
International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 1 Issue 4, December 2013

C-Pack: Lossless Cache Compression Algorithm for
Microprocessor Performance

 V. Narayana Reddy1, Chandrakala Aletipalli2

1Associate Professor, Department of ECE, PBR VITS, Kavali, Andhra Pradesh, India
2M.Tech (VLSI Design), JNTU Anantapur, P. B. R. VITS Kavali, Nellore, Andhra Pradesh, India

Abstract: With the widening gap between processor and memory speeds, memory designers may find cache compression beneficial to
increase cache capacity and reduce off-chip bandwidth. Computer systems and micro architecture researchers have proposed using
hardware data compression units within the memory hierarchies of microprocessors in order to improve performance, energy efficiency,
and functionality. The existing cache compression techniques require larger hardware, works with less speed and throughput and its
compression ratio gets deteriorate if block size becomes small. Furthermore, in this work, we present a lossless compression algorithm
that has been designed for fast on-line data compression, and cache compression in particular. The algorithm has a number of novel
features tailored for this application, including combining pairs of compressed lines into one cache line and allowing parallel
compression of multiple words while using a single dictionary and without degradation in compression ratio.

Keywords: Cache compression, effective system-wide compression ratio, hardware implementation, pair matching, parallel compression.

1.Introduction

This paper addresses the increasingly important issue of
controlling off-chip communication in computer systems in
order to maintain good performance and energy efficiency.
Microprocessor speeds have been increasing faster than off-
chip memory latency, raising a “wall” between processor
and memory. The ongoing move to chip-level
multiprocessors (CMPs) is further increasing the problem;
more processors require more accesses to memory, but the
performance of the processor-memory bus is not keeping
pace. Techniques that reduce off-chip communication
without degrading performance have the potential to solve
this Problem. Cache compression is one such technique; data
in last-level on-chip caches, e.g., L2 caches, are compressed,
resulting in larger usable caches. In the past, researchers
have reported that cache compression can improve the
performance of uniprocessors by up to 17% for memory-
intensive Commercial workloads [1] and up to 225% for
memory-intensive scientific workloads [2]. Researchers have
also found that cache compression and pre fetching
techniques can improve CMP throughput by 10%–51% [3].
However, past work did not demonstrate whether the
proposed compression/decompression hardware is
appropriate for cache compression, considering the
performance, area, and power consumption requirements.
This analysis is also essential to permit the performance
impact of using cache compression to be estimated.

Cache compression presents several challenges. First,
decompression and compression must be extremely fast: a
significant increase in cache hit latency will overwhelm the
advantages of reduced cache miss rate. This requires an
efficient on-chip decompression hardware implementation
second; the hardware should occupy little area compared to
the corresponding decrease in the physical size of the cache,
and should not substantially increase the total chip power
consumption. Third, the algorithm should losslessly

compress small blocks, e.g., 64-byte cache lines, while
maintaining a good compression ratio (throughout this paper
we use the term Compression ratio to denote the ratio of the
compressed data size over the original data size).
Conventional compression algorithm quality metrics, such as
block compression ratio, are not appropriate for judging
quality in this domain. Instead, one must consider the
effective system-wide compression ratio (defined precisely
in Section IV.C). This paper will point out a number of other
relevant quality metrics for cache compression algorithms,
some of which are new. Finally, cache compression should
not increase power consumption substantially. The above
requirements prevent the use of high-overhead compression
algorithms such as the PPM family of algorithms [4] or
Burrows-Wheeler transforms [5]. A faster and lower-
overhead technique is required.

2.Objective

The main objective of this paper is to give a new, better and
efficient algorithm (which can be realized on FPGA) to
compress the data into the cache and decompresses the data
moving out of the cache which decreases miss rate and
increases hit rate and reduces latency of off chip memory
without degrading any performance. The main point under
consideration is that the performance, area, and power
consumption, whose overheads are made low enough for
practical use. The main focus will be on;

1. Compressing the data into cache and decompressing the
same while taking out.
2. Compression and decompression are made extremely fast.
3. Hard ware is made to occupy lesser area.
4. Compression should be made lossless with good
compression ratio.

Paper ID: J201336 32 of 38

This
 Artic

le
is

Fou
nd

 Plag
iar

ize
d

Orig
ina

l A
rtic

le
Deta

ils
are

 as
 be

low

C-P
ac

k:
A H

igh
-P

erf
orm

an
ce

 M
icr

op
roc

es
so

r C
ac

he
 C

om
pre

ss
ion

 Algo
rith

m

Xi C
he

n,
Le

i Y
an

g ;
 R

ob
ert

 P. D
ick

 ; L
i S

ha
ng

 ; H
ari

s L
ek

ats
as

IEEE Tran
sa

cti
on

s o
n V

ery
 La

rge
 Sca

le
Int

eg
rat

ion
 (V

LS
I) S

ys
tem

s
(V

olu
me:1

8 ,
 Is

su
e:

8)

01
 Sep

tem
be

r 2
00

9

10
.11

09
/TVLS

I.2
00

9.2
02

09
89

IEEE C
irc

uit
s a

nd
 Sys

tem
s S

oc
iet

y

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 1 Issue 4, December 2013

3.Cache Compression Architecture

In this section, we describe the architecture of a CMP system
in which the cache compression technique is used. We
consider private on-chip L2 caches, because in contrast to a
shared L2 cache, the design styles of private L2 caches
remain consistent when the number of processor cores
increases. We also examine how to integrate data prefetching
techniques into the system.

Figure 1 gives an overview of a CMP system with n
processor cores. Each processor has private L1 and L2
caches. The L2 cache is divided into two regions: an
uncompressed region (L2 in the figure) and a compressed
region (L2C in the figure). For each processor, the sizes of
the uncompressed region and compression region can be
determined statically or adjusted to the processor’s needs
dynamically. In extreme cases, the whole L2 cache is
compressed due to capacity requirements, or uncompressed
to minimize access latency. We assume a three-level cache
hierarchy consisting of L1 cache, uncompressed L2 region,
and compressed L2 region. The L1 cache communicates
with the uncompressed region of the L2 cache, which in turn
exchanges data with the compressed region through the
compressor and decompressor, i.e., an uncompressed line
can be compressed in the compressor and placed in the
compressed region, and vice versa. Compressed L2 is
essentially a virtual layer in the memory hierarchy with
larger size, but higher access latency, than uncompressed L2.
Note that no architectural changes are needed to use the
proposed techniques for a shared L2 cache. The only
difference is that both regions contain cache lines from
different processors instead of a single processor, as is the
case in a private L2 cache.

Figure 1: System architecture in which cache compression is
used

4.C-Pack Compression Algorithm

This section gives an overview of the proposed C-Pack
compression algorithm. We first briefly describe the
algorithm and several important features that permit an
efficient hardware implementation, many of which would be
contradicted for a software implementation. We also discuss

the design trade-offs and validate the effectiveness of C-
Pack in compressed-cache architecture.

A. Design Constraints and Challenges

We first point out several design constraints and challenges
particular to the cache compression problem.

1)Cache compression requires hardware that can decompress
a word in only a few CPU clock cycles. This rules out
software implementations and has great influence on
compression algorithm design.

2)Cache compression algorithms must be lossless to
maintain correct microprocessor operation.

3)The block size for cache compression applications is
smaller than for other compression applications such as
file and main memory compression. Therefore, achieving
a low compression ratio is challenging.

4)The complexity of managing the locations of cache lines
after compression influences feasibility. Allowing
arbitrary, i.e., bit-aligned, locations would complicate
cache design to the point of infeasibility. A scheme that
permits a pair of compressed lines to fit within an
uncompressed line is advantageous.

B. C-Pack Algorithm Overview

C-Pack (for Cache Packer) is a lossless compression
algorithm designed specifically for high-performance
hardware- based on-chip cache compression. It achieves a
good compression ratio when used to compress data
commonly found in microprocessor low-level on-chip
caches, e.g., L2 caches. Its design was strongly influenced
by prior work on pattern- based partial dictionary match
compression. However, this prior work was designed for
software-based main memory compression and did not
consider hardware implementation.

C-Pack achieves compression by two means:

1)It uses statically decided, compact encodings for
frequently appearing data words.

2)It encodes using a dynamically updated dictionary
allowing adaptation to other frequently appearing words.
The dictionary supports partial word matching as well as
full word matching. The patterns and coding schemes used
by C-Pack are summarized in Table I, which also reports
the actual frequency of each pattern observed in the cache
trace data. The ‘Pattern’ column describes frequently
appearing patterns, where ‘z’ represents a zero byte, ‘m’
represents a byte matched against a dictionary entry, and
‘x’ represents an unmatched byte. In the ‘Output’ column,
‘B’ represents a byte and ‘b’ represents a bit. The C-Pack
compression and decompression algorithms are illustrated
in Fig. 2. We use an input of two words per cycle as an
example in Fig. 2. However, the algorithm can be easily
extended to cases with one, or more than two, words per
cycle. During one iteration, each word is first compared
with patterns “zzzz” and “zzzx”. If there is a match, the

Paper ID: J201336 33 of 38

This
 Artic

le
is

Fou
nd

 Plag
iar

ize
d

Orig
ina

l A
rtic

le
Deta

ils
are

 as
 be

low

C-P
ac

k:
A H

igh
-P

erf
orm

an
ce

 M
icr

op
roc

es
so

r C
ac

he
 C

om
pre

ss
ion

 Algo
rith

m

Xi C
he

n,
Le

i Y
an

g ;
 R

ob
ert

 P. D
ick

 ; L
i S

ha
ng

 ; H
ari

s L
ek

ats
as

IEEE Tran
sa

cti
on

s o
n V

ery
 La

rge
 Sca

le
Int

eg
rat

ion
 (V

LS
I) S

ys
tem

s
(V

olu
me:1

8 ,
 Is

su
e:

8)

01
 Sep

tem
be

r 2
00

9

10
.11

09
/TVLS

I.2
00

9.2
02

09
89

IEEE C
irc

uit
s a

nd
 Sys

tem
s S

oc
iet

y

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 1 Issue 4, December 2013

compression output is produced by combining the
corresponding code and unmatched bytes as indicated in
Table 1. Otherwise; the compressor compares the word

with all dictionary entries and finds the one with the most
matched bytes.

Figure 3: Compression examples for different input words

Table 1: Pattern Encoding for C-Pack

The compression result is then obtained by combining code,
dictionary entry index, and unmatched bytes, if any. Words
that fail pattern matching are pushed into the dictionary.
Figure 2 shows the compression results for several different
input words. In each output, the code and the dictionary
index, if any, are enclosed in parentheses. Although we used
a 4-word dictionary in Figure 2 for illustration, the
dictionary size is set to 64 B in our implementation. Note
that the dictionary is updated after each word insertion,
which is not shown in Figure 2.

During decompression, the decompressor first reads
compressed words and extracts the codes for analyzing the

patterns of each word, which are then compared against the
codes defined in Table 1. If the code indicates a pattern
match, the original word is recovered by combining zeroes
and unmatched bytes, if any. Otherwise, the decompression
output is given by combining bytes from the input word with
bytes from dictionary entries, if the code indicates a
dictionary match.

The C-Pack algorithm is designed specifically for hardware
implementation. It takes advantage of simultaneous
comparison of an input word with multiple potential patterns
and dictionary entries. This allows rapid execution with good
compression ratio in a hardware implementation, but may
not be suitable for a software implementation. Software
implementations commonly serialize operations. For
example, matching against multiple patterns can be
prohibitively expensive for software implementations when
the number of patterns or dictionary entries is large. C-
Pack’s inherently parallel design allows an efficient
hardware implementation, in which pattern matching,
dictionary matching, and processing multiple words are all
done simultaneously. In addition, we chose various design

Paper ID: J201336 34 of 38

This
 Artic

le
is

Fou
nd

 Plag
iar

ize
d

Orig
ina

l A
rtic

le
Deta

ils
are

 as
 be

low

C-P
ac

k:
A H

igh
-P

erf
orm

an
ce

 M
icr

op
roc

es
so

r C
ac

he
 C

om
pre

ss
ion

 Algo
rith

m

Xi C
he

n,
Le

i Y
an

g ;
 R

ob
ert

 P. D
ick

 ; L
i S

ha
ng

 ; H
ari

s L
ek

ats
as

IEEE Tran
sa

cti
on

s o
n V

ery
 La

rge
 Sca

le
Int

eg
rat

ion
 (V

LS
I) S

ys
tem

s
(V

olu
me:1

8 ,
 Is

su
e:

8)

01
 Sep

tem
be

r 2
00

9

10
.11

09
/TVLS

I.2
00

9.2
02

09
89

IEEE C
irc

uit
s a

nd
 Sys

tem
s S

oc
iet

y

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 1 Issue 4, December 2013

parameters such as dictionary replacement policy and coding
scheme to reduce hardware complexity, even if our choices
slightly degrade the effective system-wide compression
ratio.

In the proposed implementation of C-Pack, two words are
processed in parallel per cycle. Achieving this, while still
permitting an accurate dictionary match for the second word,
is challenging. Let us consider compressing two similar
words that have not been encountered by the compression
algorithm recently, assuming the dictionary uses first-in first-
out (FIFO) as its replacement policy. The appropriate
dictionary content when processing the second word
depends on whether the first word matched a static pattern. If
so, the first word will not appear in the dictionary.
Otherwise, it will be in the dictionary, and its presence can
be used to encode the second word. Therefore, the second
word should be compared with the first word and all but the
first dictionary entry in parallel. This improves compression
ratio compared to the more naïve approach of not checking
with the first word. Therefore, we can compress two words
in parallel without compression ratio degradation.

5.Evaluation

In this section, we present the evaluation of the C-Pack
hardware. We first present the performance, power
consumption, and area overheads of the compression or
decompression hardware when synthesized for integration
within a microprocessor. Then, we compare the compression
ratio and performance of C-Pack to other algorithms
considered for cache compression: MXT [6], X-match [7],
and FPC [8]. Finally, we describe the implications of our
findings on the feasibility of using C-Pack based cache
compression within a microprocessor.

A. C-Pack Synthesis Results

We synthesized our design using Synopsys Design Compiler
with 180 nm, 90 nm, and 65 nm libraries. Table IV presents
the resulting performance, area, and power consumption at
maximum internal frequency. “Loc” refers to the compressed
line locator/arbitrator in a pair-matching compressed cache
and “worst-case delay” refers to the number of cycles
required to compress, decompress, or locate a 64 B line in
the worst case. As indicated in Table IV, the proposed
hardware design achieves a throughput of 80 Gb/s (64 B x
1.25 GHz) for compression and 76.8 Gb/s (64 B x 1.20
GHz) for decompression in a 65 nm technology. Its area and
power consumption overheads are low enough for practical
use. The total power consumption of the compressor,
decompressor, and compressed line arbitrator at 1 GHz is
48.82 mW (32.63 mW/1.25 GHz + 24.14 mW/1.20 GHz +
5.20 mW/2.00 GHz) in a 65 nm technology. This is only 7%
of the total power consumption of a 512 KB cache with a 64
B block size at 1 GHz in 65 nm technology, derived using
CACTI 5[9] .

B. Comparison of Compression Ratio

We compare C-Pack to several other hardware compression
designs, namely X-Match, FPC, and MXT, that may be
considered for cache compression. We exclude other
compression algorithms because they either lack hardware
designs or are not suitable for cache compression. Although
the proposed hardware implementation mainly targets online
cache compression, it can also be used in other high-
performance lossless data compression applications with few
or no changes. We tested the compression ratios of different
algorithms on four cache data traces gathered from a full
system simulation of various workloads from the Media
bench [10] and SPEC CPU2000 benchmark suites. The
block size and the dictionary size are both set to 64 B in all
test cases. Since we are unable to determine the exact
compression algorithm used in MXT, we used the LZSS
Lempel-Ziv compression algorithm to approximate its
compression ratio [11]. The raw compression ratios and
effective system-wide compression ratios in a pair-matching
scheme are summarized in Table V. Each row shows the raw
compression ratios and effective system-wide compression
ratios using different compression algorithms for an
application. As indicated in Table V, raw compression ratio
varies from algorithm to algorithm, with X-Match being the
best and MXT is being the worst on average. The poor raw
compression ratios of MXT are mainly due to its limited
dictionary size. The same trend is seen for effective system-
wide compression ratios: X-Match has the lowest (best) and
MXT has the highest (worst) effective system-wide
compression ratio. Since the raw compression ratios of X-
Match and C-Pack are close to 50%, they achieve better
effective system-wide compression ratios than MXT and
FPC. On average, C-Pack’s system-wide compression ratio
is 2.76% worse than that of X-Match, 6.78% better than that
of FPC, and 10.3% better than that of MXT.

C. Comparison of Hardware Performance

This subsection compares the decompression latency, peak
frequency, and area of C-Pack hardware to that of MXT, X-
Match, and FPC. Power consumption comparisons are
excluded because they are not reported for the alternative
compression algorithms. Decompression latency is defined
as the time to decompress a 64 B cache line.

1)Comparing C-Pack with MXT: MXT has been
implemented in a memory controller chip operating at 133
MHz using 0.25 m CMOS ASIC technology. The
decompression rate is 8 B/cycle with 4 decompression
engines. We scale the frequency up to 511 MHz, i.e., its
estimated frequency based on constant electrical field
scaling if implemented in a 65 nm technology. 511 MHz is
below a modern high-performance processor frequency.
We assume an on-chip counter/divider is available to
clock the MXT decompressor. However, decompressing a
64 B cache line will take 16 processor cycles in a 1 GHz
processor, twice the time for C-Pack. The area cost of
MXT is not reported.

Paper ID: J201336 35 of 38

This
 Artic

le
is

Fou
nd

 Plag
iar

ize
d

Orig
ina

l A
rtic

le
Deta

ils
are

 as
 be

low

C-P
ac

k:
A H

igh
-P

erf
orm

an
ce

 M
icr

op
roc

es
so

r C
ac

he
 C

om
pre

ss
ion

 Algo
rith

m

Xi C
he

n,
Le

i Y
an

g ;
 R

ob
ert

 P. D
ick

 ; L
i S

ha
ng

 ; H
ari

s L
ek

ats
as

IEEE Tran
sa

cti
on

s o
n V

ery
 La

rge
 Sca

le
Int

eg
rat

ion
 (V

LS
I) S

ys
tem

s
(V

olu
me:1

8 ,
 Is

su
e:

8)

01
 Sep

tem
be

r 2
00

9

10
.11

09
/TVLS

I.2
00

9.2
02

09
89

IEEE C
irc

uit
s a

nd
 Sys

tem
s S

oc
iet

y

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 1 Issue 4, December 2013

2)Comparing C-Pack with X-Match: X-Match has been
implemented using 0.25 m field programmable gate array
(FPGA) technology. The compression hardware achieved
a maximum frequency of 50 MHz with a throughput of
200 MB/s. To the best of our knowledge, the design was
not synthesized using a flow suitable for microprocessors.
Therefore, we ported our design for C-Pack for synthesis
to the same FPGA used for X-Match in order to compare
the peak frequency and the throughput. Evaluation results
indicate that our C-Pack implementation is able to achieve
the same peak frequency as X-Match and a throughput of
400 MB/s, i.e., twice as high as X-Match’s throughput.
Note that in practical situations; C-Pack should be
implemented using an ASIC flow due to performance
requirement for cache compression.

3)Comparing C-Pack with FPC: FPC has not been
implemented on a hardware platform. Therefore, no area
or peak frequency numbers are reported. To estimate the
area cost of FPC, we observe that the FPC compressor and
decompressor are decomposed into multiple pipeline
stages as described in its tentative hardware design. Each
of these stages imposes area overhead. For example,
assuming each 2-to-1 multiplexer takes 5 gates, the fourth
stage of the FPC decompression pipeline takes
approximately 290 K gates or 0.31 mm in 65 nm
technology, more than the total area of our compressor and
decompressor. Although this work claims that time-
multiplexing two sets of barrel shifters could help reduce
area cost, our analysis suggest that doing so would
increase the overall latency of decompressing a cache line
to 12 cycles, instead of the claimed 5 cycles. In contrast,
our hardware implementation achieves much better
compression ratio and a comparable worst-case delay at a
high clock frequency, at an area cost of 0.043 mm
compressor and 0.043 mm decompressor in 65 nm
technology.

D. Implications on Claims in Prior Cache Compression
Work

Many prior publications on cache compression assume the
existence of lossless algorithms supporting a consistent good
compression ratio on small (e.g., 64-byte) blocks and
allowing decompression within a few microprocessor clock

cycles (e.g., 8 ns) with low area and power consumption
overheads. Some publications assume that existing Lempel-
Ziv compression algorithm based hardware would be
sufficient to meet these requirements [2]; these assumptions
are not supported by evidence or analysis. Past work also
placed too much weight on cache line compression ratio
instead of effective system-wide compression ratio. As a
result, compression algorithms producing lower compressed
line sizes were favored.

However, the hardware overhead of permitting arbitrary
locations of these compressed lines prevents arbitrary
placement, resulting in system-wide compression ratios
much poorer than predicted by line compression ratio. In
fact, the compression ratio metric of merit for cache
compression algorithms should be effective system-wide
compression ratio, not average line compression ratio.
Alameldeen et al. proposed segmented compression ratio, an
idea similar to system-wide compression ratio. However,
segmented compression ratio is only defined for a
segmentation-based approach with fixed-size segments.
Effective system-wide compression ratio generalizes this
idea to handle both fixed size segments (segmentation-based
schemes) and variable length segments (pair-matching based
schemes). C-Pack was designed to optimize performance,
area, and power consumption under a constraint on effective
system-wide compression ratio. C-Pack meets or exceeds the
requirements assumed in former micro-architectural research
on cache compression. It therefore provides a proof of
concept supporting the system-level conclusions drawn in
much of this research. Many prior system-wide cache
compression results hold, provided that they use a
compression algorithm with characteristics similar to C-
Pack.

6.Experimental Results

5.1 Simulation Results

The figures 5.1 and 5.2 shows the compression and
decompression outputs. The compressed data is
decompressed successfully with no loss.

Paper ID: J201336 36 of 38

This
 Artic

le
is

Fou
nd

 Plag
iar

ize
d

Orig
ina

l A
rtic

le
Deta

ils
are

 as
 be

low

C-P
ac

k:
A H

igh
-P

erf
orm

an
ce

 M
icr

op
roc

es
so

r C
ac

he
 C

om
pre

ss
ion

 Algo
rith

m

Xi C
he

n,
Le

i Y
an

g ;
 R

ob
ert

 P. D
ick

 ; L
i S

ha
ng

 ; H
ari

s L
ek

ats
as

IEEE Tran
sa

cti
on

s o
n V

ery
 La

rge
 Sca

le
Int

eg
rat

ion
 (V

LS
I) S

ys
tem

s
(V

olu
me:1

8 ,
 Is

su
e:

8)

01
 Sep

tem
be

r 2
00

9

10
.11

09
/TVLS

I.2
00

9.2
02

09
89

IEEE C
irc

uit
s a

nd
 Sys

tem
s S

oc
iet

y

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 1 Issue 4, December 2013

5.1.1 Compression

Figure 5.1: Showing compressed output for two input words

5.1.2 Decompression

Figure 5.2: Showing Decompressed output for two compressed words

From below tables it is clear that the proposed algorithm has
good compression ratio

Table 5.1: Comparison of compression ratios of different
compression algorithms

MXT FPC X-
Match C-Pack

Ratio 71.70 68.18 58.64 50%
No. of Possible
Input Bits 8bits 16bit 32bits 64bits

Table 5.2: Comparison of Decompression ration of different
algorithms

 MXT FPC X-
Match C-Pack

Ratio -- 68.18 58.64 50%
No. of Possible
Input Bits -- 16bits 32bits 64bits

7.Conclusion

By the implementation of the proposed algorithm, it is
possible to compress and decompress the data in to the cache
in an efficient way without altering its performance. This

Paper ID: J201336 37 of 38

This
 Artic

le
is

Fou
nd

 Plag
iar

ize
d

Orig
ina

l A
rtic

le
Deta

ils
are

 as
 be

low

C-P
ac

k:
A H

igh
-P

erf
orm

an
ce

 M
icr

op
roc

es
so

r C
ac

he
 C

om
pre

ss
ion

 Algo
rith

m

Xi C
he

n,
Le

i Y
an

g ;
 R

ob
ert

 P. D
ick

 ; L
i S

ha
ng

 ; H
ari

s L
ek

ats
as

IEEE Tran
sa

cti
on

s o
n V

ery
 La

rge
 Sca

le
Int

eg
rat

ion
 (V

LS
I) S

ys
tem

s
(V

olu
me:1

8 ,
 Is

su
e:

8)

01
 Sep

tem
be

r 2
00

9

10
.11

09
/TVLS

I.2
00

9.2
02

09
89

IEEE C
irc

uit
s a

nd
 Sys

tem
s S

oc
iet

y

International Journal of Scientific Engineering and Research (IJSER)
www.ijser.in

ISSN (Online): 2347-3878
Volume 1 Issue 4, December 2013

method maintains good compression ratio and area overhead
and thus decreases memory latency and speeds up the
processor and by making the system to work with high speed
and thus helpful for mankind.

References

[1] R. Alameldeen and D. A. Wood, “Adaptive cache
compression for high-performance processors,” in Proc.
Int. Symp. Computer Architecture, Jun. 2004, pp. 212–
223.

[2] E. G. Hallnor and S. K. Reinhardt, “A compressed
memory hierarchy using an indirect index cache,” in
Proc. Workshop Memory Performance Issues, 2004, pp.
9–15.

[3] R. Alameldeen and D. A.Wood, “Interactions between
compression and prefetching in chip multiprocessors,”
in Proc. Int. Symp. High-Performance Computer
Architecture, Feb. 2007, pp. 228–239.

[4] Moffat, “Implementing the PPM data compression
scheme,” IEEE Trans. Commun. , vol. 38, no. 11, pp.
1917–1921, Nov. 1990.

[5] M. Burrows and D. Wheeler, “A block sorting lossless
data compression algorithm,” Digital Equipment
Corporation, Tech. Rep. 124, 1994.

[6] Tremaine et al., “IBM memory expansion technology,”
IBM J Res. Development, vol. 45, no. 2, pp. 271–285,
Mar. 2001.

Author Profile

Mr. V. Narayana Reddy, M.Tech Digital Systems has
been working as an Associate Professor in ECE DEPT,
PBR VITS, JNTUA, Kavali, Nellore (Dt.), A.P, India
.He has published over 5 papers in various National
and International Journals and Conferences.

Ms. Chandrakala is a Project Associate pursuing her
M.Tech Degree with VLSI Design specialization at the
department of Electronics and Communication
Engineering, PBRVITS, JNTUA, Kavali, Nellore
(Dt.), A.P, India

Paper ID: J201336 38 of 38

This
 Artic

le
is

Fou
nd

 Plag
iar

ize
d

Orig
ina

l A
rtic

le
Deta

ils
are

 as
 be

low

C-P
ac

k:
A H

igh
-P

erf
orm

an
ce

 M
icr

op
roc

es
so

r C
ac

he
 C

om
pre

ss
ion

 Algo
rith

m

Xi C
he

n,
Le

i Y
an

g ;
 R

ob
ert

 P. D
ick

 ; L
i S

ha
ng

 ; H
ari

s L
ek

ats
as

IEEE Tran
sa

cti
on

s o
n V

ery
 La

rge
 Sca

le
Int

eg
rat

ion
 (V

LS
I) S

ys
tem

s
(V

olu
me:1

8 ,
 Is

su
e:

8)

01
 Sep

tem
be

r 2
00

9

10
.11

09
/TVLS

I.2
00

9.2
02

09
89

IEEE C
irc

uit
s a

nd
 Sys

tem
s S

oc
iet

y

