip decompression hardware implementation
second; the hardware should occupy little area compared to
the corresponding decrease in the physical size of the cache,
and should not substantially increase the total chip power
consumption. Third, the algorithm should losslessly
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c@?press s bl 9 64- byte cache lines, while
?on ratio (throughout this paper
%@sswn ratio to denote the ratio of the

compr %\ e over the original data size).
C ent{) lc&tesswn gorithm quality metrics, such as
appropriate for judging
Insgd¥d, one must consider the
ssion ratio (defined precisely

U@Qy

6&@@ i, @/ 2}1 1S PepCT w111 point out a number of other
memo@ut &1? rc@b ag& ali ‘e@i,z\for cache compression algorithms,

ﬁﬁ‘“\o@

Finally, cache compression should

r consumption substantially. The above

revent the use of high-overhead compression

heeler transforms [5]. A faster and lower-
d technique is required.

&r h %ch as the PPM family of algorithms [4] or

Q’ Objective
Q&f up to 225% 1@((’

The main objective of this paper is to give a new, better and
efficient algorithm ( which can be realized on FPGA) to
compress the data into the cache and decompresses the data
moving out of the cache which decreases miss rate and
increases hit rate and reduces latency of off chip memory
without degrading any performance. The main point under
consideration is that the performance, area, and power
consumption, whose overheads are made low enough for
practical use. The main focus will be on;

1. Compressing the data into cache and decompressing the
same while taking out.

2. Compression and decompression are made extremely fast.
3. Hard ware is made to occupy lesser area.

4. Compression should be made lossless with good
compression ratio.
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3.Cache Compression Architecture

In this section, we describe the architecture of a CMP system
in which the cache compression technique is used. We
consider private on-chip L2 caches, because in contrast to a
shared L2 cache, the design styles of private L2 caches
remain consistent when the number of processor cores
increases. We also examine how to integrate data prefetching
techniques into the system.

Figure 1 gives an overview of a CMP system with n
processor cores. Each processor has private L1 and L2
caches. The L2 cache is divided into two regions: an
uncompressed region (L2 in the figure) and a compressed
region (L2C in the figure). For each processor, the sizes of
the uncompressed region and compression region can be
determined statically or adjusted to the processor’s needs
dynamically. In extreme cases, the whole L2 cache is
compressed due to capacity requirements, or uncompressed

hierarchy consisting of L1 cache, uncompressed L2 r
and compressed L2 region. The L1 cache comm
with the uncompressed region of the L2 cache, whij
exchanges data with the compressed region
compressor and decompressor, i.e., an un ressed
can be compressed in the compressor a@ placed @te
compressed region, and vice versaa@ompressgd @2 i
essentially a virtual layer in the ory

tes
in turn
ugh the

y with
es are d to use

case in a private L2 cache.

°<zu

Decompressor

erconnection network
X ¢ 0

<
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Figure 1: System architecture in which cache compression is
used

l Memory ‘

4.C-Pack Compression Algorithm

This section gives an overview of the proposed C-Pack
compression algorithm. We first briefly describe the
algorithm and several important features that permit an
efficient hardware implementation, many of which would be
contradicted for a software implementation. We also discuss
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the design trade-offs and validate the effectiveness of C-
Pack in compressed-cache architecture.

A. Design Constraints and Challenges

We first point out several design constraints and challenges
particular to the cache compression problem.

1)Cache compression requires hardware that can decompress
a word in only a few CPU clock cycles. This rules out
software implementations and has great influence on
compression algorithm design.
2)Cache compression algorithms mu §\be losslessq%
maintain correct microprocessor ope.n@‘o
3)The block size for cache comy SSion ap 10ns is
smaller than for other comp n apphcat%s such as
file and main memory com %The\%oi‘e achieving
oW compression ratio i @1 1\¥
fons of cache lines
es\\\feamblhty Allowing
10ns would complicate

he compglexity of ma
after mpressm

de51g &§ nt of fea51b111ty A scheme that
ssed lines to fit within an

ermlts a

uncomp@ed ne 1s 9\@ tageous.

B.C &%&Q@ %\\Overwew
c1f@ y for high-performance

?ach% @{1
e compression. It achieves a
d&\cox%r s;o‘;l/ ratg when used to compress data

h@@ microprocessor low-level on-chip

\\;1 lossless compression

es. Its design was strongly influenced

pattern- based partial dictionary match

owever, this prior work was designed for

d main memory compression and did not
Ldéghardware implementation.

Gé&ck achieves compression by two means:

Qg/ 1)It wuses statically decided, compact encodings for

frequently appearing data words.

2)It encodes using a dynamically updated dictionary
allowing adaptation to other frequently appearing words.
The dictionary supports partial word matching as well as
full word matching. The patterns and coding schemes used
by C-Pack are summarized in Table I, which also reports
the actual frequency of each pattern observed in the cache
trace data. The ‘Pattern’ column describes frequently
appearing patterns, where ‘z’ represents a zero byte, ‘m’
represents a byte matched against a dictionary entry, and
‘X’ represents an unmatched byte. In the ‘Output’ column,
‘B’ represents a byte and ‘b’ represents a bit. The C-Pack
compression and decompression algorithms are illustrated
in Fig. 2. We use an input of two words per cycle as an
example in Fig. 2. However, the algorithm can be easily
extended to cases with one, or more than two, words per
cycle. During one iteration, each word is first compared
with patterns “zzzz” and “zzzx”. If there is a match, the
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compression output is produced by combining the
corresponding code and unmatched bytes as indicated in
Table 1. Otherwise; the compressor compares the word

'

Two vwonds input

First word ] Second word

Palten maiching
(compare wi patiem
zzEz and ZzIY

Pattem matching
(eoirpeani wi patiem
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Nn No

Push intg GllﬁlDﬂa’y
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11001 J'J'.@ (1l 1N 12 7.3
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\J
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The compressiona{qg\?t is then obtained by combining code,
dictionary entyfdindex, and unmatched bytes, if any. Words
that fail p matching are pushed into the dictionary.
Figure 2 sW¥s the compression results for several different
input words. In each output, the code and the dictionary
index, if any, are enclosed in parentheses. Although we used
a 4-word dictionary in Figure 2 for illustration, the
dictionary size is set to 64 B in our implementation. Note
that the dictionary is updated after each word insertion,
which is not shown in Figure 2.

During decompression, the decompressor first reads
compressed words and extracts the codes for analyzing the
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@ans of each word, which are then compared against the
des defined in Table 1. If the code indicates a pattern
match, the original word is recovered by combining zeroes
and unmatched bytes, if any. Otherwise, the decompression
output is given by combining bytes from the input word with
bytes from dictionary entries, if the code indicates a
dictionary match.

The C-Pack algorithm is designed specifically for hardware
implementation. It takes advantage of simultaneous
comparison of an input word with multiple potential patterns
and dictionary entries. This allows rapid execution with good
compression ratio in a hardware implementation, but may
not be suitable for a software implementation. Software
implementations commonly serialize operations. For
example, matching against multiple patterns can be
prohibitively expensive for software implementations when
the number of patterns or dictionary entries is large. C-
Pack’s inherently parallel design allows an efficient
hardware implementation, in which pattern matching,
dictionary matching, and processing multiple words are all
done simultaneously. In addition, we chose various design
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parameters such as dictionary replacement policy and coding
scheme to reduce hardware complexity, even if our choices
slightly degrade the effective system-wide compression
ratio.

In the proposed implementation of C-Pack, two words are
processed in parallel per cycle. Achieving this, while still
permitting an accurate dictionary match for the second word,
is challenging. Let us consider compressing two similar
words that have not been encountered by the compression
algorithm recently, assuming the dictionary uses first-in first-
out (FIFO) as its replacement policy. The appropriate
dictionary content when processing the second word
depends on whether the first word matched a static pattern. If
so, the first word will not appear in the dictionary.
Otherwise, it will be in the dictionary, and its presence can
be used to encode the second word. Therefore, the second
word should be compared with the first word and all but the

first dictionary entry in parallel. This improves compression ’bompres ratio
ratio compared to the more naive approach of not checkm{b effectiv, ﬁt

with the first word. Therefore, we can compress two
in parallel without compression ratio degradation.

Q
N

5.Evaluation

In this section, we present the evaluatfo@ of the
hardware. We first present the
consumption, and area overheads
decompression hardware when s%t esized ﬁ\ﬁ) Integratio,
within a microprocessor. Th compar?d}e compres
ratio and performance 0'& -Pack tg\ Other alg
considered for cache compressmn. [6], X—

and FPC [8]. Finally, we descnb@ 1mphca®ns
findings on the feasibility of @ihg C- Pac{\ a@@

compression within a microprocessor. (Q 0
{\O\ q %
®

We synthesized our design u51§€ qgvlgn Comp( r
with 180 nm, 90 nm, and arle ble IV pres

the resulting performan er consumptio

maximum internal fr (ng &c”g@fers to the comprégSed
line locator/arbltrag) hing compressed cache
and “worst-cas lay” re to the number of cycles
required to c@press decetiress, or locate a 64 B line in
the worst case. As ingf@ted in Table IV, the proposed
hardware design ac s a throughput of 80 Gb/s (64 B x
1.25 GHz) for o&ﬁpressmn and 76.8 Gb/s (64 B x 1.20
GHz) for dec ession in a 65 nm technology. Its area and
power con: 1on overheads are low enough for practical
use. The al power consumption of the compressor,
decompressor, and compressed line arbitrator at 1 GHz is
48.82 mW (32.63 mW/1.25 GHz + 24.14 mW/1.20 GHz +
5.20 mW/2.00 GHz) in a 65 nm technology. This is only 7%
of the total power consumption of a 512 KB cache with a 64

B block size at 1 GHz in 65 nm technology, derived using
CACTI 5[9] .

%ower

A. C-Pack Synthesis Results
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c"l’his subsection compares the decompression latency, peak

B. Comparison of Compression Ratio

We compare C-Pack to several other hardware compression
designs, namely X-Match, FPC, and MXT, that may be
considered for cache compression. We exclude other
compression algorithms because they either lack hardware
designs or are not suitable for cache compression. Although
the proposed hardware implementation mainly targets online
cache compression, it can also be used in other high-
performance lossless data compression applications with few
or no changes. We tested the compression ratios of different
algorithms on four cache data traces gathered from a %Tl\
system simulation of various workloadi‘gﬁom the Me
bench [10] and SPEC CPU2000 befnark SUI§’ The
block size and the dictionary size arés})th set t\ in all
test cases. Since we are una t\ determine™the exact
compression algorithm used Qypcd the LZSS
pel-Ziv compressmn ﬁ:ﬁ Fﬁppromm‘ate its
Tession ratios and

%ﬁ& 3 os in a pair-matching

em—w1de Q

sche%en e summa&gl
ession T an%
fHesgh

indicat

l>e ach row shows the raw
egtive- system-wide compression
ression algorithms for an
Table V, raw compression ratio
algorithm, with X-Match being the
¢ the worst on average. The poor raw
of MXT are mainly due to its limited
n@ d en for effective system-
atl has the lowest (best) and
system-wide

varies ﬁ)@ﬂ a
best

I‘CS

T.(l)s

\ st?Qorst) effective
ssigh T4 orl%n raw compression ratios of X-
close to 50%, they achieve better
fe T compressmn ratios than MXT and

Ver C Pack’s system-wide compression ratio
than that of X-Match, 6.78% better than that
0 3% better than that of MXT.

parison of Hardware Performance

frequency, and area of C-Pack hardware to that of MXT, X-
Match, and FPC. Power consumption comparisons are
excluded because they are not reported for the alternative
compression algorithms. Decompression latency is defined
as the time to decompress a 64 B cache line.

I)Comparing C-Pack with MXT: MXT has been
implemented in a memory controller chip operating at 133
MHz using 0.25 m CMOS ASIC technology. The
decompression rate is 8 B/cycle with 4 decompression
engines. We scale the frequency up to 511 MHz, i.e., its
estimated frequency based on constant electrical field
scaling if implemented in a 65 nm technology. 511 MHz is
below a modern high-performance processor frequency.
We assume an on-chip counter/divider is available to
clock the MXT decompressor. However, decompressing a
64 B cache line will take 16 processor cycles in a | GHz
processor, twice the time for C-Pack. The area cost of
MXT is not reported.
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2)Comparing C-Pack with X-Match: X-Match has been
implemented using 0.25 m field programmable gate array
(FPGA) technology. The compression hardware achieved
a maximum frequency of 50 MHz with a throughput of
200 MB/s. To the best of our knowledge, the design was
not synthesized using a flow suitable for microprocessors.
Therefore, we ported our design for C-Pack for synthesis
to the same FPGA used for X-Match in order to compare
the peak frequency and the throughput. Evaluation results
indicate that our C-Pack implementation is able to achieve
the same peak frequency as X-Match and a throughput of
400 MB/s, i.e., twice as high as X-Match’s throughput.
Note that in practical situations; C-Pack should be
implemented using an ASIC flow due to performance
requirement for cache compression.

3)Comparing C-Pack with FPC: FPC has not been
implemented on a hardware platform. Therefore, no area

decompressor are decomposed into multiple pl%
stages as described in its tentative hardware demé ach

of these stages imposes area overhead. For.Qxample,

cycles (e.g., 8 ns) with low area and power consumption
overheads. Some publications assume that existing Lempel-
Ziv compression algorithm based hardware would be
sufficient to meet these requirements [2]; these assumptions
are not supported by evidence or analysis. Past work also
placed too much weight on cache line compression ratio
instead of effective system-wide compression ratio. As a
result, compression algorithms producing lower compressed
line sizes were favored.

However, the hardware overhead of permitting arbitrary
locations of these compressed lines prevents arbit%?\
placement, resulting in system-wide cgupression zaf¥ds
much poorer than predicted by line s@ﬁpression @&)’. In
fact, the compression ratio metr f meri cache
compression algorithms shoul @effectlve §stem wide

compression ratio, not avi i Ryréssion ratio.
/@neldeen et al. proposed ng ?}ressmn ratio, an
or peak frequency numbers are reported. To estimate the \ ca similag to system-
area cost of FPC, we observe that the FPC compressor an@ segme @é

n ratio. However,
nly defined for a
fixed-size segments.

compres
seg 10n base
Ef ve syst

Qﬁ

on ratio generalizes this

1d ‘c\)m e
1& to hand], %(ésegments (segmentation-based
assuming each 2-to-1 multiplexer takes 5 ga §} he fourth \%chemes) e\t& able 1 h segments (pair-matching based

stage of the FPC decompression a%
approximately 290 K gates or O31’€tnm in 6
technology, more than the total area ur comptes@® and
decompressor. Although this claims time-
multiplexing two sets of barrel R¥tfters coul
area cost, our analysis § st that
increase the overall latendg eco

to 12 cycles, instead of the clalme. ycles I
our hardware 1mp1ementat10n° Bhieves
compression ratio and a com}@l le W(§§&e
high clock frequency, at an area co
compressor and 0.043 mm deco SSO
technology.

Ttr: t
Sat

D. Implications on Claims m(E'rlqK/Gach\&)mpressgn N

Work \2\\ (\"
Many prior publicati s%n anpressmn assum\%ze
existence of lossles @g ortmg a consistent good
compression ra on s (b g., 64-byte) blocks and
allowing dec@ressmn Wi a few microprocessor clock
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g SO W % @p é’ﬁe
Ing a cac Q rche,

sche demgned to optimize performance,
areaa mption under a constraint on effective
s %2 c%essm ragio. C-Pack meets or exceeds the
ulre\me t\z’s edi & ro-architectural research
fore provides a proof of
-level conclusions drawn in
any prior system-wide cache
1t (Cl}old provided that they use a
51011/ lg* m with characteristics similar to C-
% S
erﬁbental Results

Q &

.1 ulatlon Results
e figures 5.1 and 5.2 shows the compression and

decompression  outputs. The compressed data is
decompressed successfully with no loss.
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5.1.1 Compression

1 reset

1 ck
» B word_in_1[31:0
B word_out 1133
» B word_in_2[31:0

Q00000000 Q00000011

00000000 % 00000099 bcd

B word_out_2[33 [ ]

o

\

Figure 5.1: Showi %mpressed&put for tw{lhpL\Q\%rd (%)

5.1.2 Decompression 00 (0\6 ‘Q Q) \'6
N o) \\

15 I'l;

B B word_in_1[33:0]

p B word_out_1[31:0]

B word_in_2[33:0] R )

» B word_out 2[31:0] ; ( N0OCGCC Y aaaasaaa | 422220 -

\ X1:25.917ns

@(bFigure 5.2: Showing Decompressed output for two compressed words

>
From below table&tﬁis clear that the proposed algorithm has ' Table 5.2: Comparison of Decompression ration of different

good compre ratio algorithms
X-
Table S.i&omparison of compression ratios of different MXT | FPC Match C-Pack
compression algorithms Ratio = 68.18 | 58.64 50%
X_ .
MXT | FPC C-Pack No. of Possible _ . . R

' Match Tnput Bits 16bits | 32bits 64bits
Ratio 71.70 | 68.18 58.64 50%
No. of Posmble 8bits | 16bit | 32bits 64bits 7.Conclusion
Input Bits

By the implementation of the proposed algorithm, it is
possible to compress and decompress the data in to the cache
in an efficient way without altering its performance. This
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method maintains good compression ratio and area overhead
and thus decreases memory latency and speeds up the

processor and by making the system to work with high speed
and thus helpful for mankind.
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